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THE u-S-GLOBAL DIMENSIONS OF COMMUTATIVE RINGS

Wei Qi and Xiaolei Zhang

Abstract. Let R be a commutative ring with identity and S a multi-

plicative subset of R. First, we introduce and study the u-S-projective

dimension and u-S-injective dimension of an R-module, and then explore
the u-S-global dimension u-S-gl.dim(R) of a commutative ring R, i.e.,

the supremum of u-S-projective dimensions of all R-modules. Finally, we
investigate u-S-global dimensions of factor rings and polynomial rings.

1. Introduction and preliminary concepts

Throughout this article, R is always a commutative ring with identity and
S is always a multiplicative subset of R, that is, 1 ∈ S and s1s2 ∈ S for any
s1 ∈ S, s2 ∈ S. In 2002, Anderson and Dumitrescu [1] defined S-Noetherian
rings R in which any ideal of R is S-finite. Recall from [1] that an R-module
M is called S-finite (with respect to s) provided that sM ⊆ F for some s ∈ S
and some finitely generated submodule F of M . An R-module T is called u-
S-torsion (“u” abbreviates “uniformly” throughout this article) if sT = 0 for
some s ∈ S (see [4]). So an R-module M is S-finite if and only if M/F is
u-S-torsion for some finitely generated submodule F of M . The idea derived
from u-S-torsion modules is deserved to be further investigated.

In [7], the authors of this paper introduced the class of u-S-projective mod-
ules P for which the functor HomR(P,−) preserves u-S-exact sequences. The
class of u-S-projective modules can be seen as a “uniform” generalization of
that of projective modules, since an R-module P is u-S-projective if and only
if Ext1R(P,M) is u-S-torsion for any R-module M (see [7, Theorem 2.5]). The
class of u-S-projective modules owns the following u-S-hereditary property: let

0 → A
f−→ B

g−→ C → 0 be a u-S-exact sequence, if B and C are u-S-projective
so is A (see [7, Proposition 2.8]). So it is worth to study the u-S-analogue
of projective dimensions of R-modules. Similarly, by the discussion of u-S-
injective modules in [2], we can study the u-S-analogue of injective dimensions
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of R-modules. Together these, a u-S-analogue of global dimensions of commu-
tative rings can also be introduced and studied.

In this article, we define the u-S-projective dimension u-S-pdR(M) (resp.,
u-S-injective dimension u-S-idR(M)) of an R-module M to be the length of
the shortest u-S-projective (resp., u-S-injective) u-S-resolution (resp., u-S-
coresolution) of M . We characterize u-S-projective dimensions (resp., u-S-
injective) of R-modules using the uniform torsion property of the “Ext” func-
tors in Proposition 3.3 (resp., Proposition 3.4). Besides, we obtain some char-
acterizations of projective dimensions and injective dimensions of R-modules
in Corollary 3.19. The u-S-global dimension u-S-gl.dim(R) of a commutative
ring R is defined to be the supremum of u-S-projective dimensions of all R-
modules. We find that the u-S-global dimension of a commutative ring is also
the supremum of u-S-injective dimensions of all R-modules. A new character-
ization of global dimensions is given in Corollary 3.19. u-S-semisimple rings
are firstly introduced in [7] for which any free R-module is u-S-semisimple. By
[4, Theorem 3.11], a ring R is u-S-semisimple if and only if all R-modules are
u-S-projective (resp., u-S-injective). So u-S-semisimple rings are exactly com-
mutative rings with u-S-global dimension equal to 0 (see Corollary 3.20). In
the final section, we investigate the u-S-global dimensions of factor rings and
then give a complete description of u-S-global dimensions of polynomial rings
(see Theorem 4.6).

Since this paper involves uniformly S-torsion theory, we give a quick review.
For more details, please refer to [4–7].

An R-module T is called a u-S-torsion module provided that there exists an

element s ∈ S such that sT = 0. An R-sequence M
f−→ N

g−→ L is called u-S-
exact (at N) provided that there is an element s ∈ S such that sKer(g) ⊆ Im(f)

and sIm(f) ⊆ Ker(g). We say a long R-sequence · · · → An−1
fn−→ An

fn+1−−−→
An+1 → · · · is u-S-exact, if it is u-S-exact at every An, that is, for any n there
is an element s ∈ S such that sKer(fn+1) ⊆ Im(fn) and sIm(fn) ⊆ Ker(fn+1).
A u-S-exact sequence 0 → A → B → C → 0 is called a short u-S-exact

sequence. Let ξ : 0 → A
f−→ B

g−→ C → 0 be a u-S-short exact sequence. Then
ξ is said to be u-S-split provided that there are s ∈ S and R-homomorphism
f ′ : B → A such that f ′(f(a)) = sa for any a ∈ A, that is, f ′ ◦ f = sIdA.

An R-homomorphism f : M → N is a u-S-monomorphism (resp., u-S-

epimorphism, u-S-isomorphism) provided 0 → M
f−→ N (resp., M

f−→ N → 0,

0 → M
f−→ N → 0) is u-S-exact. It is easy to verify an R-homomorphism f :

M → N is a u-S-monomorphism (resp., u-S-epimorphism, u-S-isomorphism) if
and only if Ker(f) (resp., Coker(f), both Ker(f) and Coker(f)) is a u-S-torsion
module. Let R be a ring and S a multiplicative subset of R. Suppose M and
N are R-modules. We say M is u-S-isomorphic to N if there exists a u-S-
isomorphism f : M → N . A family C of R-modules is said to be closed under
u-S-isomorphisms if M is u-S-isomorphic to N and M is in C, then N is also
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in C. It follows from [7, Lemma 2.1] that if f : M → N is a u-S-isomorphism.
Then there is a u-S-isomorphism g : N → M such that f ◦ g = sIdN and
g ◦ f = sIdM for some s ∈ S.

