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GORENSTEIN-INJECTORS, GORENSTEIN-FLATORS

Qinqin Gu, Xiaosheng Zhu, and Wenping Zhou

Abstract. Over a ring R, let PR be a finitely generated projective right
R-module. Then we define the G-injector (G-projector) if PR preservers
Gorenstein injective modules (Gorenstein projective modules), the G-
flator if PR preservers Gorenstein flat modules. G-injector (G-flator)
and G-injector are characterized focus primarily on the cases where R is
a Gorenstein ring, and under this condition we also study the relations
between the injector (projector, flator) and the G-injector (G-projector,
G-flator). Over any ring we also give the characteristics of G-injector (G-
flator) by the Gorenstein injective (Gorenstein flat) dimensions of mod-
ules.

Introduction

Unless otherwise stated, throughout this paper R will denote an associa-
tive ring with identity, PR will denote a finitely generated projective right
R-module. RP ∗ will denote its R-dual RP ∗ = HomR(PR, R) and S will denote
its R-endomorphism ring S = EndR(PR).

Let RM and SM be categories of all left R-modules and of all left S-modules
respectively. By an (R, S) adjoint triple is meant a triple (G , F ,H ) of additive
functors

F :R M→S M and G , H :S M→R M
such that there are natural isomorphisms

HomR(G (N),M) ∼= HomS(N, F (M)),

HomS(F (M), N) ∼= HomR(M, H (N))
for all M ∈R M and all N ∈S M. When SPR is a bimodule with PR finitely
generated projective then by [11] F ,G , H are naturally equivalent to the func-
tors

FP = PR ⊗R () :R M−→S M,

G = HomR(PR, R)⊗S () :S M−→R M,

HP = HomS(PR, ) :S M−→R M.
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Anderson [1] defined the injector, the projector and studied the character-
istics of them. Moreover, he gave some conditions under which PR preserves
the injective modules (projective modules). In [2], Miller defined the flator and
generated Anderson’s results. He also gave the relations among flators, injec-
tors, and projectors. In 1995, Enochs and Jenda [6] defined the Gorenstein
injective modules, Gorenstein projective modules. And defined Gorenstein flat
modules in [8]. As we all know these notions generalized the usual injective,
projective and flat modules.

In this paper we shall define the G-injector (the G-projector), the perfect
G-injector, the G-flator and the perfect G-flator which generalize Anderson’s
injector (projector), perfect injector, and Miller’s flator, perfect flator respec-
tively.

When PR is a finitely generated projective generator, we know that the ring
R is Morita equivalent to S = End(PR) (see [2]). It is easy to know that PR

preserves Gorenstein injective modules (Gorenstein projective modules), and
Gorenstein injective envelopes (Gorenstein projective covers). When PR is not
a generator, R and S are not Morita equivalent; still, for many projective mod-
ules P , a considerable amount of information is often available about S. Here,
we focus primarily on the cases where R is a Gorenstein ring. We consider
the conditions that PR preserves G-injective (G-projective) modules and G-
flat modules. We shall show that if PR is a G-injector (G-flator), then PR ⊗−
preservers modules with finite Gorenstein injective (Gorenstein flat) dimen-
sions, that is, if N is a left R-module of finite Gorenstein injective (Gorenstein
flat) dimension, then SPR ⊗N is a left S-module of finite Gorenstein injective
(Gorenstein flat) dimension. We also give the relation between the G-injector
(G-flator) and the Gorenstein injective dimensions of modules.

1. Preliminaries

In this section we shall recall some definitions which we use later.

Definition 1.1 (Gorenstein injective module). A left R-module M is said to
be Gorenstein injective if and only if there is an exact sequence

· · · →R E1 →R E0 →R E0 →R E1 → · · ·
of injective left R-modules such that M = Ker(RE0 →R E1) and such that
for any injective left R-module E, Hom(E,−) leaves the complex above exact.
Dually, we can define the Gorenstein projective module.

A left R-module N is said to be Gorenstein flat (or G-flat) if there exists an
(Inj ⊗−)-exact exact sequence

· · · →R F1 →R F0 →R F 0 →R F 1 → · · ·
of flat R-modules such that N = Ker(RF 0 →R F 1) (see [7]). The above exact
sequence is called a complete flat resolution.
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Definition 1.2 (Strongly Gorenstein injective module). If all injective (resp.,
projective) modules and homomorphisms of the complete injective (resp., pro-
jective) resolution in Definition 1.1 are the same, then M is called strongly
Gorenstein projective (resp., injective).

