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CONSTRUCTION OF CLASS FIELDS OVER IMAGINARY

QUADRATIC FIELDS USING y-COORDINATES OF

ELLIPTIC CURVES

Ja Kyung Koo and Dong Hwa Shin

Abstract. By a change of variables we obtain new y-coordinates of el-
liptic curves. Utilizing these y-coordinates as meromorphic modular func-
tions, together with the elliptic modular function, we generate the fields
of meromorphic modular functions. Furthermore, by means of the special
values of the y-coordinates, we construct the ray class fields over imagi-
nary quadratic fields as well as normal bases of these ray class fields.

1. Introduction

Let E be an elliptic curve over C. Then there exist a lattice Λ = [ω1, ω2] in
C and a complex analytic isomorphism

(1.1)
C/Λ → E(C) : y2 = 4x3 − g2(Λ)x− g3(Λ)

z 7→ [℘(z; Λ) : ℘′(z; Λ) : 1]

of complex Lie groups, where

g2(Λ) = 60
∑

ω∈Λ\{0}
1/ω4, g3(Λ) = 140

∑

ω∈Λ\{0}
1/ω6

and

(1.2) ℘(z; Λ) = 1/z2 +
∑

ω∈Λ\{0}
(1/(z − ω)2 − 1/ω2) (z ∈ C)

is the Weierstrass ℘-function (relative to Λ) with derivative ℘′(z; Λ) [13, Chap-
ter VI, Proposition 3.6(b)].
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For an integerN (≥ 2) and a pair of rational numbers (r1, r2) ∈ (1/N)Z2\Z2,
we define the Fricke function f(r1,r2)(τ) on the complex upper-half plane H as

f(r1,r2)(τ) = −(2735g2(τ)g3(τ)/∆(τ))℘(r1τ + r2; [τ, 1]) (τ ∈ H),

where

(1.3) g2(τ) = g2([τ, 1]), g3(τ) = g3([τ, 1]) and ∆(τ) = g2(τ)
3 − 27g3(τ)

2.

This belongs to the field FN of all meromorphic modular functions of level

N whose Fourier coefficients with respect to q
1/N
τ = e2πiτ/N lie in the Nth

cyclotomic field Q(ζN ), where ζN = e2πi/N . We further define the elliptic
modular function j(τ) as

j(τ) = 1728g2(τ)
3/∆(τ) (τ ∈ H),

which is a generator of F1 over Q [10, Chaper 6].
Let K be an imaginary quadratic field of discriminant dK . We denote its

ring of algebraic integers by OK and set

(1.4) θK =

{ √
dK/2 if dK ≡ 0 (mod 4),

(−1 +
√
dK)/2 if dK ≡ 1 (mod 4)

so that θK ∈ H and OK = [θK , 1]. For a positive integer N , let K(N) be the
ray class field modulo (N) (= NOK) of K. Then the main theorem of complex
multiplication implies that

K(N) = K(f(θK) ; f ∈ FN is defined and finite at θK)(1.5)

= K(j(θK), hN (θK)),(1.6)

where

hN (θK) =







(g2(θK)2/∆(θK))℘(1/N ;OK)2 if K = Q(
√
−1),

(g3(θK)/∆(θK))℘(1/N ;OK)3 if K = Q(
√
−3),

(g2(θK)g3(θK)/∆(θK))℘(1/N ;OK) otherwise

([6] or [10, Chapter 10, Theorems 2, 8 and their Corollaries]). Furthermore, Cho
and Koo [1] combined these two generators, j(θK) and hN (θK), by using the
result of Gross and Zagier [5] and Dorman [4] to obtain a primitive generator
of K(N) over K. Note that the value hN(θK) comes from the x-coordinate of
some N -torsion point of the elliptic curve (1.1) with Λ = [θK , 1]. However, it is
not known that hN (θK) alone generatesK(N) overK. On the other hand, Jung

et al. [7] showed that the special value g(0,1/N)(θK)12N generates K(N) over K
(§2), conjectured by Lang [10, p. 292] and Schertz [11]. But unfortunately, the
value is not directly related to a torsion point of an elliptic curve.

Consider the special case when K = Q(
√
−3) and θK = (−1 +

√
−3)/2.

Setting Λ = [θK , 1] and z = 1/N (N ≥ 2) in (1.1), one can derive that

(g3(θK)/
√

∆(θK))℘′(1/N ;OK)2/
√

∆(θK)(1.7)

= 4(g3(θK)/∆(θK))℘(1/N ;OK)3 − (g2(θK)g3(θK)/∆(θK))℘(1/N ;OK)
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− g3(θK)2/∆(θK).

Moreover, we get from the fact g2(θK) = 0 [10, p. 37] and the definition (1.3)
that

j(θK) = 0 and g3(θK)/
√

∆(θK) = ±1/3
√
−3.

Hence the equation (1.7) becomes

±(1/3
√
−3)℘′(1/N ;OK)2/

√

∆(θK) = 4hN(θK) + 1/27,

which shows that the value ℘′(1/N ;OK)2/
√

∆(θK) generates K(N) over K by
(1.6).

Let η(τ) be the Dedekind η-function defined by

(1.8) η(τ) =
√
2πζ8q

1/24
τ

∞
∏

n=1

(1− qnτ ) (τ ∈ H).

