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ON SEMI-REGULAR INJECTIVE MODULES AND

STRONG DEDEKIND RINGS

Renchun Qu

Abstract. The main motivation of this paper is to introduce and study

the notions of strong Dedekind rings and semi-regular injective modules.
Specifically, a ring R is called strong Dedekind if every semi-regular ideal

is Q0-invertible, and an R-module E is called a semi-regular injective

module provided Ext1R(T,E) = 0 for every Q-torsion module T . In this
paper, we first characterize rings over which all semi-regular injective

modules are injective, and then study the semi-regular injective envelopes
of R-modules. Moreover, we introduce and study the semi-regular global

dimensions sr-gl.dim(R) of commutative rings R. Finally, we obtain that

a ring R is a DQ-ring if and only if sr-gl.dim(R) = 0, and a ring R is a
strong Dedekind ring if and only if sr-gl.dim(R) ≤ 1, if and only if any

semi-regular ideal is projective. Besides, we show that the semi-regular

dimensions of strong Dedekind rings are at most one.

1. Introduction

In this paper, we always assume R is a commutative ring with identity and
T(R) is the total ring of fractions of R. An ideal I of R is said to be dense
if (0 :R I) := {r ∈ R | Ir = 0} is 0, or be semi-regular if it contains a finitely
generated dense sub-ideal, or be regular if it contains a regular element. Let
I be an ideal of R. Denote by I−1 = {z ∈ T(R) | Iz ⊆ R}. If an ideal I of
R satisfies II−1 = R, then I is said to be an invertible ideal. It is well-known
that Dedekind domains are domains over which every nonzero ideal is invertible.
Dedekind domains have many classical characterizations from various points of
views, such as a domain is a Dedekind domain if and only if every ideal is
projective, if and only if every quotient module of injective module is injective,
if and only its global dimension is at most one (see [15] for example). So it
is an important thing to generalize Dedekind domains to commutative rings
with zero divisors. Recently, Elliott [5] defined Dedekind rings to be rings over
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which every regular ideal is invertible. He also gave some characterizations of
Dedekind rings (see [5, Theorem 3.7.29]).

In 1932, Prüfer [13] introduced integral domains over which all finitely gen-
erated non-zero ideals are invertible, which are named as Prüfer domains by
Krull [10]. Since Prüfer domains are of great importance to the study of integral
domains, many scholars generalized the notion of integral domains to these of
commutative rings with zero-divisors. In 1967, Butts and Smith [3] introduced
the notion of Prüfer rings over which every finitely generated regular ideal is
invertible. Since the notion of Prüfer rings is very simple, it is very hard to
delve deeper (note that all total rings of quotients are Prüfer rings). For better
understanding Prüfer rings, Anderson et al. [1] introduced the notion of strong
Prüfer rings, over which every finitely generated semi-regular ideal is locally
principal. In order to characterize strong Prüfer rings by “invertible” ideals,
Lucas [11] developed the ring Q0(R) of finite fractions:

Q0(R) =

{
bnx

n + · · ·+ b0
anxn + · · ·+ a0

∈ T(R[x]) | biaj = aibj for any i, j

}
.

An ideal I of R is said to be Q0-invertible if there is an R-submodule J of
Q0(R) such that IJ = R. Then Lucas [11] proved that a ring R is a strong
Prüfer ring if and only if every finitely generated semi-regular ideal of R is
Q0-invertible.

The main motivation of this paper is to introduce and study commutative
rings over which every semi-regular ideal is Q0-invertible (which are called
strong Dedekind rings in Definition 4.7). It is well-known that an integral
domain R is a Dedekind domain if and only every quotient of injective R-
module is injective, if and only if the global dimension of R is at most one.
In order to give a homological characterization of strong Dedekind rings, we
introduce the notion of semi-regular injective modules using Q-torsion theories.
We obtain the Baer’s Criterion for semi-regular injective modules (see Theorem
2.2) and characterize commutative rings with all semi-regular injective modules
injective when R is a WQ-ring (see Theorem 2.4). We also introduce and
study the semi-regular injective envelopes of R-modules (see Definition 2.6 and
Proposition 2.7). Then, we introduce and study the semi-regular injective
dimensions of R-modules and semi-regular global dimensions sr-gl.dim(R) of
commutative rings R. Finally, we show that a ring R is a DQ-ring if and only
if sr-gl.dim(R) = 0, and a ring R is a strong Dedekind ring if and only if
sr-gl.dim(R) ≤ 1, if and only if every semi-regular ideal is projective.