If all flat modules and homomorphisms of the complete flat resolution in
Definition 1.1 are the same, then N is called strongly Gorenstein flat (see [3]).

Definition 1.3 (Injector and flator). We call SPR an injector (projector, flator)
in case FP = PR ⊗ − preserves injective (projective, flat) modules where S =
End(PR), that is, FP (M) is S-injective (projective, flat) whenever M is R-
injective (projective, flat) (see [1] and [10]).

Definition 1.4 (Gorenstein injective preenvelope). A Gorenstein injective
preenvelope of an R-module M , we mean a morphism ϕ :R M →R G where G is
a Gorenstein injective module such that for any morphism f :R M →R G′ with
G′ is Gorenstein injective, there is a g :R F →R F ′ such that g ◦ϕ = f . Dually,
we can define the Gorenstein flat (Gorenstein projective) precover (see [7]).

Definition 1.5 (Gorenstein injective dimension). For an R-module M we said
its Gorenstein injective dimension is equal to or less than n if it has a Gorenstein
injective resolution whose length is equal to or less than n, we denote it by
GidR M ≤ n (see [9]).

Definition 1.6 (Copure injective). An R-module M is said to be copure in-
jective (copure flat) if Ext1R(E, M) = 0 (TorR

1 (E,M) = 0) for any injective
R-module E. Also, M is said to be strongly copure injective (strongly copure
flat) if Exti

R(E, M) = 0 (TorR
i (E,M) = 0) for any injective R-module E and

any i > 0 (see [5]).

Definition 1.7 (T (p)). In general ϕ :R P ∗S ⊗S PR is not an isomorphism, the
image of ϕ is a two sided ideal T = T (P ) of R called the trace ideal of P , thus
T = Imϕ = ΣImf (f ∈ P ∗) (see [1]).

Remark. By I(R) we denote the class of injective left R-modules, and by
G̃I(R), G̃F(R) we denote the classes of all R-modules with finite Gorenstein
injective, flat dimensions respectively. By I(S) we denote the class of injective
left S-modules, and by G̃I(S), G̃F(S) we denote the classes of all S-modules
with finite Gorenstein injective, flat dimensions respectively.

2. Gorenstein-injectors

Let PR be a finitely generated projective module, and S = End(PR). We call
PR a G-injector if PR preservers Gorenstein injective modules, that is, for any
Gorenstein injective left R-module RM , SPR ⊗R M is a Gorenstein injective
left S-module.

Proposition 2.1. Let SPR be an injector. If RP ∗S ⊗S − preserves injective
modules, then PR is a G-injector.
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Proof. Assume that M is a Gorenstein injective left R-module, then there exists
a Hom(I(R),−)-exact exact sequence

· · · → E2 → E1 → E0 → E0 → E1 → E2 → · · ·
of injective left R-modules such that

M = Ker(E0 → E1).

Applying PR ⊗− to the above exact sequence, we get an exact sequence:

(1) · · · → PR ⊗R E1 → PR ⊗R E0 → PR ⊗R E0 → PR ⊗R E1 → · · · .

Since PR is an injector each PR⊗R Ei and each PR⊗R Ei are injective. Clearly,
PR ⊗R M = Ker(PR ⊗R E0 → PR ⊗R E1). Note that

HomS(E′, PR ⊗ E) ∼= HomR(RP ∗S ⊗ E′, E)

for any left S-module E′ and any left R-module E, and RP ∗S ⊗ − preserves
injective modules; then (1) is a Hom(I(S),−)-exact exact sequence of injective
left S-modules. Thus PR is a G-injector. ¤

Lemma 2.2. Let SPR be an (R, S)-bimodule with SP projective and PR finitely
generated projective. If R is Gorenstein, then S = End(PR) is Gorenstein.

Proof. Since R is a Gorenstein ring, S is Notherian by [1], [7, Theorem 9.1.17]
gives that PR has finite injective dimension. Now we assume id(PR) = n < ∞,
That is, there exists an injective resolution of PR:

0 →S PR → E0
R → E1

R → E2
R → · · · → En

R → 0.