This satisfies the relation η(τ)24 = ∆(τ) [10, Chapter 18, Theorem 5]. In this
paper we shall prove that if dK ≤ −19 and N ≥ 3, then any nonzero power of
the value

y = (℘′(1/N ;OK)/η(θK)6)4/ gcd(4,N)

generates K(N) over K (Theorem 3.4) by using the idea of [7]. The value y is
obtained from certain y-coordinate of an elliptic curve associated with OK , and
is suitable for computing the minimal polynomial because it can be expressed
as an infinite product (§2). As an application we shall also find a normal basis
of K(N) over K (Corollary 3.9).

2. Fields of modular functions

In this section we shall examine the fields of modular functions in terms of
y-coordinates of elliptic curves together with the elliptic modular function j(τ).

For a positive integer N , let C(X(N)) be the field of meromorphic functions
on the modular curve X(N) = Γ(N)\H∗, where H∗ = H∪Q∪{∞}. As is well-
known, C(X(N)) is a Galois extension of C(X(1)) = C(j(τ)) whose Galois
group is given by

Γ(1)/± Γ(N) ≃ SL2(Z/NZ)/{±I2}

as fractional linear transformations [3, Proposition 7.5.1]. Furthermore, the
subfield FN of C(X(N)) is a Galois extension of F1 whose Galois group is
represented by

GL2(Z/NZ)/{±I2} = GN · SL2(Z/NZ)/{±I2} = SL2(Z/NZ)/{±I2} ·GN ,

where

GN =

{(

1 0
0 d

)

: d ∈ (Z/NZ)∗
}

.
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First, the matrix ( 1 0
0 d ) ∈ GN acts on

∑∞
n>−∞ cnq

n/N
τ ∈ FN by

∞
∑

n>−∞
cnq

n/N
τ 7→

∞
∑

n>−∞
cσd
n qn/Nτ ,

where σd is the automorphism of Q(ζN ) induced by ζN 7→ ζdN . Second, for an
element γ ∈ SL2(Z/NZ)/{±I2}, let γ′ ∈ SL2(Z) be a preimage of γ via the
natural surjection SL2(Z) → SL2(Z/NZ)/{±I2}. Then γ acts on h ∈ FN by

h 7→ h ◦ γ′

([10, Chapter 6, Theorem 3] or [12, Proposition 6.9(1)]).
For a lattice Λ in C, the Weierstrass σ-function (relative to Λ) is defined by

σ(z; Λ) = z
∏

ω∈Λ\{0}
(1− z/ω)ez/ω+(1/2)(z/ω)2 (z ∈ C).

Taking the logarithmic derivative, we define the Weierstrass ζ-function (relative
to Λ) as

ζ(z; Λ) = σ′(z; Λ)/σ(z; Λ) = 1/z +
∑

ω∈Λ\{0}
(1/(z − ω) + 1/ω + z/ω2) (z ∈ C).

Differentiating the function ζ(z+ω; Λ)−ζ(z; Λ) for any ω ∈ Λ results in 0 since
ζ′(z; Λ) = −℘(z; Λ), by (1.2) and ℘(z; Λ), is periodic with respect to Λ. Hence
there is a constant η(ω; Λ) so that

ζ(z + ω; Λ) = ζ(z; Λ) + η(ω; Λ).

For (r1, r2) ∈ Q2 \ Z2, we define the Siegel function g(r1,r2)(τ) as
(2.1)

g(r1,r2)(τ) = e−(1/2)(r1η(τ ;[τ,1])+r2η(1;[τ,1]))(r1τ+r2)σ(r1τ+r2; [τ, 1])η(τ)
2 (τ ∈ H),

where η(τ) is the Dedekind η-function defined in (1.8).

Proposition 2.1. Let (r1, r2) ∈ Q2 \ Z2.

(i) We have

g(−r1,−r2)(τ) = −g(r1,r2)(τ).

(ii) If γ ∈ SL2(Z), then

g(r1,r2)(τ) ◦ γ = ζg(r1,r2)γ(τ)

for a 12th root of unity ζ depending on γ and (r1, r2).
(iii) If (s1, s2) ∈ Z2, then

g(r1+s1,r2+s2)(τ) = ε((r1, r2), (s1, s2))g(r1,r2)(τ),

where ε((r1, r2), (s1, s2)) = (−1)s1s2+s1+s2e−πi(s1r2−s2r1).

Proof. See [9, Chapter 2, §1] and [10, Chapter 18, Theorem 6]. �
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A Siegel function has a fairly simple qτ -order formula. Let

B2(X) = X2 −X + 1/6

be the second Bernoulli polynomial. Using the product formula of the Weier-
strass σ-function, we get the product expression

(2.2) g(r1,r2)(τ) = −q(1/2)B2(r1)
τ eπir2(r1−1)(1− qz)

∞
∏

n=1

(1 − qnτ qz)(1 − qnτ /qz),

where z = r1τ+r2 [10, Chapter 18, Theorem 4 and Chapter 19, §2]. Regarding
(2.2) as a Laurent series expansion with respect to qτ , we see that

(2.3) ordqτ (g(r1,r2)(τ)) = (1/2)B2(〈r1〉) (∈ Q),

where 〈X〉 is the fractional part of X ∈ R such that 0 ≤ 〈X〉 < 1 [9, Chapter
2, §1].
Proposition 2.2. Let N (≥ 2) be an integer and let {m(r)}r=(r1,r2)∈(1/N)Z2\Z2

be a family of integers such that m(r) = 0 except for finitely many r. Then a

product of Siegel functions
∏

r∈(1/N)Z2\Z2

gr(τ)
m(r)

belongs to FN if {m(r)}r satisfies the quadratic relation modulo N , namely,
∑

r

m(r)(Nr1)
2 ≡

∑

r

m(r)(Nr2)
2 ≡ 0 (mod gcd(2, N) ·N),

∑

r

m(r)(Nr1)(Nr2) ≡ 0 (mod N),

and 12 divides gcd(12, N) ·
∑

r m(r). In particular, gr(τ)
12N/ gcd(6,N) belongs

to FN for any r ∈ (1/N)Z2 \ Z2.