2. Semi-regular injective modules

Denote by Q the set of all finitely generated semi-regular ideals of R. We
recall from [16] about some basic notions on Q-torsion theory. Let M be an
R-module. We denote by

TorQ(M) = {m ∈ M | there exists I ∈ Q such that Im = 0}.
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ThenM is said to beQ-torsion (resp.,Q-torsion free) provided that TorQ(M) =
0 (resp., TorQ(M) = M). Certainly, an ideal I such that R/I is Q-torsion is
semi-regular.

Definition 2.1. An R-module E is said to be a semi-regular injective module
provided that Ext1R(T,E) = 0 for every Q-torsion module T . The class of all
semi-regular injective modules is denoted by Isr.

Obviously, an R-module E is semi-regular injective if and only if for every

short exact sequence 0 → M
i−→ N → T → 0 with T Q-torsion and every R-

homomorphism f : M → E, there exists an R-homomorphism g : N → E such
that g ◦ i = f , if and only if every short exact sequence 0 → E → N → T → 0
with T Q-torsion splits. Next, we establish Baer’s Criterion for semi-regular
injective modules.

Theorem 2.2 (Baer’s criterion for semi-regular injective modules). An R-
module E is semi-regular injective if and only if for every semi-regular ideal I,
Ext1R(R/I,E) = 0.

Proof. Suppose E is a semi-regular injective R-module. Then, trivially,
Ext1R(R/I,E) = 0 for every semi-regular ideal I.

On the other hand, suppose E is an R-module satisfying Ext1R(R/I,E) = 0
for every semi-regular ideal I. Let B be an R-module, A a submodule of B
such that B/A is Q-torsion. Let f : A → E be an R-homomorphism. Set

Γ = {(C, d) |C is a submodule of B containing A and d|A = f}.
Since (A, f) ∈ Γ, Γ is nonempty. Set (C1, d1) ≤ (C2, d2) if and only if C1 ⊆ C2

and d2|C1
= d1. Then Γ is a partial order. For every chain (Cj , dj), let

C0 =
⋃

j Cj and d0(c) = dj(c) if c ∈ Cj . Then (C0, d0) is the upper bound of

the chain (Cj , dj). By Zorn’s Lemma, there is a maximal element (C, d) in Γ.
We claim that C = B. On the contrary, let x ∈ B − C. Denote I = {r ∈

R | rx ∈ C}. Since B/A is Q-torsion, so is the quotient module B/C. Thus
the submodule (Rx + C)/C ∼= R/I is also Q-torsion. It follows that I is a
semi-regular ideal of R. Let h : I → E be an R-homomorphism satisfying
h(r) = d(rx). By assumption, there is an R-homomorphism g : R → E
such that g(r) = h(r) = d(rx) for every r ∈ I. Let C1 = C + Rx and
d1(c + rx) = d(c) + g(r) where c ∈ C and r ∈ R. If c + rx = 0, then r ∈ I
and thus d(c) + g(r) = d(c) + h(r) = d(c) + d(rx) = d(c+ rx) = 0. Hence d1 is
a well-defined homomorphism such that d1|A = f . So (C1, d1) ∈ Γ. However,
(C1, d1) > (C, d) which contradicts the maximality of (C, d). □

Lemma 2.3. Consider the following commutative diagram with rows exact:

0 // A1

k1

��

i1 // A2

k2

��

i2 // A3

k3

��

// 0

0 // B1
j1 // B2

j1 // B3
// 0
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where A1 is the pull-back of j1 and k2. If k2 is a monomorphism, then k1 and
k3 are monomorphisms.