Applying HomR(SPR,−) to this resolution, we get

0 → HomS(SPR,S PR) → HomS(SPR, E0
R) → · · · → HomS(SPR, En

R) → 0

as each HomS(SPR, Ei
R) is injective as an S-module. So S has finite self-

injective dimension. Thus S is Gorenstein. ¤

Corollary 2.3. Let SPR be an (R, S)-bimodule with SP projective and PR

finitely generated projective. If R is n-Gorenstein, then S = End(PR) is m-
Gorenstein (m ≤ n).

Proposition 2.4. Let SPR be an (R, S)-bimodule with SP projective and PR

finitely generated projective, and let R be a Gorenstein ring. If SPR is a G-
injector, then PR is an injector.

Proof. Let ER be an injective left R-module. Then SPR ⊗R E is a Gorenstein
injective left S-module. Since R is Gorenstein and RE is injective by [7, The-
orem 9.1.17], we know that RE has finite projective dimension. Assume that
pdR(E) = n. So there exists a projective resolution of E

(2) 0 →R Pn → · · · →R P2 →R P1 →R E → 0.
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Since SPR is left S-projective, SPR ⊗R Pi is projective by [1, Theorem 3.1].
Applying SPR ⊗− to (2), we get a projective resolution of RE

(3) 0 →S PR ⊗R Pn → · · · →S PR ⊗R P2 →S PR ⊗R P1 →S PR ⊗R E → 0.

Then SPR⊗R E has finite projective dimension, and so the injective dimension
of SPR ⊗R E is finite by [7, Theorem 9.1.17]. Thus SPR ⊗R E is injective
by [7, Proposition 10.1.2]. ¤

Lemma 2.5. Let R be Gorenstein, and let M be a Gorenstein injective R-
module. Then there exists an exact sequence 0 → K → E → M → 0 such that
E is injective and K is Gorenstein injective.

Proof. See [13, Lemma 5.4.3]. ¤

Theorem 2.6. Let R be an n-Gorenstein ring, let SPR be an (R, S)-bimodule
with SP projective and PR finitely generated projective. If PR is an injector,
then PR is a G-injector.

Proof. Suppose that M is a Gorenstein injective left R-module. By Lemma 2.5,
we can construct an exact sequence

(4) · · · → Ei+1 → Ei → · · · → E1 → E0 → M → 0

in which each Ei is injective and each Ki = Coker(Ei+1 → Ei) (i ≥ 1) is
Gorenstein injective. Consider the short exact sequences 0 →R K1 →R E0 →R

M → 0 and 0 →R Ki+1 →R Ei →R Ki → 0 for all i.
Applying SPR ⊗− to (4), we have the short exact sequences

0 →S PR ⊗R K1 →S PR ⊗R E0 →S PR ⊗R M → 0

and
0 →S PR ⊗R Ki+1 →S PR ⊗R Ei →S PR ⊗R Ki → 0

for all i. Since PR ⊗R Ei is injective, we have the following exact sequence:

· · ·→S PR⊗Ei+1 →S PR⊗Ei →· · ·→S PR⊗E1 →S PR⊗E0 →S PR⊗RM → 0.

By Corollary 2.3, S is m-Gorenstein. [7, Theorem 10.1.13] gives that each
SPR ⊗ Ki is Gorenstein injective for i ≥ m − 1. By [7, Theorem 10.1.4] and
the short exact sequence

0 →S PR ⊗Km−1 →S PR ⊗ Em−2 →S PR ⊗Km−2 → 0,

we conclude that SPR ⊗ Km−2 is Gorenstein injective. By repeating this ar-
gument for the other short exact sequences we have SPR ⊗M is a Gorenstein
injective left S-module. ¤

Proposition 2.7. Let SPR be a finitely generated projective left R-module. If
T (P ) is right R-flat and RP ∗S ⊗ − preserves injective modules, then PR is a
G-injector.

Proof. Since T (P ) is right R-flat, PR is an injector by [1, Theorem 2.2]. So PR

is a G-injector by Proposition 2.1. ¤
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A left R-module M is Gorenstein injective if and only if Exti
R(I(R),M) = 0

and M admits a proper left injective resolution by [9]. But if Exti
R(I(R),M) =

0, then M is strongly copure injective. Using the relations between Gorenstein
injective modules and copure injective modules, we get the following results.