Proof. See [9, Chapter 3, Theorems 5.2 and 5.3]. �

Proposition 2.3. Let N (≥ 2) be an integer and let r ∈ (1/N)Z2 \ Z2.

(i) Both gr(τ) and N/gr(τ) are integral over Z[j(τ)].
(ii) If α ∈ GL2(Z/NZ)/{±I2} ≃ Gal(FN/F1), then

(gr(τ)
12N/ gcd(6,N))α = grα(τ)

12N/ gcd(6,N).

Proof. (i) See [8, §3].
(ii) This follows from Proposition 2.1 and (2.2). �

Let Λ be a lattice in C of the form Λ = [τ, 1] with τ ∈ H. Diving both sides
of the equation

℘′(z; Λ)2 = 4℘(z; Λ)3 − g2(τ)℘(z; Λ)− g3(τ)

by the nonzero constant η12(τ) and using the relation

℘′(z; Λ) = −σ(2z; Λ)/σ(z; Λ)4
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[13, p. 166], we get

(σ(2z; Λ)η(τ)2/σ(z; Λ)4η(τ)8)2

= 4(℘(z; Λ)/η(τ)4)3 − (g2(τ)/η(τ)
8)(℘(z; Λ)/η(τ)4)− g3(τ)/η(τ)

12 .

Hence we obtain a change of variables

C/Λ
∼→ y2 = 4x3 − (g2(τ)/η(τ)

8)x − g3(τ)/η(τ)
12

z 7→ [℘(z; Λ)/η(τ)4 : σ(2z; Λ)η(τ)2/σ(z; Λ)4η(τ)8 : 1].

If z = r1τ + r2 with (r1, r2) ∈ Q2 \ Z2, then the corresponding y-coordinate
satisfies

σ(2r1τ + 2r2; Λ)η(τ)
2/σ(r1τ + r2; Λ)

4η(τ)8 = g(2r1,2r2)(τ)/g(r1,r2)(τ)
4

by (2.1). Regarding τ as a variable on H, we define the function y(r1,r2)(τ) on
H as

(2.4) y(r1,r2)(τ) = g(2r1,2r2)(τ)/g(r1,r2)(τ)
4.

Lemma 2.4. Let N (≥ 2) be an integer and let (r1, r2) ∈ (1/N)Z2 \Z2. Then

y(r1,r2)(τ)
4/ gcd(4,N) belongs to FN .

Proof. If (2r1, 2r2) ∈ Z2, then y(r1,r2)(τ)
4/ gcd(4,N) = 0 ∈ FN . So we assume

(2r1, 2r2) 6∈ Z2. Now that the product of Siegel functions

(g(2r1,2r2)(τ)/g(r1,r2)(τ)
4)4/ gcd(4,N)

satisfies the quadratic relation modulo N and

gcd(12, N) · sum of exponents = −12 gcd(12, N)/ gcd(4, N) ≡ 0 (mod 12),

it belongs to FN by Proposition 2.2. �

Remark 2.5. Note that a Siegel function has no zeros or poles on H by (2.2).
Hence the special value y(r1,r2)(θK)4/ gcd(4,N) lies in K(N) by the definition
(2.4), Lemma 2.4 and (1.5).

Lemma 2.6. Let N (≥ 3) and m (6= 0) be integers. If γ ∈ SL2(Z) acts trivially
on both y(1/N,0)(τ)

m and y(0,1/N)(τ)
m as a fractional linear transformation,

then γ ∈ ±Γ(N).

Proof. For convenience, we use the notation
.
= to denote the equality up to a

root of unity. Letting γ =
(

a b
c d

)

∈ SL2(Z), we derive by the definition (2.4)
and Proposition 2.1(ii) that

(y(1/N,0)(τ)
m)γ

.
= g(2/N,0)γ(τ)

m/g(1/N,0)γ(τ)
4m

= g(2a/N,2b/N)(τ)
m/g(a/N,b/N)(τ)

4m,

(y(0,1/N)(τ)
m)γ

.
= g(0,2/N)γ(τ)

m/g(0,1/N)γ(τ)
4m

= g(2c/N,2d/N)(τ)
m/g(c/N,d/N)(τ)

4m.
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Since we are assuming that the action of γ on y(1/N,0)(τ)
m and y(1/N,0)(τ)

m is
trivial, we get

g(2a/N,2b/N)(τ)
m/g(a/N,b/N)(τ)

4m .
= g(2/N,0)(τ)

m/g(1/N,0)(τ)
4m,(2.5)

g(2c/N,2d/N)(τ)
m/g(c/N,d/N)(τ)

4m .
= g(0,2/N)(τ)

m/g(0,1/N)(τ)
4m.(2.6)

It then follows from the action of
(

0 −1
1 0

)

∈ SL2(Z) on both sides of (2.5) and
(2.6) as a fractional linear transformation that

g(2b/N,−2a/N)(τ)
m/g(b/N,−a/N)(τ)

4m .
= g(0,−2/N)(τ)

m/g(0,−1/N)(τ)
4m,(2.7)

g(2d/N,−2c/N)(τ)
m/g(d/N,−c/N)(τ)