Proof. Suppose k2 is a monomorphism. Then Kerk1 ∼= Kerk2 = 0 by [8,
Theorem 6.2]. So k1 is a monomorphism. To show k3 is also a monomor-
phism, by Snake Lemma, we just need to prove the induced homomorphism
α : Cok(k1) → Cok(k2) is a monomorphism. Set B = Cok

(
i1
k1

)
. Then there is

a short exact sequence

0 → A1

(i1
k1
)

−−−→ A2 ⊕B1
(l1,−l2)−−−−−→ B → 0.

So, by [8, Exercise 6.7], the following diagram is a push-out:

A1

k1

��

i1 // A2

l1
��

B1
l2 // B

So by the dual of [8, Theorem 6.2], we have Cok(k1) ∼= Cok(l1) and Cok(i1) ∼=
Cok(l2). Note that we have the following commutative diagram with rows
exact:

0 // A1

(i1
k1
)
// A2 ⊕B1

(l1,−l2) // B

l
��

// 0

0 // A1

(i1
k1
)
// A2 ⊕B1

(k2,−j1) // B2

By Snake Lemma, l is a monomorphism. Note that l ◦ l1 = k2 and l ◦ l2 = j1.
So we have the following commutative diagram with rows exact:

A2
l1 // B� _

l
��

i2 // Cok(l1)

t
��

// 0

A2
k2 // B2

j1 // Cok(k2) // 0

So, by the Five Lemma, we have t is also a monomorphism. Hence k3 is a
monomorphism. □

Trivially, every injective module is semi-regular injective. However, the con-
verse is not true (see Example 4.2). Following [15], a finitely generated ideal J
of R is said to be a GV-ideal if and only if HomR(R/J,R) = Ext1R(R/J,R) = 0.
The set of all GV-ideals of R is denoted by GV(R). A ring R is said to be a
DW ring provided that GV(R) = {R}. Recall from [18] that a ring R is said to
be a WQ-ring if every finitely generated semi-regular ideal is a GV-ideal, which
is equivalent to every Q-torsion module is GV-torsion. We now characterize
commutative rings R with all semi-regular injective modules injective, when R
is a WQ-ring.
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Theorem 2.4. Let R be a WQ-ring. Then every semi-regular injective R-
module is injective if and only if for every ideal I of R, there exist a semi-regular
ideal J and a projective ideal K of R such that J = I ⊕K.

Proof. Suppose R is a WQ-ring satisfying that every semi-regular injective
R-module is injective. Let I be an ideal of R. Consider the cotorsion pair
(T , Isr) where T =⊥1 Isr. Then we have T = R-Mod. In particular, R/I ∈ T .
Following [7, Corollary 6.13(b)], there is an R-module N such that R/I is a

direct summand of N and an exact sequence 0 → F
i−→ N → T → 0 where F

is free and T is Q-torsion. Let j : R/I → N be the splitting monomorphism.
Consider the pull-back of i and j:

0 // P

l
��

s // R/I� _
j
��

// T1

k
��

// 0

0 // F
i // N // T // 0

Then k is a monomorphism by Lemma 2.3. Since T is Q-torsion, T1 is also
Q-torsion. Hence T1

∼= R/J for some semi-regular ideal J which contains I.
Now we claim l is a splitting monomorphism. Indeed consider the following
pull-back and push-out:

0 // P

l
��

s // R/I

j′

��

// T1
// 0

0 // F
i′ //

l′����

X //

k′
����

T1
// 0

Y Y

By the proof of Lemma 2.3, there exists a monomorphism l : X → N such
that l ◦ j′ = j. Let π : N → R/I be the retraction of j. Then π ◦ l ◦ j′ =
π ◦ j = IdR/I . Hence j′ is also a splitting monomorphism. Set π1 : X → R/I
to be the retraction of j′. Since R is a WQ ring, T1 is Q-torsion, then T1

is GV-torsion. Since F is free, the bottom short exact sequence splits. Set
π2 : X → F to be the retraction of i′. Consider the short exact sequence

0 → P
(sl)−−→ R/I ⊕ F

(j′,−i)−−−−→ X → 0. Then (π1,−π2) is a retraction of (j′,−i).
Hence l is a splitting monomorphism. Since F is free, we have P ∼= J/I is
projective. Consider the splitting short exact sequence 0 → I → J → J/I → 0.
Then there is a projective ideal K of R such that J = I ⊕K.