Proposition 2.8. Let PR be an injector, and let PR⊗R M be copure injective
for any Gorenstein injective left R-module M . Then PR is a G-injector.

Proof. Assume that M is a Gorenstein injective left R-module. So there exists
a Hom(I(R),−)-exact exact sequence

· · · →R E1 →R E0 →R E0 →R E1 → · · ·
of injective R-modules such that M = Ker(E0 → E1). Applying SPR ⊗ −
to this exact sequence, we get the following exact sequence of copure injective
S-modules

· · · →S PR ⊗R E1 →S PR ⊗R E0 →S PR ⊗R E0 →S PR ⊗R E1 → · · · ,

where SPR ⊗R M = Ker(SPR ⊗R E0 →S PR ⊗R E1). By using the hypothesis
for any injective S-module SE, the functor HomS(SE,−) makes the above
exact sequence exact. Thus SPR ⊗R M is Gorenstein injective. ¤

Proposition 2.9. Let SPR be an injector and SPR ⊗R M be copure injective
for all Gorenstein injective R-modules M . If a left R-module N ∈ G̃I(R), then
the left S-module SPR ⊗R N ∈ G̃I(S).

Proof. We proceed by induction on GidR(N) = n. If n = 0, then N is
Gorenstein injective. Hence the result follows by Proposition 2.8. Now sup-
pose inductively that the result has been proved for all values smaller than
n, and so we prove it for n. As GidR(N) = n, there is an exact sequence
0 → N → M → C → 0 of R-modules such that M is Gorenstein injective and
GidR(C) ≤ n − 1 by [9, Proposition 2.18]. Applying SPR ⊗R − to the above
exact sequence, we get the following exact sequence of S-modules.

0 →S PR ⊗R N →S PR ⊗R M →S PR ⊗R C → 0.

Then we can use the induction hypothesis for C and conclude that SPR ⊗R C
has finite Gorenstein injective dimension. By Proposition 2.8 the left S-module
SPR ⊗M is Gorenstein injective. Then the proceeding exact sequence implies
that SPR ⊗N has finite Gorenstein injective dimension. ¤

Corollary 2.10. Let SPR be a finitely generated projective left R-module, and
let SPR be a G-injector. If a left R-module N ∈ G̃I(R), then the SPR ⊗R N ∈
G̃I(S).

Next we shall study the relation between the G-injectors and the Gorenstein
injective dimensions of the left R-modules.
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Theorem 2.11. Let SPR be a finitely generated projective right R-module, and
S = End(PR). Then SPR is a G-injector ⇔ GidS(SPR ⊗R M) ≤ GidR(RM)
for any left R-module M .

Proof. (=⇒) Let M be a left R-module. Then M has a Gorenstein injective
resolution:

0 → M →R E0 →R E1 →R E2 → · · · .

Applying SPR ⊗− to this resolution, we get the following exact sequence:

0 →S PR ⊗R M →S PR ⊗R E0 →S PR ⊗R E1 → · · · .

Where each SPR ⊗R Ei (i ≥ 0) is a Gorenstein injective left S-module as PR

is a G-injector. So GidS(SPR ⊗R M) ≤ GidR(RM).
(⇐=) Suppose that GidS(SPR⊗R M) ≤ GidR(RM). Let M be a Gorenstein

injective left R-module. Then GidR(RM) = 0, so GidS(SPR ⊗R M) = 0,
and thus SPR ⊗R M is a Gorenstein injective module. Therefore, SPR is a
Gorenstein injector. ¤

From the above theorem a natural problem is: under what conditions does
the GidS(SPR ⊗M) = GidR(RM) hold? Next we shall discuss this problem.
For this reason, we shall give the following new definition.

Definition 2.12 (Bi-G-injector). We call PR a Bi-G-injector if SPR is a G-
injector and for any left R-module RM , SPR ⊗R M is Gorenstein injective
then RM is Gorenstein injective. When PR is a finitely generated projective
generator, PR is a Bi-G-injector.

Theorem 2.13. Let SPR be a finitely generated projective left R-module. Then
SPR is a Bi-G-injector⇔ GidS(SPR⊗RM) = GidR(RM) for any left R-module
M .