4m .
= g(2/N,0)(τ)

m/g(1/N,0)(τ)
4m(2.8)

by Proposition 2.1(ii). Now by using the qτ -order formula (2.3), we can compare
the qτ -orders of both sides of (2.5)∼(2.8) to conclude

m(1/2)B2(〈2a/N〉)−4m(1/2)B2(〈a/N〉) = m(1/2)B2(2/N) − 4m(1/2)B2(1/N),

m(1/2)B2(〈2c/N〉) − 4m(1/2)B2(〈c/N〉) = m(1/2)B2(0)− 4m(1/2)B2(0),

m(1/2)B2(〈2b/N〉) − 4m(1/2)B2(〈b/N〉) = m(1/2)B2(0)− 4m(1/2)B2(0),

m(1/2)B2(〈2d/N〉) − 4m(1/2)B2(〈d/N〉) = m(1/2)B2(2/N) − 4m(1/2)B2(1/N).

Considering the fact det(γ) = ad − bc = 1, we achieve a ≡ d ≡ ±1 (mod N)
and b ≡ c ≡ 0 (mod N). Hence γ lies in ±Γ(N), as desired. �

Theorem 2.7. Let N (≥ 3) and m (6= 0) be integers.

(i) C(X(N)) = C(j(τ), y(1/N,0)(τ)
4m/ gcd(4,N), y(0,1/N)(τ)

4m/ gcd(4,N)).

(ii) FN = Q(j(τ), ζNy(1/N,0)(τ)
4m/ gcd(4,N), y(0,1/N)(τ)

4m/ gcd(4,N)).

Proof. (i) Put F =C(j(τ), y(1/N,0)(τ)
4m/ gcd(4,N), y(0,1/N)(τ)

4m/ gcd(4,N)), which
is a subfield of C(X(N)) containing C(X(1)) = C(j(τ)) by Lemma 2.4. Assume
that an element γ ∈ Γ(1) acts trivially on F . Then γ must be in ±Γ(N) by
Lemma 2.6. Thus F is all of C(X(N)) by the fact Gal(C(X(N))/C(X(1))) ≃
Γ(1)/± Γ(N) and Galois theory.

(ii) Set F = Q(j(τ), ζNy(1/N,0)(τ)
4m/ gcd(4,N), y(0,1/N)(τ)

4m/ gcd(4,N)), which
is a subfield of FN containing F1 = Q(j(τ)) by Lemma 2.4. By (i) and [8,
Lemma 4.1], we have FN = F (ζN ). Hence Gal(FN/F ) is isomorphic to a
subgroup of GN = {( 1 0

0 d ) : d ∈ (Z/NZ)∗}. Assume that β = ( 1 0
0 d ) ∈ GN acts

trivially on F . Since

y(1/N,0)(τ) =
g(2/N,0)(τ)

g(1/N,0)(τ)4

=
−q

(1/2)B2(2/N)
τ (1− q

2/N
τ )

∏∞
n=1(1 − q

n+2/N
τ )(1 − q

n−2/N
τ )

(−q
(1/2)B2(2/N)
τ (1− q

2/N
τ )

∏∞
n=1(1− q

n+2/N
τ )(1− q

n−2/N
τ ))4

has rational Fourier coefficients by (2.2), we get

ζNy(1/N,0)(τ)
4m/ gcd(4,N) = (ζNy(1/N,0)(τ)

4m/ gcd(4,N))β

= ζdNy(1/N,0)(τ)
4m/ gcd(4,N).
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Therefore, d ≡ 1 (mod N), which implies that F is all of FN by Galois theory.
�

3. Ray class invariants over imaginary quadratic fields

Throughout this section, let K be an imaginary quadratic field of discrim-
inant dK and let θK be as in (1.4). We shall prove our main theorem which
claims that if dK ≤ −19 and N ≥ 3, then for any nonzero integer m, the special
value y(0,1/N)(θK)4m/ gcd(4,N) generates the ray class field K(N) overK. To this
end, we shall introduce an explicit description of Shimura’s reciprocity law due
to Stevenhagen [14], from which we are able to determine all the conjugates of
the special value of a meromorphic modular function.

Let C(dK) be the group of all reduced (binary quadratic) formsQ = [a, b, c] =
aX2 + bXY + cY 2 ∈ Z[X,Y ] characterized by the conditions

(3.1) b2 − 4ac = dK , gcd(a, b, c) = 1 and (−a < b ≤ a < c or 0 ≤ b ≤ a = c)

[2, §2, A]. Note that the above conditions imply

(3.2) a ≤
√

−dK/3

[2, p. 29], and the identity of C(dK) is
{

[1, 0,−dK/4] if dK ≡ 0 (mod 4),

[1, 1, (1− dK)/4] if dK ≡ 1 (mod 4)

[2, Theorem 3.9]. For a reduced form Q = [a, b, c] ∈ C(dK), we let

(3.3) θQ = (−b+
√

dK)/2a,

and define uQ = (up)p ∈ ∏

p : primeGL2(Zp) by

Case 1 : dK ≡ 0 (mod 4)

up =



































(

a b/2
0 1

)

if p ∤ a,

(

−b/2 −c
1 0

)

if p | a and p ∤ c,

(

−a− b/2 −c− b/2
1 −1

)

if p | a and p | c.