An R-module F is called u-S-flat provided that for any u-S-exact sequence
0 → A→ B → C → 0, the induced sequence

0 → A⊗R F → B ⊗R F → C ⊗R F → 0

is u-S-exact. It follows from [4, Theorem 3.2] that an R-module F is u-S-flat

if and only if TorR1 (F,M) is u-S-torsion for any R-module M . An R-module
P is called u-S-projective provided that the induced sequence

0 → HomR(P,A) → HomR(P,B) → HomR(P,C) → 0

is u-S-exact for any u-S-exact sequence 0 → A → B → C → 0. And recall
from [2, Definition 4.1] that an R-module E is called u-S-injective provided
that the induced sequence

0 → HomR(C,E) → HomR(B,E) → HomR(A,E) → 0

is u-S-exact for any u-S-exact sequence 0 → A→ B → C → 0. Following from
[4, Theorem 3.2], an R-module P is u-S-projective if and only if Ext1R(P,M)
is u-S-torsion for any R-module M . Similarly, an R-module E is u-S-injective
if and only if Ext1R(M,E) is u-S-torsion for any R-module M by [2, Theorem
4.3] and [7, Proposition 2.3].

2. Long u-S-exact sequences induced by Ext functors

The following result says that a short u-S-exact sequence induces a long
u-S-exact sequence by the “Ext” functor as in the classical case.

Lemma 2.1. Let R be a ring and S a multiplicative subset of R. Let L, M
and N be R-modules. If f : M → N is a u-S-isomorphism, then ExtnR(L, f) :
ExtnR(L,M) → ExtnR(L,N) and ExtnR(f, L) : ExtnR(N,L) → ExtnR(M,L) are
all u-S-isomorphisms for any n ≥ 0.

Proof. We only show ExtnR(L, f) : ExtnR(L,M) → ExtnR(L,N) is a u-S-iso-
morphism for any n ≥ 0 since the other one is similar. Consider the exact

sequences: 0 → Ker(f) → M
πIm(f)−−−−→ Im(f) → 0 and 0 → Im(f)

iIm(f)−−−−→ N →
Coker(f) → 0 with Ker(f) and Coker(f) u-S-torsion. Then there are long
exact sequences

ExtnR(L,Ker(f)) → ExtnR(L,M)
ExtnR(L,πIm(f))−−−−−−−−−−→ ExtnR(L, Im(f))

→ Extn+1
R (L,Ker(f))

and

Extn−1
R (L,Coker(f)) → ExtnR(L, Im(f))

ExtnR(L,iIm(f))−−−−−−−−−→ ExtnR(L,N)

→ ExtnR(L,Coker(f)).
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Since ExtnR(L,Ker(f)), Extn+1
R (L,Ker(f)), Extn−1

R (L,Coker(f)) and ExtnR(L,
Coker(f)) are all u-S-torsion by [2, Lemma 4.2], we have the composition

ExtnR(L, f) : Ext
n
R(L,M)

ExtnR(L,πIm(f))−−−−−−−−−−→ ExtnR(L, Im(f))

ExtnR(L,iIm(f))−−−−−−−−−→ ExtnR(L,N)

is a u-S-isomorphism. □

Theorem 2.2. Let R be a ring and S a multiplicative subset of R. Let M

and N be R-modules. Suppose 0 → A
f−→ B

g−→ C → 0 is a u-S-exact
sequence of R-modules. Then for any n ≥ 1 there are R-homomorphisms
δn : Extn−1

R (M,C) → ExtnR(M,A) and σn : Extn−1
R (A,N) → ExtnR(C,N)

such that the induced sequences

0 → HomR(M,A) → HomR(M,B) → HomR(M,C) → Ext1R(M,A) → · · ·

→ Extn−1
R (M,B) → Extn−1

R (M,C)
δn−→ ExtnR(M,A) → ExtnR(M,B) → · · ·

and

0 → HomR(C,N) → HomR(B,N) → HomR(A,N) → Ext1R(C,N) → · · ·

→ Extn−1
R (B,N) → Extn−1

R (A,N)
σn−−→ ExtnR(C,N) → ExtnR(B,N) → · · ·

are u-S-exact.

Proof. The proof is similar to the classical case. But we give a proof for com-
pleteness. We only show the first sequence is u-S-exact since the other one is

similar. Since the sequence 0 → A
f−→ B

g−→ C → 0 is u-S-exact at B, there is

an exact sequence 0 → Ker(g)
iKer(g)−−−−→ B

πIm(g)−−−−→ Im(g) → 0. So there is a long
exact sequence of R-modules:

0 → HomR(M,Ker(g)) → HomR(M,B) → HomR(M, Im(g))

→ Ext1R(M,Ker(g)) → · · · → Extn−1
R (M,B) → Extn−1

R (M, Im(g))

δ′n−→ ExtnR(M,Ker(g)) → ExtnR(M,B) → · · ·

Note that there are u-S-isomorphisms t1 : A → Ker(g), t′1 : Ker(g) → A,
t2 : Im(g) → C and t′2 : C → Im(g) by [7, Lemma 2.1]. So, by Lemma 2.1,
ExtnR(M, t′1) : Ext

n
R(M,Ker(g)) → ExtnR(M,A) and ExtnR(M, t′2) : Ext

n
R(M,C)

→ ExtnR(M, Im(g)) are u-S-isomorphisms for any n ≥ 0. Setting

δn = ExtnR(M, t′1) ◦ δ′n ◦ ExtnR(M, t′2),

we have a u-S-exact sequence:

0 → HomR(M,A) → HomR(M,B) → HomR(M,C) → Ext1R(M,A) → · · ·

→ Extn−1
R (M,B) → Extn−1

R (M,C)
δn−→ ExtnR(M,A) → ExtnR(M,B) → · · ·

□
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Following from Theorem 2.2, we have the following result.

