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CLASS NUMBER DIVISIBILITY OF QUADRATIC

FUNCTION FIELDS IN EVEN CHARACTERISTIC

Sunghan Bae and Hwanyup Jung

Abstract. We find a lower bound on the number of real/inert imagi-
nary/ramified imaginary quadratic extensions of the function field Fq(t)
whose ideal class groups have an element of a fixed order, where q is a
power of 2.

1. Introduction

Let k = Fq(t) be the rational function field over the finite field Fq and
A = Fq[t]. Let ∞ be the infinite place of k associated to (1/t). Throughout the
paper, by a quadratic function field, we always mean a quadratic extension of
k. A quadratic function field F is said to be real if ∞ splits in F , and imaginary
otherwise. Assume that q is odd. Then any quadratic function field F can be
written as F = k(

√
D), where D is a square-free polynomial in A. Let OF be

the integral closure of A in F . In [2], Murty and Cardon proved that there are

≫ qℓ(
1

2
+ 1

g
) imaginary quadratic function fields F = k(

√
D) such that degD ≤ ℓ

and the ideal class group of OF has an element of order g. This result is the
function field analogue of the result of Murty for imaginary quadratic fields
([5]). In [4], Friesen proved the existence of infinitely many real quadratic
function fields F whose ideal class numbers are divisible by a given positive
integer g. In [3], using the Friesen’s result, Chakraborty and Mukhopadhyay

proved that there are ≫ q
ℓ
2g real quadratic function fields F = k(

√
D) such

that degD ≤ ℓ and the ideal class group of OF has an element of order g.
The aim of this paper is to study the same problem in even characteristic

case. Assume that q is a power of 2. Then any quadratic function field F of
k can be written as F = k(y), where y is a zero of x2 + Ax + B = 0 with
A,B ∈ A. Here, we can always assume that A is monic and (A,B) satisfies
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some property, so that we have OF = A[y] and A is uniquely determined since
the discriminant of F over k is A2 (see §2, Lemma 2.1). Write d(F ) = degA.

We now state the results of this paper.

Theorem 1.1. Let q be a power of 2, and let g be a fixed positive integer ≥ 2.
Then there are ≫ qν(g,ℓ) real quadratic function fields F of k = Fq(t) such that

d(F ) ≤ ℓ and the ideal class group of OF contains an element of order g, where
ν(g, ℓ) is ℓ

2g or ℓ
g+1 according as g is odd or even.

An imaginary quadratic function field F of k is said to be inert or ramified
according as ∞ inerts or ramifies in F .

Theorem 1.2. Let q be a power of 2, and let g be a fixed positive integer ≥ 2.

Then there are ≫ q
ℓ
g inert imaginary quadratic function fields F of k = Fq(t)

such that d(F ) ≤ ℓ and the ideal class group of OF contains an element of

order g.

Theorem 1.3. Let q be a power of 2, and let g be a fixed positive integer

≥ 2. Then there are ≫ q
ℓ

g−1 ramified imaginary quadratic function fields F
of k = Fq(t) such that d(F ) ≤ ℓ and the ideal class group of OF contains an

element of order g.

2. Preliminaries

Let q be a power of 2, and Fq be the finite field of q elements. Let k =
Fq(t),A = Fq[t], ∞ be the infinite place of k associated to (1/t) and k∞ =
Fq((1/t)) be the completion of k at ∞. For 0 6= A ∈ A, let sgn(A) be the
leading coefficient of A.

Let Ω be the set of pairs (A,B) ∈ A × A such that A is monic and (A,B)
satisfies the property that for any irreducible polynomial P dividing A, the
congruence

(2.1) x2 +Ax +B ≡ 0 mod P 2

is not solvable in A. Then any quadratic function field F of k can be written
as F = k(y), where y is a zero of x2 +Ax+B = 0 with (A,B) ∈ Ω ([6, §1]).

The following lemma is due to Bae (the proof of Lemma 5.1 in [1] given
there for real quadratic extension of k is easily seen to be valid for arbitrary
quadratic extension of k).

Lemma 2.1. Let F = k(y) be a quadratic extension of k, where y is a zero of

x2 + Ax + B = 0 with (A,B) ∈ Ω. Let OF be the integral closure of A in F .