(3.4)

Case 2 : dK ≡ 1 (mod 4)

up =



































(

a (b− 1)/2
0 1

)

if p ∤ a,

(

−(b+ 1)/2 −c
1 0

)

if p | a and p ∤ c,

(

−a− (b+ 1)/2 −c− (b− 1)/2
1 −1

)

if p | a and p | c.

(3.5)
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Let min(θK ,Q) = X2 +BX +C. For a positive integer N , we define a matrix
group

WN,K =

{(

t−Bs −Cs
s t

)

∈ GL2(Z/NZ) : t, s ∈ Z/NZ

}

.

Proposition 3.1 (Shimura’s reciprocity law). Let K be an imaginary quadratic

field other than Q(
√
−1) and Q(

√
−3), and let N be a positive integer. There

is a one-to-one correspondence

WN,K/{±I2} × C(dK) → Gal(K(N)/K)

(α,Q) 7→ (h(θK) 7→ hα·uQ(θQ) ;
h ∈ FN is defined and finite at θK).

Proof. See [14, §3 and 6]. �

Remark 3.2. (i) There exists a 2×2 integral matrix β such that det(β) > 0 and
β ≡ up (mod NZp) for all p dividing N by the Chinese remainder theorem.
The action of uQ on FN is understood as the action of β ∈ GL2(Z/NZ)/{±I2}
on FN .

(ii) The identity of WN,K/{±I2} × C(dK) corresponds to the identity of
Gal(K(N)/K) by the definitions (3.3)∼(3.5).

For simplicity, we let

A = |e2πiθK | = e−π
√
−dK and D =

√

−dK/3.

Then one can readily verify the inequality
(3.6)

1/(1−AX/a) < 1+AX/1.03a for a,X ∈ R such that 1 ≤ a ≤ D and X ≥ 1/2.

It is also obvious that

(3.7) 1 +X < eX for all X > 0.

Lemma 3.3. (i) Assume that dK ≤ −20 and N ≥ 3. Let Q = [a, b, c] ∈ C(dK).
If a ≥ 2, then the inequality

|g(2s/N,2t/N)(θQ)/g(s/N,t/N)(θQ)
4| < 0.996|g(0,2/N)(θK)/g(0,1/N)(θK)4|

holds for any (s, t) ∈ Z2 \NZ2.

(ii) Assume that dK ≤ −11 and N ≥ 3. Then the inequality

|g(2s/N,2t/N)(θK)/g(s/N,t/N)(θK)4| < 0.614|g(0,2/N)(θK)/g(0,1/N)(θK)4|
holds for any (s, t) ∈ Z2 \NZ2 such that (s, t) 6≡ (0,±1) (mod N).

Proof. (i) We may assume that 0 ≤ s ≤ N/2 and 0 ≤ t < N by Proposition

2.1(i) and (iii). Also note that 2 ≤ a ≤ D by (3.2) and A ≤ e−π
√
20 < 1. It

follows from (2.2) that
∣

∣

∣

∣

g(2s/N,2t/N)(θQ)/g(s/N,t/N)(θQ)
4

g(0,2/N)(θK)/g(0,1/N)(θK)4

∣

∣

∣

∣
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≤ A1/4+(1/a)(s/N−1/4)

∣

∣

∣

∣

(1− ζN )4

1− ζ2N

∣

∣

∣

∣

∣

∣

∣

∣

1− e2πi((2s/N)θQ+2t/N)

(1− e2πi((s/N)θQ+t/N))4

∣

∣

∣

∣

×
∞
∏

n=1

(1 +An)8(1 +A(1/a)(n+2s/N))(1 + A(1/a)(n−2s/N))

(1 −An)2(1−A(1/a)(n+s/N))4(1− A(1/a)(n−s/N))4

≤ T (N, s, t)

∞
∏

n=1

(1 +An)8(1 +An/a)(1 +A(1/a)(n−1))

(1−An)2(1 −An/a)4(1−A(1/a)(n−1/2))4

by the fact 0 ≤ s ≤ N/2

≤ T (N, s, t)

∞
∏

n=1

(1 +An)8(1 +An/D)(1 + A(1/D)(n−1))

(1−An)2(1 −An/D)4(1−A(1/D)(n−1/2))4

by the fact 2 ≤ a ≤ D,

where

T (N, s, t) = A1/4+(1/a)(s/N−1/4)

∣

∣

∣

∣

(1 − ζN )3

1 + ζN

∣

∣

∣

∣

∣

∣

∣

∣

1 + e2πi((s/N)θQ+t/N)

(1− e2πi((s/N)θQ+t/N))3

∣

∣

∣

∣

.

If s = 0, then

T (N, s, t) = A1/4−1/4a

∣

∣

∣

∣

(

1− ζN
1− ζtN

)3∣
∣

∣

∣

∣

∣

∣

∣

1 + ζtN
1 + ζN

∣

∣

∣

∣

= A1/4−1/4a

∣

∣

∣

∣

(

sin(π/N)

sin(tπ/N)

)3∣
∣

∣

∣

∣

∣

∣

∣

cos(tπ/N)

cos(π/N)

∣

∣

∣

∣

≤ A1/8 by the fact 2 ≤ a ≤ D

≤ e−π
√
20/8 by the fact dK ≤ −20

< 0.173.