Proof. (⇐=) It is trivial.
(=⇒) Suppose that PR is a Bi-injector. Let M be a left R-module. Then

GidS(SPR ⊗R M) ≤ GidR(RM) by Theorem 2.11.
Next we shall show GidS(SPR ⊗R M) ≥ GidR(RM).
If Gid(SPR ⊗R M) = ∞. Then it is trivial.
If Gid(SPR ⊗R M) = n < ∞. Then there exists a Gorenstein injective

resolution of M :

0 →R M →R E0 →R E1 →R E2 → · · · →R En,

where each Ei(i ≥ 0) is Gorenstein injective. Note that SPR is a Bi-G-injector
and finitely generated projective right R-module, then

0 →S PR ⊗R M →S PR ⊗R E0 →S PR ⊗R E1 → · · · → PR ⊗R En

is a Gorenstein injective resolution of SPR ⊗R M . Since Gid(SPR ⊗R M) =
n < ∞, then Im(SPR ⊗R En−2 →S PR ⊗R En−1) is Gorenstein injective,
but SPR ⊗R Im(En−3 → En−2) ∼= Im(SPR ⊗R En−2 →S PR ⊗R En−1) and
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SPR is a Bi-G-injector, hence Im(En−3 → En−2) is Gorenstein injective. So
Gid(RM) ≤ n. ¤

In [1] F. W. Anderson defined the perfect injector. For a finitely generated
R-module PR, SPR is called a perfect injector if PR ⊗R − preserves injective
envelopes. We call PR is a perfect G-injector if PR ⊗R − preserves Gorenstein
injective preenvelopes. Of course, every perfect G-injector is a G-injector.

Theorem 2.14. Let R be a Gorenstein ring, and let SPR be an (R, S)-bimodule
with PR finitely generated projective and SP projective, S = End(PR). Then
PR is an injector ⇔ PR is a perfect G-injector.

Proof. (⇐=) By Proposition 2.4.
(=⇒) Suppose that PR is an injector. Then PR is a G-injector by Theorem

2.6. First, we shall prove HomR(SPR,−) preserves Gorenstein injective left
S-modules. Let SM be a Gorenstein injective left S-module, then there is a
complete resolution of injective modules

(4) M1 = · · · →S E2 →S E1 →S E0 →S E0 →S E1 →S E1 →S E2 → · · · ,

where SM = Ker(SE0 →S E1). Applying HomS(SPR,−) to (4) we get the
following exact sequence:
(5)
M2 = · · · → Hom(SPR,S E0) → Hom(SPR,S E0) → Hom(SPR,S E1) → · · · .

Since SPR is R-projective and SEi is injective, by [12, Theorem 3.44] each
Homs(SPR,S Ei) is an injective R-module. Note that

HomR(RE′,Hom(SPR,S Ei)) ∼= HomS(SPR ⊗R E′,S Ei)

for any left R-module E′ and any left S-module. For each injective R-module
E′, SPR ⊗R E′ is an injective S-module as SPR preserves injective modules.
Then the sequence HomS(SPR⊗R E′,M1) is exact, this gives that the sequence
HomR(RE′,M2) is also exact. So HomS(SPR,−) preserves Gorenstein injective
modules.

Next, we shall show that SPR preserves Gorenstein injective preenvelopes.
Let RM →R G be a Gorenstein injective preenvelope of RM . Since SPR is a
G-injector then SPR⊗R G is Gorenstein injective. For any Gorenstein injective
left S-module SG′ we get the commutative diagram:
(6)

Hom(SPR ⊗R G,S G′) // Hom(SPR ⊗R M,S G′)

Hom(RG,Hom(SPR,S G′)) // Hom(RM, Hom(SPR,S G′)).

Hom(SPR,−) preserves Gorenstein injective modules. So

Hom(RG,Hom(SPR,S G′)) → Hom(RM, Hom(SPR,S G′)) → 0

is exact.
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By the commutative diagram (6) we know that

HomS(SPR ⊗G, G′) → HomS(SPR ⊗M,G′)

is surjective. So SPR⊗R M →S PR⊗R G is a Gorenstein injective preenvelope.
¤

Remark 2.15. Dually, one can also define the Gorenstein projector. We call
PR a G-projector if PR preserves Gorenstein projective modules, that is, for
any Gorenstein projective left R-module RM , SPR ⊗R M is a Gorenstein pro-
jective left S-module. All the results, concerning Gorenstein injective, have a
Gorenstein projective counterpart.