Then we have

(i) OF = A[y].
(ii) A prime P of A is ramified in F if and only if P divides A. In fact,

the discriminant of F over k is A2.
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It is easy to see that if (A,B) ∈ Ω, then (A,C2+AC+B) ∈ Ω for any C ∈ A.
If F = k(y) = k(y′), where y′ is a zero of x2 +A′x+B′ = 0 with (A′, B′) ∈ Ω,
then OF = A[y] = A[y′], A = A′, y′ = y + C and B′ = C2 + AC +B for some
C ∈ A. The converse is also true.

Lemma 2.2. Let F = k(y) be a quadratic extension of k, where y is a zero of

x2 +Ax+B = 0 with (A,B) ∈ Ω. Then we have

(i) ∞ splits in F if and only if deg(C2+AC+B) < 2 degA for some C ∈ A.
In this case, we can always choose C so that deg(C2+AC+B) < degA.

(ii) ∞ is inert in F if and only if deg(C2+AC+B) = 2 degA and sgn(C2+
AC +B) 6∈ P(Fq) for some C ∈ A, where P(x) = x2 + x is the Artin-

Schreier operator.

(iii) ∞ ramifies in F if and only if deg(C2 + AC + B) > 2 degA for any

C ∈ A.

Proof. Consider S = {deg(C2+AC+B) : C ∈ A}. We may assume that degB
is a minimal among the elements in the set S. We will show that

(1) if degB < 2 degA, then ∞ splits in F .
(2) if degB = 2degA and sgn(B) 6∈ P(Fq), then ∞ is inert in F .
(3) if degB = 2degA and sgn(B) ∈ P(Fq), then degB is not minimal.
(4) if degB > 2 degA, then ∞ ramifies in F .

(1) Suppose that degB < 2 degA. Then the equation

z2 + z+
B

A2
= 0

has two distinct zeros in k∞ by Hensel’s Lemma. Put x = Az. Then the
equation

x2 +Ax+B = 0

also has two distinct zeros in k∞. Hence ∞ splits in F .
(2) Suppose that degB = 2degA and sgn(B) 6∈ P(Fq). Then

z2 + z+
B

A2
≡ z2 + z+ sgn(B) mod 1/t

is a separable irreducible polynomial modulo 1/t. Hence ∞ is inert in F .
(3) Suppose that degB = 2degA and sgn(B) ∈ P(Fq), say sgn(B) = β2+β

for some β ∈ F∗

q . Then deg((βA)2 + A(βA) + B) < degB, so degB is not
minimal.

(4) Suppose that degB > 2 degA. If degB is even, say degB = 2n and
B = β2t2n + lower terms, then deg((βtn)2 + A(βtn) + B) < degB. So degB
must be odd. Let degB − 2 degA = 2m+ 1. Consider the equation

z2 + z+
B

A2
= 0.

Put w = t−m−1z. Then

w2 + t−m−1w+ t−2m−2 B

A2
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is an Eisenstein polynomial at ∞. Hence ∞ ramifies in F . �

Remark 2.3. We can give an equivalence relation ∼ on the set Ω as follow;

(A,B) ∼ (A′, B′) ⇔ A = A′ and B′ = C2 +AC +B for some C ∈ A.

Let Ω̃ be the set of equivalence classes with respect to ∼. Then we see that

there is an one to one correspondence between Ω̃ and the set of all quadratic
extensions of k. We also can show that for any real quadratic extension F of
k, there is a unique (A,B) ∈ Ω such that degB < degA and F = k(y), where
y is a zero of x2 +Ax+B = 0.

Let A(t) ∈ A be one of the following polynomials t2g + tg + 1, tg + 1 with g
odd or tg+t+1. It is easy to see that A is square-free. Let Mk(A) be the set of
monic polynomials U ∈ A of degree k such that A(U) is square-free. Following
the same argument as in [3, §2] with A(t), we get the following lemma.

Lemma 2.4. |Mk(A)| ≫ qk.

Lemma 2.5. Let g be a positive integer. Let A(t) = tg+ t+1 ∈ A and Mk(A)
be the set of monic polynomials U ∈ A of degree k such that A(U) is square-

free. For U, V ∈ Mk(A), if A(U) = A(V ), then U = V or U + V ∈ F∗

q. Hence

there are at most q times repetitions on A(U).

Proof. Suppose A(U) = A(V ) with U, V ∈ Mk(A) (U 6= V ). Let W = U + V .
Then degW < k. From A(V ) = (U +W )g + (U +W ) + 1 = A(U), we get

(2.2)

g−1∑

h=0

(
g

h

)
UhW g−h = W.