Corollary 2.3. Let R be a ring, S a multiplicative subset of R and M and

N R-modules. Suppose 0 → A
f−→ B

g−→ C → 0 is a u-S-exact sequence of
R-modules.

(1) If B is u-S-projective, then ExtnR(C,N) is u-S-isomorphic to
Extn+1

R (A,N) for any n ≥ 0.
(2) If B is u-S-injective, then ExtnR(M,A) is u-S-isomorphic to

Extn+1
R (M,C) for any n ≥ 0.

3. On u-S-projective (u-S-injective) dimensions of modules and
u-S-global dimensions of rings

It is well known that the projective (resp., injective) dimension of an R-
module M is the shortest length of projective (resp., injective) resolution of
M . Recall from [5] that the u-S-flat dimension of M is the shortest length of
u-S-flat u-S-resolutions ofM . We first introduce the u-S-versions of projective
dimensions and injective dimensions of R-modules.

Definition 3.1. Let R be a ring, S a multiplicative subset of R and M an
R-module. We write u-S-pdR(M) ≤ n (u-S-pd abbreviates u-S-projective
dimension) if there exists a u-S-exact sequence of R-modules

(♢) 0 → Fn → · · · → F1 → F0 →M → 0,

where each Fi is u-S-projective for i = 0, . . . , n. The u-S-exact sequence (♢) is
said to be a u-S-projective u-S-resolution of length n of M . If such a finite u-
S-projective u-S-resolution does not exist, then we say u-S-pdR(M) = ∞; oth-
erwise, define u-S-pdR(M) = n if n is the length of the shortest u-S-projective
u-S-resolution of M .

Similarly, one can define the u-S-injective dimension u-S-idR(M) and u-S-
injective u-S-coresolution of an R-module M.

Trivially, u-S-pdR(M) ≤ pdR(M) and u-S-idR(M) ≤ idR(M). And if S is
composed of units, then u-S-pdR(M) = pdR(M). It is also obvious that an R-
moduleM is u-S-projective if and only if u-S-pdR(M) = 0, and is u-S-injective
if and only if u-S-idR(M) = 0.

Lemma 3.2. Let R be a ring, S a multiplicative subset of R. If A is u-S-
isomorphic to B, then u-S-pdR(A) = u-S-pdR(B) and u-S-idR(A) = u-S-
idR(B).

Proof. We only prove u-S-pdR(A) = u-S-pdR(B) as the u-S-injective dimen-
sion is similar. Let f : A → B be a u-S-isomorphism. If · · · → Pn → · · · →
P1 → P0

g−→ A → 0 is a u-S-projective resolution of A, then · · · → Pn →
· · · → P1 → P0

f◦g−−→ B → 0 is a u-S-projective resolution of B. So u-S-
pdR(A) ≥ u-S-pdR(B). Similarly we have u-S-pdR(B) ≥ u-S-pdR(A) by
[7, Lemma 2.1]. □
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Proposition 3.3. Let R be a ring and S a multiplicative subset of R. The
following statements are equivalent for an R-module M :

(1) u-S-pdR(M) ≤ n;

(2) Extn+kR (M,N) is u-S-torsion for all R-modules N and all k > 0;

(3) Extn+1
R (M,N) is u-S-torsion for all R-modules N ;

(4) if 0 → Fn → · · · → F1 → F0 → M → 0 is a u-S-exact sequence,
where F0, F1, . . . , Fn−1 are u-S-projective R-modules, then Fn is u-S-
projective;

(5) if 0 → Fn → · · · → F1 → F0 →M → 0 is a u-S-exact sequence, where
F0, F1, . . . , Fn−1 are projective R-modules, then Fn is u-S-projective;

(6) if 0 → Fn → · · · → F1 → F0 → M → 0 is an exact sequence,
where F0, F1, . . . , Fn−1 are u-S-projective R-modules, then Fn is u-S-
projective;

(7) if 0 → Fn → · · · → F1 → F0 → M → 0 is an exact sequence, where
F0, F1, . . . , Fn−1 are projective R-modules, then Fn is u-S-projective;

(8) there exists a u-S-exact sequence 0 → Fn → · · · → F1 → F0 →
M → 0, where F0, F1, . . . , Fn−1 are projective R-modules and Fn is
u-S-projective;

(9) there exists an exact sequence 0 → Fn → · · · → F1 → F0 → M →
0, where F0, F1, . . . , Fn−1 are projective R-modules and Fn is u-S-
projective;

(10) there exists an exact sequence 0 → Fn → · · · → F1 → F0 → M → 0,
where F0, F1, . . . , Fn are u-S-projective R-modules.