3. G-flator

Let PR be a finitely generated projective right R-module, and S = End(PR).
We call PR a G-flator if PR preservers Gorenstein flat modules, that is, for any
Gorenstein flat module RM , SPR ⊗R M is a Gorenstein flat left S-module.

Proposition 3.1. Let SPR be finitely generated projective and −S ⊗S PR pre-
serve injective right S-modules, S = End(PR). If PR is a flator, then PR is a
G-flator.

Proof. Let F be a Gorenstein flat module. By the definition of the Gorenstein
flat module, there exists an IR⊗− (IR is an arbitrary injective right R-module)
complete flat resolution

(7) F = · · · →R F1 →R F0 →R F 0 →R F 1 → · · ·
such that F = Ker(RF 0 →R F 1). Applying PR⊗R− to (7), we get a resolution
of flat modules

(8) · · · →S PR ⊗R F1 →S PR ⊗R F0 →S PR ⊗R F 0 →S PR ⊗R F 1 → · · · .

By the hypothesis, for each injective S-module IS , IS⊗S PR is an injective right
R-module. So (IS ⊗S PR)⊗R F is exact by the definition of the Gorenstein flat
modules. But IS ⊗S (PR ⊗ Fi) ∼= (IS ⊗S PR) ⊗R Fi; hence (8) is a (IS ⊗ −)-
exact exact sequence for any injective S-module. So SP ⊗R F is Gorenstein
flat. Thus SPR is a Gorenstein flator. ¤

From the last proposition we know that under some conditions a flator is a
G-flator. Next we shall consider the problem under what conditions a G-flator
is a flator.

Proposition 3.2. Let R be a Gorenstein ring and let SPR be an (R, S)-
bimodule with SP projective and PR finitely generated projective. If PR is
a G-flator, then PR is a flator.

Proof. Suppose that RF is a flat left R-module. Then it is a Gorenstein flat
module. If SPR is a G-flator, then SPR⊗R F is a Gorenstein flat left S-module.
Since SPR is left S-projective, it has finite injective dimension by [7]. Assume
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that id(SP ) ≤ n. By the proof of Lemma 2.2, we know that SPR⊗R F has the
finite injective dimension. Then the flat dimension of SPR ⊗R F is also finite.
By [7, Corollary 10.3.4], the flat dimension of SPR ⊗R F is 0. So SPR ⊗R F is
flat. Thus PR is a flator. ¤

Bennis defined the strongly Gorenstein flat modules in [3]. Next, we shall
use the strongly Gorenstein modules to character the Gorenstein flator.

Lemma 3.3. Let R be a right coherent ring. Then a module is Gorenstein flat
if and only if it is a direct summand of strongly Gorenstein flat modules.

Proof. The direct implication is immediately from [3, Theorem 3.5]. For the
converse implication, it sufficient to prove that a direct summand of the strongly
Gorenstein flat modules is a Gorenstein flat module. By [9, Theorem 3.7] we
know that the Gorenstein flat modules closed under direct summand. However,
a strongly Gorenstein flat module is a Gorenstein flat module. So we get the
result. ¤

Definition 3.4 (Gorenstein flat dimension). As done in [8] (and similar to the
Gorenstein projective case), we define the Gorenstein flat dimension, GfdRM ,
of a module M by declaring that GfdRM ≤ n if and only if M has a resolution
of Gorenstein flat modules of length n.

Lemma 3.5. Let R be a Gorenstein ring. Then an R-module M is strongly
Gorenstein flat if and only if there exists a short exact sequence 0 →R M →R

F →R M → 0, where F is a flat R-module.

Proof. (⇒) It is straightforward.
(⇐) Since R is a Gorenstein ring, it is a Notherian ring. By [7, Theorem

12.3.1], GfdRM ≤ ∞ for all R-modules M . Assume GfdRM ≤ n. Then
Torn+1

R (M, X) = 0 for all X with finite injective dimension. Furthermore, by
the dual case of [4, Proposition 3.15] (it is also right under noncommutative
condition), we know that M is strongly Gorenstein flat. ¤

Lemma 3.6. Let R be a Gorenstein ring and let SPR be a flator with SP is a
projective left S-module. Then SPR is a G-flator.