On the other hand, suppose M is a semi-regular injective module. Let I
be an ideal of R. Then there exists a semi-regular ideal J such that J =
I ⊕ K for some projective ideal K of R. Then we have an exact sequence
0 = Ext1R(K,M) → Ext1R(R/I,M) → Ext1R(R/J,M) = 0 by Theorem 2.2.
Hence Ext1R(R/I,M) = 0. So M is injective. □
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Remark 2.5. If R is a finite direct product of integral domains, then every semi-
regular injective R-module is injective. So the WQ property is not necessary
for semi-regular injective R-modules to be injective. However, we do not know
whether the condition “R is a WQ-ring” could be omitted in Theorem 2.4.

It is well-known that every R-module has an injective envelope. In the rest
of this section, we introduce the semi-regular injective envelopes of R-modules
and show that every R-module also has a semi-regular injective envelope.

Definition 2.6. Let M be an R-module. Suppose E is a semi-regular injective
module containingM such that E/M isQ-torsion. If E is an essential extension
of M , then E is said to be a semi-regular injective envelope of M .

Let I be a class of R-modules and M an R-module. Following [7, Definition
5.1], an R-homomorphism f : M → I with I ∈ I is said to be an I-preenvelope
provided the natural homomorphism HomR(I, I

′) → HomR(M, I ′) is an epi-
morphism for every I ′ ∈ I. If, moreover, every endomorphism h of I such that
f = f ◦ h is an isomorphism, then f is said to be an I-envelope.
Proposition 2.7. Let R be a ring. The following statements hold.

(1) Any R-module has a semi-regular injective envelope.
(2) Suppose E is a semi-regular injective envelope of M . Then there is no

other semi-regular injective module strictly between M and E.
(3) Suppose E is a semi-regular injective envelope of M . Then the embed-

ding map M ↪→ E is an Isr-envelope.
(4) The semi-regular injective envelope of an R-module is unique up to

isomorphism.

Proof. (1) Let M be an R-module and E(M) the injective envelope of M .
Consider the following set

Γ := {N | M ≤ N ≤ E(M) and N/M is sr-torsion}.
Clearly Γ is a partially ordered set by conclusion. Let Γ′ be a chain in Γ. Then
(
⋃

Ni∈Γ′ Ni)/M is an upper bound of the chain. So there is a maximal element
E in Γ by Zorn Lemma. We claim that E is semi-regular injective. Indeed,

consider an exact sequence 0 → E
f−→ N → T → 0 with T Q-torsion. Since

i : E ↪→ E(M) is the injective envelope of E, there exists an R-homomorphism
g : N → E(M) such that the following diagram commutative:

0 // E
f //

i

""

N

g||

// T // 0

E(M)

So E ⊆ g(N) ⊆ E(M). And hence T = N/E → g(N)/M → 0 is exact. So
g(N) ∈ Γ. Since E is maximal in Γ, we have g(N) = E. Consequently, the

exact sequence 0 → E
f−→ N → T → 0 splits. So E is semi-regular injective.
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(2) Suppose E′ is an semi-regular injective module strictly between M and
E. Consider the exact sequence 0 → E′ → E → E/E′ → 0. Since E/E′ is the
quotient of Q-torsion module E/M , so E/E′ is also Q-torsion. Hence E′ is a
direct summand of E, which is a contradiction to E is an essential extension
of M .

(3) First, we will show the embedding map M ↪→ E is an Isr-preenvelope.
Let f : M → E′ be an R-homomorphism with E′ semi-regular injective. Con-

sider the exact sequence 0 → M
i−→ E → T → 0. Then T is Q-torsion. So

there is an R-homomorphism g : E → E′ such that g ◦ i = f . Hence M ↪→ E
is an Isr-preenvelope. Next, we will show M ↪→ E is an Isr-envelope. Let
h : E → E be an R-homomorphism such that h ◦ i = i. Since i is an essential
extension, we have h is a monomorphism. So Im(h) ∼= E is a semi-regular
injective module. Hence Im(h) = E by (2). So h is an isomorphism. Hence
M ↪→ E is an Isr-envelope.