Proof. (1) ⇒ (2): We prove (2) by induction on n. For the case n = 0, we
have M is u-S-projective, then (2) holds by [7, Theorem 2.5]. If n > 0, then
there is a u-S-exact sequence 0 → Fn → · · · → F1 → F0 → M → 0, where
each Fi is u-S-projective for i = 0, 1, . . . , n. Set K0 = Ker(F0 → M) and
L0 = Im(F1 → F0). Then both 0 → K0 → F0 → M → 0 and 0 → Fn →
Fn−1 → · · · → F1 → L0 → 0 are u-S-exact. Since u-S-pdR(L0) ≤ n−1 and L0

is u-S-isomorphic to K0, u-S-pdR(K0) ≤ n − 1 by Lemma 3.2. By induction,

Extn−1+k
R (K0, N) is u-S-torsion for all R-modules N and all k > 0. It follows

from Corollary 2.3 that Extn+kR (M,N) is u-S-torsion.
(2) ⇒ (3), (4) ⇒ (5) ⇒ (7) and (4) ⇒ (6) ⇒ (7): Trivial.

(3) ⇒ (4): Let 0 → Fn
dn−→ Fn−1 dn−1

−−−→ Fn−2 · · · d2−→ F1
d1−→ F0

d0−→ M → 0
be a u-S-exact sequence, where F0, F1, . . . , F

n−1 are u-S-projective. Then Fn
is u-S-projective if and only if Ext1R(Fn, N) is u-S-torsion for all R-modules N ,
if and only if Ext2R(Im(dn−1), N) is u-S-torsion for all R-modules N . Iterating
these steps, we can show Fn is u-S-projective if and only if Extn+1

R (M,N) is
u-S-torsion for all R-modules N .

(9) ⇒ (10) ⇒ (1) and (9) ⇒ (8) ⇒ (1): Trivial.

(7) ⇒ (9) : Let · · · → Pn → Pn−1 dn−1

−−−→ Pn−2 → · · · → P0 → M → 0 be
a projective resolution of M . Set Fn = Ker(dn−1). Then we have an exact
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sequence 0 → Fn → Pn−1 dn−1

−−−→ Pn−2 → · · · → P0 → M → 0. By (7), Fn is
u-S-projective. So (9) holds. □

Similarly, we have the following result.

Proposition 3.4. Let R be a ring and S a multiplicative subset of R. The
following statements are equivalent for an R-module M :

(1) u-S-idR(M) ≤ n;

(2) Extn+kR (N,M) is u-S-torsion for all R-modules N and all k > 0;

(3) Extn+1
R (N,M) is u-S-torsion for all R-modules N ;

(4) if 0 → M → E0 → · · · → En−1 → En → 0 is a u-S-exact sequence,
where E0, E1, . . . , En−1 are u-S-injective R-modules, then Fn is u-S-
injective;

(5) if 0 → M → E0 → · · · → En−1 → En → 0 is a u-S-exact se-
quence, where E0, E1, . . . , En−1 are injective R-modules, then En is
u-S-injective;

(6) if 0 → M → E0 → · · · → En−1 → En → 0 is an exact sequence,
where E0, E1, . . . , En−1 are u-S-injective R-modules, then En is u-S-
injective;

(7) if 0 →M → E0 → · · · → En−1 → En → 0 is an exact sequence, where
E0, E1, . . . , En−1 are injective R-modules, then En is u-S-injective;

(8) there exists a u-S-exact sequence 0 → M → E0 → · · · → En−1 →
En → 0, where E0, E1, . . . , En−1 are injective R-modules and En is
u-S-injective;

(9) there exists an exact sequence 0 → M → E0 → · · · → En−1 →
En → 0, where E0, E1, . . . , En−1 are injective R-modules and En is
u-S-injective;

(10) there exists an exact sequence 0 →M → E0 → · · · → En−1 → En → 0,
where E0, E1, . . . , En are u-S-injective R-modules.

Lemma 3.5. Let R be a ring, S a multiplicative subset of R, and M an R-
module. Then u-S-pdR(M) ≥ u-S-fdR(M).

Proof. It follows from [7, Proposition 2.13] that any u-S-projective module is
u-S-flat, and so u-S-pdR(M) ≤ u-S-fdR(M). □

Proposition 3.6. Let R be a ring and S a multiplicative subset of R. If R is
a u-S-Noetherian ring, then the following statements hold.

(1) If M is an S-finite R-module, then there is a u-S-exact sequence

· · · → Fn → · · · → F1 → F0 →M → 0

with each Fn S-finite u-S-projective.
(2) If M is an S-finite R-module, then u-S-pdR(M) = u-S-fdR(M).

Proof. (1) SinceM is an S-finite R-module, there is a short u-S-exact sequence
0 → K0 → F0 →M → 0, with F0 a finitely generated free R-module. Since R
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is a u-S-Noetherian ring, F0 is u-S-Noetherian by [6, Theorem 2.7], and hence
K0 is S-finite. So there is a u-S-exact sequence 0 → K1 → F1 → K0 → 0 with
F1 a finitely generated free R-module. Iterating these steps, we can obtain a
u-S-exact sequence · · · → Fn → · · · → F1 → F0 → M → 0 with each Fn
finitely generated free and hence S-finite u-S-projective.

(2) It follows by Lemma 3.5 that u-S-pdR(M) ≥ u-S-fdR(M). On the
other hand, assume u-S-fdR(M) = n <∞. Then there is a u-S-exact sequence
0 → Kn−1 → Fn−1 → · · · → F1 → F0 → M → 0 with each Fi u-S-projective
for each i < n and Kn u-S-Noetherian by (1) and its proof. It follows from
[5, Proposition 2.3] that Kn u-S-finitely presented and u-S-flat. So Kn is u-S-
projective by [6, Proposition 2.8]. Hence u-S-fdR(M) ≤ n. □

Lemma 3.7. Let R be a ring and S′ ⊆ S multiplicative subsets of R. Suppose
M is an R-module, then u-S-pdR(M) ≤ u-S′-pdR(M) and u-S-idR(M) ≤ u-
S′-idR(M).