If s 6= 0, then

T (N, s, t) ≤ A1/4+(1/a)(1/N−1/4)

∣

∣

∣

∣

(1− ζN )3

1 + ζN

∣

∣

∣

∣

1 +A1/Na

(1 −A1/Na)3

by the fact 1 ≤ s ≤ N/2

≤ A1/4+(1/2)(1/N−1/4)

∣

∣

∣

∣

(1− ζN )3

1 + ζN

∣

∣

∣

∣

1 +A1/ND

(1 −A1/ND)3

by the fact 2 ≤ a ≤ D

= e−π
√
20(1/8+1/2N) 4 sin

3(π/N)

cos(π/N)

1 + e−π
√
3/N

(1 − e−π
√
3/N )3

by the facts dK ≤ −20 and A1/D = e−π
√
3

< 0.267 from the graph for N ≥ 3 (Figure 1).

Therefore, we derive that



CONSTRUCTION OF CLASS FIELDS OVER IMAGINARY QUADRATIC FIELDS 857

0.18

0.2

0.22

0.24
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y
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x

Figure 1. Y = e−π
√
20(1/8+X/2π) 4 sin3 X

cosX
1+e−

√

3X

(1−e−
√

3X )3
for 0 <

X ≤ π/3

∣

∣

∣

∣

g(2s/N,2t/N)(θQ)/g(s/N,t/N)(θQ)
4

g(0,2/N)(θK)/g(0,1/N)(θK)4

∣

∣

∣

∣

< 0.267
∞
∏

n=1

(1 +An)8(1 +An/D)(1 +A(1/D)(n−1))

(1 +An/1.03)−2(1 +An/1.03D)−4(1 +A(1/1.03D)(n−1/2))−4

by (3.6)

< 0.267
∞
∏

n=1

e8A
n+An/D+A(1/D)(n−1)+2An/1.03+4An/1.03D+4A(1/1.03D)(n−1/2)

by (3.7)

= 0.267e8A/(1−A) + (A1/D + 1)/(1−A1/D) + 2A1/1.03/(1−A1/1.03) + (4A1/1.03D + 4A1/2.06D)/(1−A1/1.03D)

≤ 0.267e8e
−π

√

20/(1−e−π
√

20)+(e−π
√

3+1)/(1−e−π
√

3)+2e−π
√

20/1.03/(1−e−π
√

20/1.03)

× e(4e
−π

√

3/1.03+4e−π
√

3/2.06)/(1−e−π
√

3/1.03)

by the facts A ≤ e−π
√
20 and A1/D = e−π

√
3

< 0.996.

(ii) We may also assume that 0 ≤ s ≤ N/2 and 0 ≤ t < N by Proposition
2.1(i) and (iii). We establish by (2.2) that

∣

∣

∣

∣

g(2s/N,2t/N)(θK)/g(s/N,t/N)(θK)4

g(0,2/N)(θK)/g(0,1/N)(θK)4

∣

∣

∣

∣

≤ As/N
∣

∣

∣

∣

(1− ζN )4

1− ζ2N

∣

∣

∣

∣

∣

∣

∣

∣

1− e2πi((2s/N)θK+2t/N)

(1 − e2πi((s/N)θK+t/N))4

∣

∣

∣

∣

∞
∏

n=1

(1 +An)8(1 +An+2s/N )(1 +An−2s/N )

(1−An)2(1−An+s/N )4(1−An−s/N )4
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Figure 2. Y = 2 cos2 X−1
8 cos4 X for 0 < X ≤ π/4

≤ T (N, s, t)

∞
∏

n=1

(1 +An)9(1 +An−1)

(1−An)6(1−An−1/2)4
by the fact 0 ≤ s ≤ N/2,

where

T (N, s, t) = As/N

∣

∣

∣

∣

(1− ζN )3

1 + ζN

∣

∣

∣

∣

∣

∣

∣

∣

1 + e2πi((s/N)θK+t/N)

(1− e2πi((s/N)θK+t/N))3

∣

∣

∣

∣

.

If s = 0, then N ≥ 4 and 2 ≤ t ≤ N − 2 by the assumption (s, t) 6≡ (0,±1)
(mod N); hence

T (N, s, t) =

∣

∣

∣

∣

(

1− ζN
1− ζtN

)3∣
∣

∣

∣

∣

∣

∣

∣

1 + ζtN
1 + ζN

∣

∣

∣

∣

=

∣

∣

∣

∣

(

sin(π/N)

sin(tπ/N)

)3∣
∣

∣

∣

∣

∣

∣

∣

cos(tπ/N)

cos(π/N)

∣

∣

∣

∣

≤
(

sin(π/N)

sin(2π/N)

)3
cos(2π/N)

cos(π/N)

=
2 cos2(π/N)− 1

8 cos4(π/N)

< 0.125 from the graph for N ≥ 4 (Figure 2).

If s 6= 0, then

T (N, s, t) ≤ A1/N

∣

∣

∣

∣

(1− ζN )3

1 + ζN

∣

∣

∣

∣

1 +A1/N

(1 −A1/N )3

=
4 sin3(π/N)

cos(π/N)

A1/N (1 +A1/N )

(1−A1/N )3
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Figure 3. Y = 4 sin3 X
cosX

e−
√

11X(1+e−
√

11X )

(1−e−
√

11X )3
for 0 < X ≤ π

3

≤ 4 sin3(π/N)

cos(π/N)

e−π
√
11/N (1 + e−π

√
11/N )

(1 − e−π
√
11/N )3

by the fact dK ≤ −11

< 0.22 from the graph for N ≥ 3 (Figure 3).