(4) Follows from (3). □

3. Semi-regular injective dimensions and semi-regular global
dimensions

In this section, we introduce semi-regular injective dimensions of R-modules
and semi-regular global dimensions of commutative rings.

Definition 3.1. Let R be a ring and M an R-module. We write Injsr.dim(M)
≤ n (Injsr.dim abbreviates semi-regular injective dimension) if there is an
exact sequence of R-modules

(♢) 0 → M → E0 → E1 → · · · → En−1 → En → 0

with each Ei injective (i = 0, . . . , n − 1) and En semi-regular injective. The
exact sequence (♢) is said to be a semi-regular injective resolution of length n
of M . The semi-regular injective dimension Injsr.dim(M) is defined to be the
length of the shortest semi-regular injective resolution of M . If no such finite
resolution (♢) exists, then we say Injsr.dim(M) = ∞.

Proposition 3.2. Let R be a ring. The following statements are equivalent
for a non-semi-regular injective R-module M :

(1) Injsr.dim(M) ≤ n;
(2) Extn+1

R (T,M) = 0 for every Q-torsion module T ;

(3) Extn+1
R (R/I,M) = 0 for every semi-regular ideal I;

(4) If 0 → M → E0 → E1 → · · · → En−1 → En → 0 with each Ei injective
(i = 0, . . . , n− 1), then En is semi-regular injective.

Proof. (1) ⇒ (2) We prove (2) by induction on n. For the case n = 0, (2) holds
naturally. If n > 0, then there is an exact sequence 0 → M → E0 → E1 →
· · · → En−1 → En → 0 with each Ei injective (i = 0, . . . , n− 1) and En semi-
regular injective. Let L0 = ker(M → E0). We have two exact sequences 0 →
M → E0 → L0 → 0 and 0 → L0 → E1 → · · · → En−1 → En → 0. Note that
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Injsr.dim(L0) ≤ n. By induction, ExtnR(T, L0) = 0 for every Q-torsion module
T . Since E0 is an injective module, we have Extn+1

R (T,M) ∼= ExtnR(T, L0) = 0.
(2) ⇒ (3) Trivial.
(3) ⇒ (4) Let 0 → M → E0 → E1 → · · · → En−1 → En → 0 be an

exact sequence with each Ei injective (i = 0, . . . , n − 1) and En semi-regular
injective. Set Ln = En and Li = Im(Ei → Ei+1), where i = 0, . . . , n − 1.
Then both 0 → Li−1 → Ei → Li → 0 and 0 → L1 → E0 → M → 0 are exact
sequences. By dimension shift repeatedly, we can obtain that Ext1R(R/I,En) ∼=
Extn+1

R (R/I,M) = 0 for all semi-regular ideals I. Thus En is semi-regular
injective by Proposition 2.2.

(4) ⇒ (1) It follows from that every R-module has an injective envelope. □

Definition 3.3. The semi-regular global dimension of a ring R is defined by

sr-gl.dim(R) = sup{Injsr.dim(M) | M is an R-module}.

The following result can easily be deduced by Proposition 3.2.

Proposition 3.4. The following statements are equivalent for a ring R:

(1) sr-gl.dim(R) ≤ n;
(2) Injsr.dim(M) ≤ n for all R-modules M ;
(3) Extn+1

R (T,M) = 0 for all R-modules M and all Q-torsion R-module
T ;

(4) Extn+1
R (R/I,M) = 0 for all R-modules M and all semi-regular ideals

I of R.

4. Rings with semi-regular global dimensions at most one

Recall from [17, Porposition 2.2], a ring R is called a DQ ring provided
that the only finitely generated semi-regular ideal of R is R itself. It is well-
known that a ring R is a semi-simple ring if and only if every R-module is
injective. Now we characterize commutative rings over which all R-modules
are semi-regular injective.

Proposition 4.1. The following statements are equivalent for a ring R:

(1) sr-gl.dim(R) = 0;
(2) All R-modules are semi-regular injective;
(3) For every semi-regular ideal I and every ideal J , we have I ∩ J = IJ ;
(4) For every semi-regular ideal I, R/I is flat module;
(5) For every semi-regular ideal I and a ∈ I, there is c ∈ I such that

(1− c)a = 0;
(6) R is a DQ ring;
(7) fPD(R) = 0;
(8) The only semi-regular ideal of R is R itself.