Proof. Suppose S′ ⊆ S are multiplicative subsets of R. Let M and N be R-
modules. If Extn+1

R (M,N) is u-S′-torsion, then Extn+1
R (M,N) is u-S-torsion.

The result follows by Proposition 3.3. □

Let S be a multiplicative subset of R. The saturation S∗ of S is defined as
S∗ = {s ∈ R | s1 = s2s for some s1, s2 ∈ S}. A multiplicative subset S of R is
called saturated if S = S∗. Note that S∗ is always a saturated multiplicative
subset containing S.

Proposition 3.8. Let R be a ring, S be a multiplicative subset of R and S∗

be the saturation of S. Suppose M is an R-module. Then u-S-pdR(M) = u-
S∗-pdR(M) and u-S-idR(M) = u-S∗-idR(M).

Proof. We only prove u-S-pdR(M) = u-S∗-pdR(M) since the other one is
similar. Certainly, u-S-pdR(M) ≥ u-S∗-pdR(M). On the other hand, we
may assume that u-S∗-pdR(M) = n < ∞. Then there is s ∈ S∗ such that
sExtn+1

R (N,M) = 0 for all R-modules N . Then there are s1, s2 ∈ S such that

s1 = s2s. Hence s1Ext
n+1
R (N,M) = s2sExt

n+1
R (N,M) = 0 for all R-modules

N . It follows that u-S-pdR(M) = n. □

Proposition 3.9. Let Ri be a ring, Si be a multiplicative subset of Ri and Mi

be an Ri-module (i = 1, . . . , n). Set R = R1 × · · · × Rn, S = S1 × · · · × Sn a
multiplicative subset of Ri and M = M1 × · · · ×Mn an R-module. Then u-S-
pdR(M) = sup

1≤i≤n
{u-Si-pdRi

(Mi)} and u-S-idR(M) = sup
1≤i≤n

{u-Si-idRi
(Mi)}.

Proof. We only prove u-S-pdR(M) = sup
1≤i≤n

{u-Si-pdRi
(Mi)} since the other

one is similar.
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Suppose u-S-pdR(M) ≤ n. Then for any R-modules N , there is s = (s1, . . . ,
sn) ∈ S such that sExtn+1

R (M,N) = 0. So siExt
n+1
Ri

(Mi,K) = 0 for any Ri-
moduleK. Consequently, sup

1≤i≤n
{u-Si-pdRi

(Mi)} ≤ n. On the other hand, sup-

pose sup
1≤i≤n

{u-Si-pdRi
(Mi)} ≤ n. Let N be an R-module. Then eiN is an Ri-

module where ei is the element in R with 1 at i-th component and 0 at others.
Then for any i = 1, . . . , n, there is si ∈ Si such that siExt

n+1
Ri

(Mi, eiN) = 0.

Set s = (s1, . . . , sn) ∈ S. Then sExtn+1
R (M,N) = 0. So u-S-pdR(M) ≤ n. □

Proposition 3.10. Let R be a ring and S a multiplicative subset of R. Let
0 → A → B → C → 0 be a u-S-exact sequence of R-modules. Then the
following statements hold.

(1) u-S-pdR(C) ≤ 1 + max{u-S-pdR(A), u-S-pdR(B)}.
(2) If u-S-pdR(B) < u-S-pdR(C), then u-S-pdR(A) = u-S-pdR(C)− 1 >

u-S-pdR(B).
(3) u-S-idR(A) ≤ 1 + max{u-S-idR(B), u-S-idR(C)}.
(4) If u-S-idR(B) < u-S-idR(A), then u-S-idR(C) = u-S-idR(A)− 1 > u-

S-idR(B).

Proof. The proof is similar with that of the classical case (see [3, Theorem
3.5.6] and [3, Theorem 3.5.13]). So we omit it. □

Proposition 3.11. Let 0 → A → B → C → 0 be a u-S-split u-S-exact
sequence of R-modules. Then the following statements hold.

(1) u-S-pdR(B) = max{u-S-pdR(A), u-S-pdR(C)}.
(2) u-S-idR(B) = max{u-S-idR(A), u-S-idR(C)}.

Proof. We only show the first assertion since the other one is similar. Since the
u-S-projective dimensions of R-modules are invariant under u-S-isomorphisms

by Lemma 3.2, we may assume 0 → A
f−→ B

g−→ C → 0 is a u-S-split exact
sequence. So there exist R-homomorphisms f ′ : B → A and g′ : C → B such
that f ′ ◦ f = s1IdA and g ◦ g′ = s2IdC for some s1, s2 ∈ S. To prove (1),

we just need to show that 0 → ExtnR(M,A)
ExtnR(M,f)−−−−−−−→ ExtnR(M,B)

ExtnR(M,g)−−−−−−−→
ExtnR(M,C) → 0 is a u-S-exact sequence for any R-module M . Since the
composition map ExtnR(M,f ′) ◦ ExtnR(M,f) : ExtnR(M,A) → ExtnR(M,A) is
equal to ExtnR(M, s1IdA) which is just the multiplication map by s1, we have
ExtnR(M,f) is a u-S-split u-S-monomorphism. Similarly, ExtnR(M, g) is a u-S-
split u-S-epimorphism. □

Let p be a prime ideal of R and M an R-module. Set u-p-pdR(M) (resp.,
u-p-idR(M)) to be u-(R \ p)-pdR(M) (resp., u-(R \ p)-idR(M)) for simplifica-
tion. The next result gives a new characterization of projective dimension and
injective dimension of an R-module.
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Proposition 3.12. Let R be a ring and M an R-module. Then

pdR(M)=sup{u-p-pdR(M) | p ∈ Spec(R)}=sup{u-m-pdR(M) |m ∈ Max(R)}
and

idR(M)=sup{u-p-idR(M) | p ∈ Spec(R)}=sup{u-m-idR(M) |m ∈ Max(R)}.