Proof. First, we shall prove that SPR ⊗R − preserves strongly Gorenstein flat
left R-modules. Suppose that M is a strongly Gorenstein flat left R-module,
by Lemma 3.5 there exists a short exact sequence 0 →R M →R F →R M → 0
of left R-modules, where F is a flat left R-module. Applying SPR ⊗R − to the
above exact sequence, we have the following exact sequence

0 →S PR ⊗R M →S PR ⊗R F →S PR ⊗R M → 0,

where SPR⊗R F is a flat left S-module. By Lemmas 2.2 and 3.5 we know that
SPR ⊗R M is strongly Gorenstein flat.

Now, we shall show SPR ⊗R − preserves Gorenstein flat left R-modules.
Suppose that M is Gorenstein flat. Then by Lemma 3.3, there exists a left
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R-module Q and a strongly Gorenstein flat left R-module G such that RG ∼=R

M
⊕

R Q. Applying SPR ⊗R − to the above formula we get SPR ⊗R G ∼=S

PR ⊗R M
⊕

S PR ⊗R Q. Note that SPR ⊗R G is a strongly Gorenstein flat left
S-module, so SPR⊗R M is a Gorenstein flat left S-module by Lemma 3.3. ¤

Theorem 3.7. Let R be a Gorenstein ring, and let SPR be an (R, S)-bimodule
with SP projective and PR finitely generated projective. Then PR is a flator if
and only if PR is a G-flator.

Proof. (⇐) Following Proposition 3.2.
(⇒) By the proof of Lemma 3.6. ¤

Corollary 3.8. Let SPR be a finitely generated projective left R-module. If
SPR ⊗R − preserves strongly Gorenstein flat left R-modules, then SPR is a
G-flator.

Following [9], we know that there are some relations between Gorenstein flat
modules and strongly copure flat modules.

Proposition 3.9. Let PR be a flator and SPR ⊗R F be a copure flat left S-
module for any Gorenstein flat R-module F . Then PR is a G-flator.

Proof. Assume that F is a Gorenstein flat left R-module. So there exists an
(I(R)⊗−)-exact exact sequence

· · · →R F1 →R F0 →R F 0 →R F 1 → · · ·
of flat R-modules such that F = Ker(F 0 → F 1). Applying SPR ⊗ − to this
exact sequence, we get the following exact sequence of copure flat S-modules

· · · →S PR ⊗R F1 →S PR ⊗R F0 →S PR ⊗R F 0 →S PR ⊗R F 1 → · · · ,

where SPR ⊗R F = Ker(SPR ⊗R F 0 →S PR ⊗R F 1). By using the hypothesis
for any injective right S-module ES , the functor ES⊗− makes the above exact
sequence exact. Thus SPR ⊗R M is Gorenstein flat. ¤

Proposition 3.10. Let PR be a flator and SPR ⊗R F be a copure flat for any
Gorenstein flat R-module F . If RN ∈ G̃F(R), then SPR ⊗R N ∈ G̃F(S).

Proof. We proceed by induction on GfdR(N) = n. If n = 0, then N is Goren-
stein flat. Hence the result follows by Proposition 3.9. Now suppose inductively
that the result has been proved for all values smaller than n, and so we prove it
for n. As GfdR(N) = n, there is an exact sequence 0 → C → M → N → 0 of
R-modules such that M is Gorenstein flat and GidR(C) ≤ n− 1 by [9, Propo-
sition 2.18]. Applying SPR ⊗R − to the above exact sequence, we get the
following exact sequence of S-modules.

0 →S PR ⊗R C →S PR ⊗R M →S PR ⊗R N → 0.

Then we can use the induction hypothesis for C and conclude that SPR ⊗R C
has finite Gorenstein flat dimension. By Proposition 3.9 the left S-module
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SPR ⊗M is Gorenstein flat. Then the proceeding exact sequence implies that
SPR ⊗N has finite Gorenstein flat dimension. ¤
Corollary 3.11. Let SPR be a finitely generated projective left R-module, and
SPR be a G-flator. If a left R-module N ∈ G̃F(R), then the left S-module
SPR ⊗R N ∈ G̃F(S).

