• Title/Summary/Keyword: imaginary quadratic function field

Search Result 12, Processing Time 0.02 seconds

HILBERT 2-CLASS FIELD TOWERS OF IMAGINARY QUADRATIC FUNCTION FIELDS

  • Ahn, Jaehyun;Jung, Hwanyup
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.699-704
    • /
    • 2010
  • In this paper, we prove that the Hilbert 2-class field tower of an imaginary quadratic function field $F=k({\sqrt{D})$ is infinite if $r_2({\mathcal{C}}(F))=4$ and exactly one monic irreducible divisor of D is of odd degree, except for one type of $R{\acute{e}}dei$ matrix of F. We also compute the density of such imaginary quadratic function fields F.

GALOIS ACTIONS OF A CLASS INVARIANT OVER QUADRATIC NUMBER FIELDS WITH DISCRIMINANT D≡64(mod72)

  • Jeon, Daeyeol
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.213-219
    • /
    • 2013
  • A class invariant is the value of a modular function that generates a ring class field of an imaginary quadratic number field such as the singular moduli of level 1. In this paper, we compute the Galois actions of a class invariant from a generalized Weber function $g_1$ over imaginary quadratic number fields with discriminant $D{\equiv}64(mod72)$.

ARTIN SYMBOLS OVER IMAGINARY QUADRATIC FIELDS

  • Dong Sung Yoon
    • East Asian mathematical journal
    • /
    • v.40 no.1
    • /
    • pp.95-107
    • /
    • 2024
  • Let K be an imaginary quadratic field with ring of integers 𝓞K and N be a positive integer. By K(N) we mean the ray class field of K modulo N𝓞K. In this paper, for each prime p of K relatively prime to N𝓞K we explicitly describe the action of the Artin symbol (${\frac{K_{(N)}/K}{p}}$) on special values of modular functions of level N. Furthermore, we extend the Kronecker congruence relation for the elliptic modular function j to some modular functions of higher level.

GALOIS ACTIONS OF A CLASS INVARIANT OVER QUADRATIC NUMBER FIELDS WITH DISCRIMINANT D ≡ 21 (mod 36)

  • Jeon, Daeyeol
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.921-925
    • /
    • 2011
  • A class invariant is the value of a modular function that generates a ring class field of an imaginary quadratic number field such as the singular moduli of level 1. In this paper, using Shimura Reciprocity Law, we compute the Galois actions of a class invariant from a generalized Weber function $g_2$ over quadratic number fields with discriminant $D{\equiv}21$ (mod 36).

GALOIS ACTIONS OF A CLASS INVARIANT OVER QUADRATIC NUMBER FIELDS WITH DISCRIMINANT D ≡ -3 (mod 36)

  • Jeon, Daeyeol
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.853-860
    • /
    • 2010
  • A class invariant is the value of a modular function that generates a ring class field of an imaginary quadratic number field such as the singular moduli of level 1. In this paper, using Shimura Reciprocity Law, we compute the Galois actions of a class invariant from a generalized Weber function $g_2$ over quadratic number fields with discriminant $D{\equiv}-3$ (mod 36).

CONSTRUCTION OF CLASS FIELDS OVER IMAGINARY QUADRATIC FIELDS USING y-COORDINATES OF ELLIPTIC CURVES

  • Koo, Ja Kyung;Shin, Dong Hwa
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.847-864
    • /
    • 2013
  • By a change of variables we obtain new $y$-coordinates of elliptic curves. Utilizing these $y$-coordinates as meromorphic modular functions, together with the elliptic modular function, we generate the fields of meromorphic modular functions. Furthermore, by means of the special values of the $y$-coordinates, we construct the ray class fields over imaginary quadratic fields as well as normal bases of these ray class fields.

FORMULAS OF GALOIS ACTIONS OF SOME CLASS INVARIANTS OVER QUADRATIC NUMBER FIELDS WITH DISCRIMINANT D ≡ 1(mod 12)

  • Jeon, Daeyeol
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.4
    • /
    • pp.799-814
    • /
    • 2009
  • A class invariant is the value of a modular function that generates a ring class field of an imaginary quadratic number field such as the singular moduli of level 1. In this paper, using Shimura Reciprocity Law, we compute the Galois actions of some class invariants from the generalized Weber functions $\mathfrak{g}_0,\mathfrak{g}_1,\mathfrak{g}_2$ and $\mathfrak{g}_3$ over quadratic number fields with discriminant $D{\equiv}1$ (mod 12).

  • PDF