Proof. We only show the first equation since the other one is similar. Triv-
ially, sup{u-m-pdR(M) |m ∈ Max(R)} ≤ sup{u-p-pdR(M) | p ∈ Spec(R)} ≤
pdR(M). Suppose sup{u-m-pdR(M) |m ∈ Max(R)} = n. For any R-module
N , there exists an element sm ∈ R − m such that smExtn+1

R (M,N) = 0 by

Proposition 3.3. Since the ideal generated by all sm is R, we have Extn+1
R (M,N)

= 0 for all R-modules N . So pdR(M) ≤ n. Suppose sup{u-m-pdR(M) |m ∈
Max(R)} = ∞. Then for any n ≥ 0, there exist a maximal ideal m and an
element sm ∈ R − m such that smExtn+1

R (M,N) ̸= 0 for some R-module N .

So for any n ≥ 0, we have Extn+1
R (M,N) ̸= 0 for some R-module N . Thus

pdR(M) = ∞. So the equalities hold. □

It is well known that the global dimension gl.dim(R) of a ring R is defined to
be the supremum of projective dimensions of allR-modules. Recall from [5] that
the u-S-weak global dimension u-S-w.gl.dim(R) of a ring R is the supremum
of u-S-flat dimensions of all R-modules. Now, we introduce the u-S-global
dimensions of rings R in terms of u-S-projective dimensions of R-modules.

Definition 3.13. The u-S-global dimension of a ring R is defined by

u-S-gl.dim(R) = sup{u-S-pdR(M) |M is an R-module}.

Obviously, u-S-gl.dim(R) ≤gl.dim(R) for any multiplicative subset S of R.
And if S is composed of units, then u-S-gl.dim(R) =gl.dim(R). The next result
characterizes the u-S-global dimension of a ring R.

Proposition 3.14. Let R be a ring and S a multiplicative subset of R. The
following statements are equivalent for R:

(1) u-S-gl.dim(R) ≤ n;
(2) u-S-pdR(M) ≤ n for all R-modules M ;

(3) Extn+kR (M,N) is u-S-torsion for all R-modules M,N and all k > 0;

(4) Extn+1
R (M,N) is u-S-torsion for all R-modules M,N ;

(5) u-S-idR(M) ≤ n for all R-modules M .

Proof. (1) ⇒ (2) and (3) ⇒ (4): Trivial.
(2) ⇒ (3) and (5) ⇒ (3): It follows from Proposition 3.3.
(4) ⇒ (2): Let M be an R-module and 0 → Fn → · · · → F1 → F0 →

M → 0 an exact sequence, where F0, F1, . . . , F
n−1 are projective R-modules.

To complete the proof, it suffices, by Proposition 3.3, to prove that Fn is u-S-
projective. Let N be an R-module. Thus u-S-pdR(N) ≤ n by (4). It follows
from Corollary 2.3 that Ext1R(N,Fn)

∼= Extn+1
R (N,M) is u-S-torsion. Thus Fn

is u-S-projective.
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(4) ⇒ (5): Let M be an R-module and 0 → M → E0 → · · · → En−1 →
En → 0 an exact sequence with E0, E1, . . . , En−1 are injective R-modules. By
dimension shifting, we have Extn+1

R (M,N) ∼= Ext1R(En, N). So Ext1R(En, N)
is u-S-torsion for any R-module N . Thus En is u-S-injective by [2, Theorem
4.3]. Consequently, u-S-idR(M) ≤ n by Theorem 3.4. □

Consequently, we have

u-S-gl.dim(R) = sup{u-S-pdR(M) |M is an R-module}
= sup{u-S-idR(M) |M is an R-module}.

Corollary 3.15. Let R be a ring, S a multiplicative subset of R. Then u-S-
gl.dim(R) ≥ u-S-w.gl.dim(R).

Proof. It follows from Lemma 3.5. □

Corollary 3.16. Let R be a ring, S′ ⊆ S be multiplicative subsets of R and
S∗ be the saturation of S. Then u-S-gl.dim(R) ≤ u-S′-gl.dim(R) and u-S-
gl.dim(R) = u-S∗-gl.dim(R).

Proof. It follows from Lemma 3.7 and Proposition 3.8. □

Proposition 3.17. Let Ri be a ring and Si be a multiplicative subset of Ri
(i = 1, . . . , n). Set R = R1 × · · · × Rn and S = S1 × · · · × Sn a multiplicative
subset of Ri. Then u-S-gl.dim(R) = sup

1≤i≤n
{u-Si-gl.dim(Ri)}.

Proof. It follows from Proposition 3.9. □

The following example shows that the global dimension of rings and the
u-S-global dimension of rings can be wildly different.