Proof. (1) ⇔ (2) and (2) ⇔ (8) Trivial.
(6) ⇔ (7) See [17, Proposition 2.2].
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(3) ⇔ (4) ⇔ (5) See [6, Theorem 1.2.15].
(2) ⇒ (3) Let I be a semi-regular ideal of R and J a ideal of R. Then

HomZ(R/J,Q/Z) is a semi-regular injective module. So

Ext1R(R/I,HomZ(R/J,Q/Z)) ∼= HomZ(Tor
R
1 (R/I,R/J),Q/Z) = 0.

Thus TorR1 (R/I,R/J) = 0, that is, I ∩ J = IJ (see [15, Exercise 3.20]).
(5) ⇒ (6) Suppose I = ⟨a1, . . . , an⟩ is a finitely generated semi-regular ideal.

Then, for every i = 1, . . . , n, there exists ci ∈ I such that (1 − ci)ai = 0. Set
c =

∏n
i=1(1 − ci). Then cai = 0(i = 1, . . . , n). Thus c ∈ (0 :R I) = 0. Note

that 1− c ∈ I. Thus 1 ∈ I and I = R.
(6) ⇒ (8) Let I be a semi-regular ideal of R. Then there is a finitely

generated dense sub-ideal J of I. By (6), J = R and thus I = R. □

The following example shows that semi-regular injective modules are not
always injective.

Example 4.2. Let (R,m) be a non-field local ring such that m is not semireg-
ular (such as the residue class ring R = Z4, or the idealization R = k(+)k
of a field k with itself). Then R is a DQ-ring but is not semi-simple (see
[16, Corollary 3.11]). Then every R-module is semi-regular injective by Propo-
sition 4.1. However, there certainly exists a non-injective R-module since R is
not semi-simple.

Recall from [15] that an R-module M is said to be divisible if and only if
rM = M for every regular element R, which is equivalent to Ext1R(R/⟨r⟩,M) =
0 for every regular element R. Trivially, semi-regular injective modules are
divisible.

Proposition 4.3. A ring R is a total ring of quotients (i.e., every regular
element is a unit) if and only if all R-modules are divisible.

Proof. Suppose R is a total rings of quotient. Then trivially all R-modules
are divisible. On the other hand, let r be a regular element of R. Since all
R-modules are divisible, we have R/⟨r⟩ is a projective ideal. So ⟨r⟩ is a direct
summand of R. Since r is regular, we have r is a unit. □

The following example shows that divisible modules are also not always
semi-regular injective.

Example 4.4 ([19, Example 3.10]). Let D = k[x] be the polynomial ring over
a field k, and m = ⟨x⟩ a maximal ideal of D and P = Max(R) − {m}. Set
R = D(+)B the idealization of D with B, where B =

⊕
p∈P D/p. Then R

is a total ring of quotients by [11, Theorem 11(a)]. However, fPD(R) = 1.
So R is not a DQ-ring. Hence there exists a divisible R-module which is not
semi-regular injective.

Recall from [11] that an ideal I of R is said to be Q0-invertible if there
is an R-submodule J of Q0(R) such that IJ = R, which is equivalent to
IHomR(I,R) = R.
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Theorem 4.5. Let I be a semi-regular ideal of R. Then I is Q0-invertible if
and only if I is projective. Consequently, every semi-regular projective ideal is
finitely generated.

Proof. Let I be a semi-regular ideal of R. Suppose I is Q0-invertible. Then
there exist ai ∈ I and fi ∈ HomR(I,R) with i = 1, . . . , n such that

∑n
i=1 aifi =

1. So
∑n

i=1 aifi(r) = r for every r ∈ R. Hence I is a finitely generated
projective ideal by the projective basis lemma (see [15, Theorem 2.3.6]). On
the other hand, suppose I is a projective semi-regular ideal of R. Then, by the
projective basis lemma, there exist elements {ai ∈ I} and {fi} ⊆ HomR(I,R)
such that

(1) if x ∈ I, then almost all fi(x) = 0;
(2) if x ∈ I, then x =

∑
fi(x).