Therefore, we get that
∣

∣

∣

∣

g(2s/N,2t/N)(θK)/g(s/N,t/N)(θK)4

g(0,2/N)(θK)/g(0,1/N)(θK)4

∣

∣

∣

∣

< 0.22

∞
∏

n=1

(1 +An)9(1 +An−1)

(1 +An/1.03)−6(1 +A(1/1.03)(n−1/2))−4
by (3.6)

< 0.22

∞
∏

n=1

e9A
n+An−1+6An/1.03+4A(1/1.03)(n−1/2)

by (3.7)

= 0.22e(9A+1)/(1−A)+(6A1/1.03+4A1/2.06)/(1−A1/1.03)

≤ 0.22e(9e
−π

√

11+1)/(1−e−π
√

11)+(6e−π
√

11/1.03+4e−π
√

11/2.06)/(1−e−π
√

11/1.03)

by the facts A ≤ e−π
√
11

< 0.614.

This proves the lemma. �

Theorem 3.4. Let K be an imaginary quadratic field of discriminant dK (≤
−19) and let N (≥ 3) be an integer. Then for any nonzero integer m, the

special value y(0,1/N)(θK)4m/ gcd(4,N) generates the ray class field K(N) over K.
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Proof. Put y(τ) = y(0,1/N)(τ)
4m/ gcd(4,N). Then we get y(τ) ∈ FN by Lemma

2.4 and y(θK) ∈ K(N) by Remark 2.5. Hence if we show that the only element
of Gal(K(N)/K) leaving y(θK) fixed is the identity, then we can conclude that
y(θK) generates K(N) over K by Galois theory.

Any conjugate of y(θK) is of the form yα·uQ(θQ) for some α =
(

t−Bs −Cs
s t

)

∈
WN,K and a reduced form Q = [a, b, c] ∈ C(dK) by Proposition 3.1. Assume
that y(θK) = yα·uQ(θQ). If dK = −19, then hK = 1 [2, Theorem 12.34], and
so a = 1. If dK ≤ −20, then Lemma 3.3(i) leads us to take a = 1. Also, we
derive from the condition (3.1) for reduced forms that

Q =

{

[1, 0,−dK/4] for dK ≡ 0 (mod 4),

[1, 1, (1− dK)/4] for dK ≡ 1 (mod 4),

which is the identity of C(dK). It follows that θQ = θK and that

uQ =



















(

1 b/2
0 1

)

if dK ≡ 0 (mod 4),

(

1 (b− 1)/2
0 1

)

if dK ≡ 1 (mod 4)

as an element of GL2(Z/NZ) by the definitions (3.3)∼(3.5). Thus we deduce
by the definition (2.4) and Proposition 2.3(ii) that

y(θK) = yα·uQ(θQ)

.
=

(

g(0,2/N)αuQ
(θQ)

g(0,1/N)αuQ
(θQ)4

)4m/ gcd(4,N)

.
=



















(

g(2s/N,(2s/N)(b/2)+2t/N)(θK)

g(s/N,(s/N)(b/2)+t/N)(θK)4

)4m/ gcd(4,N)

if dK ≡ 0 (mod 4),

(

g(2s/N,(2s/N)(b−1)/2+2t/N)(θK)

g(s/N,(s/N)(b−1)/2+t/N)(θK)4

)4m/ gcd(4,N)

if dK ≡ 1 (mod 4),

where
.
= stands for the equality up to a root of unity. We get (s, t) ≡ (0,±1)

(mod N) by Lemma 3.3(ii), which shows that α is the identity of WN,K/{±I2}.
Hence (α,Q) ∈ WN,K/{±I2} ×C(dK) represents the identity of Gal(K(N)/K)
by Remark 3.2(ii). Therefore, y(θK) indeed generates K(N) over K. �

Corollary 3.5. Let K be an imaginary quadratic field of discriminant dK
(≤ −19) and let N (≥ 3) be an odd integer. Then for any nonzero integer m,

the special value g(0,1/N)(θK)12Nm/ gcd(6,N) generates K(N) over K.

Proof. Let g(τ) = g(0,1/N)(τ)
12Nm/ gcd(6,N). Since g(τ) ∈ FN by Proposition

2.2, its special value g(θK) lies in K(N) by (1.5). On the other hand, since
K(g(θK)) is an abelian extension of K as a subfield of K(N), it contains all
the conjugates of g(θK). Now that we are assuming N (≥ 3) is odd, ( 2 0

0 2 ) ∈



CONSTRUCTION OF CLASS FIELDS OVER IMAGINARY QUADRATIC FIELDS 861

GL2(Z/NZ)/{±I2} belongs to WN,K and satisfies

g(θK)(
2 0
0 2 ) = g

(0,1/N)( 2 0
0 2 )

(θK)12Nm/ gcd(6,N) = g(0,2/N)(θK)12Nm/ gcd(6,N)

by Proposition 2.3(ii). Thus K(g(θK)) contains the value

(g(0,2/N)(θK)/g(0,1/N)(θK)4)12Nm/ gcd(6,N)

= (y(0,1/N)(θK)4m/ gcd(4,N))3N gcd(4,N)/ gcd(6,N),

which implies that K(g(θK)) is all of K(N) by Theorem 3.4. �

Proposition 3.6. Let K be an imaginary quadratic field and let N (≥ 3) be

an integer. Then the special values g(0,1/N)(θK)12N/ gcd(6,N) and











y(0,1/N)(θK)12N/ gcd(6,N) if N has at least two distinct

prime factors in Z,

N48N/ gcd(6,N)y(0,1/N)(θK)12N/ gcd(6,N) if N is a prime power

are real algebraic integers. Hence their minimal polynomials over K have in-

teger coefficients.