Example 3.18. Let R1 be a ring with gl.dim(R1) = n and R2 be a ring with
gl.dim(R2) = m. Set R = R1 × R2 and S = {(1, 1), (1, 0)}. Then gl.dim(R) =
max{m,n}. But u-S-gl.dim(R) = n by Proposition 3.17.

Let p be a prime ideal of a ring R and u-p-gl.dim(R) denote u-(R \ p)-
gl.dim(R) briefly. By Proposition 3.12, we have a new characterization of
global dimensions of commutative rings.

Corollary 3.19. Let R be a ring. Then

gl.dim(R) = sup{u-p-gl.dim(R) | p ∈ Spec(R)}
= sup{u-m-gl.dim(R) |m ∈ Max(R)}.

Recall from [7] that an R-module M is called u-S-semisimple provided that
any u-S-short exact sequence 0 → A → M → C → 0 is u-S-split. And
R is called a u-S-semisimple ring provided that any free R-module is u-S-
semisimple. Thus by [7, Theorem 3.5], the following result holds.

Corollary 3.20. Let R be a ring and S a multiplicative subset of R. The
following statements are equivalent:
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(1) R is a u-S-semisimple ring;
(2) every R-module is u-S-semisimple;
(3) every R-module is u-S-projective;
(4) every R-module is u-S-injective;
(5) u-S-gl.dim(R) = 0.

4. The change of rings theorems for u-S-global dimensions

The author in [5] investigated the u-S-weak global dimensions of factor rings
and polynomial rings. In this section, we mainly consider u-S-global dimensions
of factor rings and polynomial rings. Although the research approaches and
proof ideas are very similar, we will still present the proof in its entirety to
show some differences in their proofs.

We will give an inequality of u-S-global dimensions for ring homomorphisms.
Let θ : R → T be a ring homomorphism. Suppose S is a multiplicative subset
of R, then θ(S) = {θ(s) | s ∈ S} is a multiplicative subset of T .

Proposition 4.1. Let θ : R→ T be a ring homomorphism, S a multiplicative
subset of R. Suppose M is a T -module. Then

u-S-pdR(M) ≤ u-θ(S)-pdT (M) + u-S-pdR(T ).

Proof. Assume u-θ(S)-pdT (M) = n < ∞. If n = 0, then M is u-θ(S)-
projective over T . Then there exists u-θ(S)-split short exact sequence 0 →
A → F → M → 0 with F a free R-module of rank at least 1. By Proposi-
tion 3.11, we have u-θ(S)-pdT (F ) ≥ u-θ(S)-pdT (M). So u-S-pdR(M) ≤ u-S-
pdR(F ) = u-S-pdR(T ) ≤ n+ u-S-pdR(T ).

Now we assume n > 0. Let 0 → A → F → M → 0 be an exact sequence
of T -modules, where F is a free T -module of rank at least 1. Then u-θ(S)-
pdT (A) = n − 1 by Corollary 2.3 and Proposition 3.3. By induction, u-S-
pdR(A) ≤ n − 1 + u-S-pdR(T ). Note that u-S-pdR(T ) = u-S-pdR(F ). By
Proposition 3.10, we have

u-S-pdR(M) ≤ 1 + max{u-S-pdR(F ), u-S-pdR(A)}
≤ 1 + n− 1 + u-S-pdR(T )

= u-θ(S)-pdT (M) + u-S-pdR(T ). □

Let R be a ring, I an ideal of R and S a multiplicative subset of R. Then
π : R → R/I is a ring epimorphism and π(S) := S = {s + I ∈ R/I | s ∈ S} is
naturally a multiplicative subset of R/I.

Proposition 4.2. Let R be a ring, S a multiplicative subset of R. Let a
be a non-zero-divisor in R which does not divide any element in S. Written
R = R/aR and S = {s+ aR ∈ R | s ∈ S}. Then the following statements hold.

(1) Let M be a nonzero R-module. If u-S-pdR(M) <∞, then

u-S-pdR(M) = u-S-pdR(M) + 1.

(2) If u-S-gl.dim(R) <∞, then
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u-S-gl.dim(R) ≥ u-S-gl.dim(R) + 1.

Proof. (1) Set u-S-pdR(M) = n. Since a is a non-zero-divisor which does not
divide any element in S, the exact sequence 0 → aR → R → R/aR → 0
is not u-S-split. Indeed, suppose g : R → aR is an R-homomorphism such
that g(a) = sa. Then ag(1) = sa and thus g(1) = s ∈ aR since a is a non-
zero-divisor. So s = ar for some r ∈ R, which is a contradiction since a does
not divide any element in S. Thus u-S-pdR(R) = 1 by [7, Corollary 2.10].
By Proposition 4.1, we have u-S-pdR(M) ≤ u-S-pdR(M) + 1 = n + 1. Since

u-S-pdR(M) = n, there is an injective R-module C such that Extn
R
(M,C)

is not u-S-torsion. By [3, Theorem 2.4.22], there is an injective R-module E
such that 0 → C → E → E → 0 is exact. By [3, Proposition 3.8.12(4)],
Extn+1

R (M,E) ∼= Extn
R
(M,C). Thus Extn+1

R (M,E) is not u-S-torsion. So u-S-

pdR(M) = u-S-pdR(M) + 1.