Since I is semi-regular, there is a finitely generated dense subideal I0 = ⟨x0, . . .,
xn⟩ of I. Set gi = fi ◦ δ, where δ : I0 ↪→ I is the natural embedding map. Set
gi(xj) = yij . Then there are finite elements i = 1, . . . ,m such that yij ̸= 0.

Thus gi =
∑n

j=0 yijX
j∑n

j=0 xjXj ∈ Q0(R) for each i = 1, . . . ,m. So

xj =

m∑
i=1

aigi(xj) =

m∑
i=1

aiyij =

m∑
i=1

aigixj .

It follows that xj(1 −
∑m

i=1 aigi) = 0 for all j. Since I0 is dense, we have∑m
i=1 aigi = 1. Note that Igi ⊆ R for each i = 1, . . . ,m. Indeed, x ∈ I.

Then, in the complete ring of quotients Q(R) (see [9] for example), we have
xgi = fi(x) ∈ R for each i = 1, . . . ,m. Consequently, I is Q0-invertible. □

Remark 4.6. It follows from Theorem 4.5 that semi-regular projective ideals
are always finitely generated. However, dense projective ideals are not always
finitely generated in general. Indeed, let R =

∏∞
i=1 F2 be the countably infinite

direct product of copies of F2, and ei = (1, . . . , 1, 0, . . .) where the sequence of
1’s has length i. Set I to be the ideal generated by all eis. Then I is a dense
projective ideal which is obviously not finitely generated (see [4, 05WH]).

Now, we are ready to introduce and study the notion of strong Dedekind
rings.

Definition 4.7. A ring R is said to be a strong Dedekind ring provided that
every semi-regular ideal is Q0-invertible.

We say a ring R semi-regular Noetherian provided that every semi-regular
ideal is finitely generated. We have the following result whose proof is similar
with the classical one, so we omit it.

Lemma 4.8. Let R be a ring. The following statements are equivalent:

(1) R is a semi-regular Noetherian ring;
(2) Every set of semi-regular ideals has a maximal element;
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(3) Every ascending chain of semi-regular ideals stabilizes.

Recall from [11] that a ring R is called a strong Prüfer ring if every finitely
generated semiregular ideal is Q0-invertible. And recall from [12] that a ring
R is called a Q0-Krull ring if every semiregular ideal is t-invertible (which is
equivalent to every semiregular ideal is w-invertible by [14, Proposition 4.17]).
Obviously, strong Prüfer rings and Q0-Krull rings are both generalizations of
strong Dedekind rings. Moreover, we have the following result.

Theorem 4.9. Let R be a ring. Then the following statements are equivalent:

(1) sr-gl.dim(R) ≤ 1;
(2) R is a strong Dedekind ring;
(3) R is both an sr-Noetherian ring and a strong Prüfer ring;
(4) R is both a DW ring and a Q0-Krull ring;
(5) Any quotient of a semi-regular injective R-module is semi-regular inject-

ive;
(6) Any quotient of a injective R-module is semi-regular injective;
(7) Any semi-regular ideal of R is projective.

Proof. (1) ⇒ (6) Let 0 → L → E → M → 0 be an exact sequence, where E is
an injective module. Since Injsr.dim(L) ≤ 1 by (1), we have M is semi-regular
injective by Proposition 3.2.

(6) ⇒ (7) Let I be a semi-regular ideal of R and M an R-module. Consider
the following short exact sequences: 0 → I → R → R/I → 0 and 0 → M →
E(M) → E(M)/M → 0 where E(M) is the injective envelope of M . Then
we can deduce Ext1R(I,M) ∼= Ext1R(R/I,E(M)/M) = 0 as E(M)/M is semi-
regular injective by (6). So I is projective.

(7) ⇔ (2) It follows from Theorem 4.5.
(2) ⇒ (3) Suppose R is a strong Dedekind ring. Then R is strong Prüfer.