Proof. Let g(τ) = g(0,1/N)(τ)
12N/ gcd(6,N) and

h(τ)=











y(0,1/N)(τ)
12N/ gcd(6,N) if N has at least two distinct

prime factors in Z,

N48N/ gcd(6,N)y(0,1/N)(τ)
12N/ gcd(6,N) if N is a prime power.

Then g(τ) and h(τ) are integral over Z[j(τ)] by Proposition 2.3(i) and the def-
inition (2.4); hence their special values g(θK) and h(θK) are algebraic integers
since j(θK) is an algebraic integer [10, Chapter 5, Theorem 4]. On the other
hand, the infinite product formula (2.2) yields

g(θK)

= q
N/ gcd(6,N)
θK

(2 sin(2π/N))12N/ gcd(6,N)
∞
∏

n=1

(1− 2 cos(4π/N)qnθK + q2nθK )12N/ gcd(6,N),

and

y(θK)12N/ gcd(6,N)

=
q
N/ gcd(6,N)
θK

(2 sin(2π/N))12N/ gcd(6,N)
∏∞

n=1(1− 2 cos(4π/N)qnθK + q2nθK )12N/ gcd(6,N)

q
4N/ gcd(6,N)
θK

(2 sin(π/N))48N/ gcd(6,N)
∏∞

n=1(1 − 2 cos(2π/N)qnθK + q2nθK )48N/ gcd(6,N)
,

where

qθK = e2πiθK =

{

e−π
√
−dK if dK ≡ 0 (mod 4),

−e−π
√
−dK if dK ≡ 1 (mod 4).
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Therefore, g(θK) and h(θK) are real numbers. If we set x = g(θK) or h(θK),
then

[Q(x) : Q] =
[K(x) : K] · [K : Q]

[K(x) : Q(x)]
=

[K(x) : K] · 2
2

= [K(x) : K],

which implies that the coefficients of the minimal polynomial of x over K are
integers. �

Example 3.7. Let K = Q(
√
−10) and θK =

√
−10. The reduced forms of

discriminant dK = −40 are exactly Q1 = [1, 0, 10] and Q = [2, 0, 5], and we
find

θQ1 =
√
−10, uQ1 =

(

1 0
0 1

)

and θQ2 =
√
−10/2, uQ2 =

(

2 −3
3 4

)

.

Furthermore, if N = 6, then

W6,K/{±I2} =

{(

1 0
0 1

)

,

(

1 2
1 1

)

,

(

1 4
2 1

)

,

(

1 0
3 1

)

,

(

1 2
4 1

)

,

(

1 4
5 1

)

,

(

3 2
1 3

)

,

(

3 4
2 3

)}

.

The special value y(0,1/6)(θK)12 generates K(6) over K by Theorem 3.4, and
one can find its minimal polynomial as follows (by using MAPLE 8 for the
numerical computation of infinite products):

min(y(0,1/6)(θK)12,K)

=

2
∏

r=1

∏

α∈W6,K/{±I2}
(X − (g(0,2/6)(τ)

12/g(0,1/6)(τ)
48)αuQr (θQr ))

=

2
∏

r=1

∏

α∈W6,K/{±I2}
(X − g(0,2/6)αUQr

(θQr )
12/g(0,1/6)αUQr

(θQr )
48)

= X16 − 56227499765918216689444911216X15

+ 28198738767573877103982180845427211416X14

− 61006294392822456973543787353433426528859172752X13

+ 24191545040559618198685578078066621024919984909895925564X12

− 1457219992512158403396945180026448081831307850098282381377715440X11

− 1875247086634588418900161009847749757705491090331618598955145878499352X10

− 3204258054536691403559566745682638856959186166279206475927474345038453779344X9

+ 383798110212800409840846851392850879043779134397546083788605170327010622235878X8

− 115423974200159134410244151892157361168179592425853550820710288184072396692478416X7

+ 334107284582565793933974554285013907697215168114012280251572770023994260474295208X6

− 2413062017539132381926952150397596657649211631905734942002508919329018160X5

+ 5947186157319106561144943221021199418610488121986658654341036924X4
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− 5317595247800083950930014176690955051475061944750295248X3

+ 797299465586120177639706616225451835994220376X2

− 29812156397602328057777202393119664X+ 282429536481.

Lemma 3.8. Let L be a finite Galois extension of a number field K with

G = Gal(L/K). Assume that there exists an element x ∈ L such that

|xγ/x| < 1 for all γ ∈ G \ {Id}.
Take a suitably large positive integer s such that

|xγ/x|s ≤ 1/|G| for all γ ∈ G \ {Id}.
Then the conjugates of xs form a normal basis of L over K (that is, {(xs)γ ;
γ ∈ Gal(L/K)} is a basis of the vector space L over K).

Proof. See [7, Theorem 2.4]. �

Corollary 3.9. Let K be an imaginary quadratic field of discriminant dK
(≤ −19) and let N (≥ 3) be an integer. If s is any positive integer such that

s ≥ (gcd(4, N)/4) log1/0.996[K(N) : K],

then the conjugates of the special value y(0,1/N)(θK)4s/ gcd(4,N) form a normal

basis of K(N) over K.

Proof. Let x = y(0,1/N)(θK)4/ gcd(4,N). In the proof of Theorem 3.4, we showed
that

|xγ/x| < 0.9964/ gcd(4,N) for all γ ∈ Gal(K(N)/K) \ {Id}
by virtue of Lemma 3.3. Hence Lemma 3.8 proves the assertion. �
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