(2) Let n = u-S-gl.dim(R). Then there is a nonzero R-module M such that
u-S-pdR(M) = n. Thus u-S-pdR(M) = n+1 by (1). So u-S-gl.dim(R) ≥ u-S-

gl.dim(R) + 1. □

LetR be a ring andR[x] denotes the polynomial ring with one indeterminate,
where all coefficients are in R. The well-known Hilbert syzygies Theorem states
that gl.dim(R[x]) =gl.dim(R) for any ring R (see [3, Theorem 3.8.23]). In the
rest of this section, we will give a u-S-analogue of this result. Let S be a
multiplicative subset of R, then S is a multiplicative subset of R[x] naturally.

Lemma 4.3. Let R be a ring, S a multiplicative subset of R. Suppose T is an
R-module and F is an R[x]-module. If P is u-S-projective over R[x], then P
is u-S-projective over R.

Proof. Suppose P is a u-S-projective R[x]-module. Then there exist a free R[x]-

module F and a u-S-split R[x]-short exact sequence 0 → K → F
π−→ P → 0.

Thus we have an R[x]-homomorphism π′ : P → F such that π ◦ π′ = sIdP for

some s ∈ S. Note that π′ is also an R-homomorphism. So 0 → K → F
π−→

P → 0 is also u-S-split over R. Note that F is also a free R-module. So P is
u-S-projective over R by [7, Proposition 2.8]. □

Let M be an R-module. Set M [x] =M ⊗R R[x]. Then M [x] can be seen as
an R[x]-module naturally.

Proposition 4.4. Let R be a ring, S a multiplicative subset of R and M an
R-module. Then u-S-pdR[x](M [x]) = u-S-pdR(M).

Proof. Assume that u-S-pdR(M) ≤ n. ThenM has a u-S-projective resolution
over R:

0 → Pn → · · · → P1 → P0 →M → 0.

Since R[x] is free over R, R[x] is a u-S-flat R-module by [7, Proposition 2.7].
Thus the natural sequence

0 → Pn[x] → · · · → P1[x] → P0[x] →M [x] → 0
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is u-S-exact over R[x]. Consequently, u-S-pdR[x](M [x]) ≤ n by Proposition
3.3.

Let 0 → Fn → · · · → F1 → F0 → M [x] → 0 be an exact sequence with
each Fi u-S-projective over R[x] (1 ≤ i ≤ n). Then it is also a u-S-projective
resolution ofM [x] over R by Lemma 4.3. Thus Extn+1

R (M [x], N) is u-S-torsion

for any R-module N by Proposition 3.3. It follows that sExtn+1
R (M [x], N) ∼=

s
∞∏
i=1

Extn+1
R (M,N) = 0. Thus Extn+1

R (M,N) is u-S-torsion. Consequently,

u-S-pdR(M) ≤ u-S-pdR[x](M [x]) by Proposition 3.3 again. □

LetM be an R[x]-module. ThenM can be naturally viewed as an R-module.
Define ψ :M [x] →M by

ψ(

n∑
i=0

xi ⊗mi) =

n∑
i=0

ximi, mi ∈M.

And define φ :M [x] →M [x] by

φ(

n∑
i=0

xi ⊗mi) =

n∑
i=0

xi+1 ⊗mi −
n∑
i=0

xi ⊗ xmi, mi ∈M.

Lemma 4.5 ([3, Theorem 3.8.22]). Let R be a ring. For any R[x]-module M ,

0 →M [x]
φ−→M [x]

ψ−→M → 0

is exact.

Theorem 4.6. Let R be a ring and S a multiplicative subset of R. Then

u-S-gl.dim(R[x]) =

{
u-S-gl.dim(R) + 1, 0 ̸∈ S,

0, 0 ∈ S.

Proof. Suppose 0 ∈ S. Then every R[x]-module is u-S-projective, and so u-S-
gl.dim(R[x]) = 0.

Now, suppose 0 ̸∈ S. LetM be an R[x]-module. Then, by Lemma 4.5, there
is an exact sequence over R[x]:

0 →M [x] →M [x] →M → 0.

By Proposition 3.10, Proposition 4.1 and Proposition 4.4,

(∗) u-S-pdR(M)≤u-S-pdR[x](M)≤1+u-S-pdR[x](M [x])=1+u-S-pdR(M).

Thus if u-S-gl.dim(R) <∞, then u-S-gl.dim(R[x]) <∞.
Conversely, if u-S-gl.dim(R[x]) <∞, then for any R-module M ,

u-S-pdR(M) = u-S-pdR[x](M [x]) <∞

by Proposition 4.4. Therefore we have u-S-gl.dim(R) < ∞ if and only if u-
S-gl.dim(R[x]) < ∞. Now we assume that both of these are finite. Then
u-S-gl.dim(R[x]) ≤ u-S-gl.dim(R) + 1 by (∗). Trivially, x is a non-zero-divisor
of R[x]. Since 0 ̸∈ S, it is easy to check x does not divide any element in S.
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Since R ∼= R[x]/xR[x], u-S-gl.dim(R[x]) ≥ u-S-gl.dim(R) + 1 by Proposition
4.2. Consequently, we have u-S-gl.dim(R[x]) = u-S-gl.dim(R) + 1. □

Remark 4.7. It was proved in [5, Theorem 4.7] that if u-S-fdR[x](R) = 1,
then u-S-w.gl.dim(R[x]) = u-S-w.gl.dim(R) + 1. But we do not require u-S-
pdR[x](R) = 1 in Theorem 4.6.

Corollary 4.8. Let R be a ring and S a multiplicative subset of R. Then for
any n ≥ 1 we have

u-S-gl.dim(R[x1, . . . , xn]) =

{
u-S-gl.dim(R) + n, 0 ̸∈ S,

0, 0 ∈ S.
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