Also R is an sr-Noetherian ring by Theorem 4.5.
(2) ⇒ (4) Suppose R is a strong Dedekind ring. Then R is strong Prüfer and

Q0-Krull. Now we claim that R is a DW-ring. Indeed, let J ∈ GV(R). Then
J is a finitely generated semi-regular ideal of R. Since R is strong Prüfer, for
every p ∈ Spec(R), there exists a regular element a

b ∈ Jp such that Jp = ⟨ab ⟩.
Therefore Jp is free over Rp for every p ∈ Spec(R). Thus J is flat. By [15,
Theorem 6.7.24] and [15, Exercise 6.10(1)], we have J = R.

(3) ⇒ (2), (4) ⇒ (2) and (5) ⇒ (6) Trivial.
(7) ⇒ (1) Let I be a semi-regular ideal of R and M an R-module. Then

Ext2R(R/I,M) ∼= Ext1R(I,M) = 0 as I is projective by (7). So sr-gl.dim(R) ≤ 1
by Proposition 3.4.

(7) ⇒ (5) Let E be a semi-regular injective module and M a submodule of
E. Then we have an exact sequence 0 = Ext1R(R/I,E) → Ext1R(R/I,E/M) →
Ext2R(R/I,M). Since I is projective by (7), we have

Ext2R(R/I,M) ∼= Ext1R(I,M) = 0.
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So Ext1R(R/I,E/M), and hence E/M is semi-regular injective by Theorem
2.2. □

Recall from [5, Definition 2.2.19] that a ring R is said to be a Dedekind
ring provided that every regular ideal is invertible, which is equivalent to every
regular ideal is projective by Theorem 4.5. Obviously every strong Dedekind
ring is a Dedekind ring. However, the converse does not always hold.

Example 4.10 ([11, Example 12]). Let D = L[X2, X3, Y ] where L is a field
and P = Max(R) − {⟨X2, X3, Y ⟩}. Set R = D(+)B the idealization of D
with B, where B =

⊕
p∈P D/p. Then the only semi-regular ideals of R are

those of the form J(+)B where
√
J = ⟨X2, X3, Y ⟩. Then R = T(R). So R

is a Dedekind ring. Since D is a Noetherian ring, each ideal J is a finitely
generated ideal of D. Hence each J(+)B is also a finitely generated ideal of R.
So R is an sr-Noetherian ring. But R is not a strong Prüfer ring. Thus R is
also not strong Dedekind by Theorem 4.9.

The semi-regular height of a prime ideal p of a ring R is defined by the
supremum of the number of prime ideals in every chain of semi-regular prime
ideals contained in p. And the semi-regular dimension dimsr(R) of a ring R is
the supremum of the semi-regular heights of all prime ideals of R.

Corollary 4.11. Let R be a strong Dedekind ring. Then every semi-regular
ideal of R has a unique representation in the form of a product of (semi-regular)
maximal ideals. Consequently, dimsr(R) ≤ 1.

Proof. Set Λ to be set of semi-regular ideals that cannot be written as a product
of (semi-regular) maximal ideals. Suppose Λ is non-empty. Then, by Lemma
4.8, Λ has a maximal element I since R is sr-Noether. Let p be a maximal
ideal of R containing I and set J = Ip−1. Then J is a semi-regular ideal
containing I. If J = I, then we have p = R since I is Q0-invertible. So
I ⊊ J . By maximality of I, J = p1 · · · pk for some semi-regular maximal ideal
pi (i = 1, . . . , k). So I = pp1 · · · pk which is a contradiction. Next we prove
uniqueness. Suppose p1 · · · pk = q1 · · · ql where pi and qj are semi-regular
maximal ideals (i = 1, . . . , k; j = 1, . . . , l). Since p1 ⊇ q1 · · · ql, we have p1 ⊇ qj
for some j. Since qj is maximal, we have p1 = qj . Since p1 is Q0-invertible, we
can proceed by induction. So the uniqueness holds. Next we claim that each
semi-regular prime ideal is maximal. Indeed, let p be a semi-regular prime ideal
of R. Then p = p1 · · · pk for some maximal ideal pi (i = 1, . . . , k). So p = pi
for some i by [2, Theorem 1.1.7]. Hence dimsr(R) ≤ 1. □
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