Next, we shall study the relations between the G-flator and the Gorenstein
flat dimension of the left R-modules.

Theorem 3.12. Let PR be a finitely generated projective R-module. Then PR

is a G-flator if and only if Gfd(PR ⊗R M) ≤ Gfd(RM).

Proof. (=⇒) Let M be a left R-module. Then M has a Gorenstein flat resolu-
tion:

· · · →R F2 →R F1 →R F0 → M → 0.

Applying SPR ⊗− to this resolution, we get the following exact sequence:

· · · →S PR ⊗R F2 →S PR ⊗R F1 →S PR ⊗R F0 →S PR ⊗M → 0.

Where each SPR ⊗R Fi (i ≥ 0) is a Gorenstein flat left S-module as PR is a
G-flator. So GfdS(SPR ⊗R M) ≤ GfdR(RM).

(⇐=) Suppose that GfdS(SPR⊗RM) ≤ GfdR(RM). Let M be a Gorenstein
flat left R-module. Then GifdR(RM) = 0, so GfdS(SPR ⊗R M) = 0, and
thus SPR ⊗R M is a Gorenstein flat module. Therefore, SPR is a Gorenstein
flator. ¤
Definition 3.13. We call PR a perfect G-flator if SPR preserves Gorenstein
flat precovers, that is, if G → M is a Gorenstein flat precover of M , then
SPR ⊗R G → PR ⊗R M is also a Gorenstein flat precover of PR ⊗R M .

Theorem 3.14. Let R be a Gorenstein ring, and let SPR be an injector with
SP projective and −⊗R P ∗S preserve injective modules. Then PR is a flator if
and only if PR is a perfect G-flator.

Proof. Similar to the proof of Theorem 2.14, it is easy to see that if PR is a
flator, then it is a G-flator. First, we shall prove RP ∗S ⊗S − preserves Goren-
stein flat modules. For any Gorenstein flat module SM , by the definition of
Gorenstein flat modules, there exists a JS⊗S-exact complete flat resolution of
flat modules (where JS is an arbitrary injective right S-module)

(9) F = · · · →S F1 →S F0 →S F 0 →S F 1 → · · ·
such that SM ∼= Ker(SF 0 →S F 1). Applying RP ∗S ⊗S − to (9), we get a
sequence of left R-modules

(10) · · · →R P ∗S ⊗S F1 →R P ∗S ⊗S F0 →R P ∗S ⊗S F 0 →R P ∗S ⊗S F 1 → · · · .

Since PR is an injector, by [1, Theorem 2.1], RP ∗S is right S-flat and left R-
projective. So (9) is an exact sequence of flat left R-modules. Moreover,

RP ∗S ⊗S M ∼= Ker(RP ∗S ⊗S F0 →R P ∗S ⊗S F 0).
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For each injective R-module IR, by the supposition IR ⊗R P ∗ is an injective
right S-module. So (IR ⊗R P ∗)⊗ F is exact. Note that

IR ⊗R (P ∗S ⊗S Fi) ∼= (IR ⊗R P ∗S)⊗S Fi, i ≥ 0

for any right R-module IR, then (10) is an (IR ⊗ −)-exact exact sequence.
Hence RP ∗S preserves Gorenstein flat modules.

Suppose that RG →R M is a Gorenstein flat precover of left R-module M .
Since PR is a Gorenstein flator, SPR ⊗R G is Gorenstein flat. Using the same
method in the proof of Theorem 2.14 and the definition of the Gorenstein flat
precover, we can get the result. ¤

Proposition 3.15. Let R be a quasi-Frobenius ring, and let RPS be an (R, S)-
bimodule with SP projective and PR finitely generated projective. Then the
following are equivalent.

(1) PR is a Gorenstein injector.
(2) PR is a Gorenstein projector.
(3) PR is a Gorenstein flator.

Proof. We only prove (1) ⇒ (2), (2) ⇒ (3) and (3) ⇒ (1) are similarly.
Let M be a Gorenstein injective right R-module, M is also Gorenstein pro-

jective by [7, P257 Exercise 5]. Since PR is a Gorenstein injector, SPR ⊗
M is Gorenstein injective. S = End(PR) is also a quasi-Frobenius ring by
Lemma 2.2, so SPR ⊗M is Gorenstein projective by [7, P257 Exercise 5]. ¤
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