Clearly degUh1W g−h1 < degUh2W g−h2 for any 0 ≤ h1 < h2 ≤ g − 1, since
degW < k = degU . Let n be the largest one among 0 ≤ h ≤ g − 1 such
that

(
g
h

)
6= 0. If n > 0, then the degree of left hand side in (2.2) is equal to

nk + (g − n) degW , which is greater than degW . Hence n = 0 and W g = W ,
so W ∈ F∗

q . Therefore, there are at most q times repetitions on A(U). �

3. Proof of Theorem 1.1

Let g be a positive integer ≥ 2. Let U ∈ A be a monic polynomial,

A =

{
U2g + Ug + 1 if g is odd,

Ug+1 + 1 if g is even,

and B = Ug. Let y satisfy the equation x2 +Ax+B = 0. Then F = k(y) is a
real quadratic extension of k by Lemma 2.2.

Lemma 3.1. Let A,B, y be as above. If A is square-free, then OF = A[y].
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Proof. By Lemma 2.1, we need to show that for any irreducible divisor P of
A, the congruence (2.1) has no solution in A. Suppose that D is a solution
of (2.1). First consider the case that g is odd, so A = U2g + Ug + 1. Since
P |A = B2 +B + 1, we have D ≡ B + 1 mod P . Then

(B + 1)2 +A(B + 1) +B ≡ 0 mod P 2.

But

(B + 1)2 +A(B + 1) +B = A(B + 1) + (B2 +B + 1) = A(B + 1) +A = AB,

which cannot be divisible by P 2 since A is square-free and P ∤ B, and we get
a contradiction.

Now, we consider the case that g is even, so A = Ug+1 + 1. Then D ≡
Ug/2 mod P , so

0 ≡ D2 +AD +B ≡ AUg/2 mod P 2,

which is impossible since A is square-free and P ∤ U . �

Lemma 3.2. Let A,B, y be as above. If A is square-free, then the ideal class

group of OF contains an element of order g.

Proof. From a straightforward computation, the continued fraction of y is
{
[A : B + 1, B + 1] if g is odd,

[A : U,A/(U + 1), U ] if g is even,

and

(3.1)

{
q3i = 1, q3i+1 = q3i+2 = Ug if g is odd,

q4i = 1, q4i+1 = q4i+3 = Ug, q4i+2 = U + 1 if g is even,

where qh is the denominator of h-th iterate of y. Now

N (y) = y(y +A) = B = Ug,

where N is the norm map from F to k. Let U =
∏

i P
ei
i . Since

x2 +Ax+B ≡ x2 + x ≡ x(x + 1) mod Pi,

Pi splits in F . Say PiOF = PiP
′

i. Since Pi|y, choose Pi|y. Then P
eig
i ||y, and

yOF =
∏

iP
eig
i . Let A =

∏
iP

ei
i . Then as in [4], we see that N (A) = αU with

α ∈ F∗

q .
Suppose that Ar is principal for some r < g. Then

||N (Ar)|| = ||U ||r < ||U ||g < ||A||,
where we use the same N for the norm map on ideals. Applying Lemma 5.4
in [1], we have N (Ar) = βqi for some i ≥ 0 with β ∈ F∗

q . Since qi ∈ {1, Ug} or
qi ∈ {1, U + 1, Ug} according as g is even or odd, and N (A) = αU , we get a
contradiction. So the order of the ideal class of A is g. �
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Let A(t) ∈ A be t2g + tg + 1 or tg+1 + 1 according as g is odd or even. By
Lemma 2.4, there are ≫ qk monic polynomials U ∈ A of degree k such that
A(U) is square-free. Now we check the repetitions on A(U). It is easy to see
that for U, V ∈ Mk(A), we have

A(U) = A(V ) ⇔
{
U = V or Ug + V g = 1 if g is odd,

U = V if g is even.

Moreover, when g is odd, we can see that for U, V,W ∈ Mk(A), U
g + V g =

Ug + W g = 1 holds only if V = W . So there are at most double repetitions
on A(U). Thus there are ≫ qν(g,ℓ) monic square-free polynomials A(U) with
degA(U) ≤ ℓ, where ν(g, ℓ) is ℓ

2g or ℓ
g+1 according as g is odd or even. By

Lemma 3.2, the corresponding real quadratic function fields F = k(y) have
elements of order g in their ideal class groups. We remark that distinct choice
of A(U) gives rise to distinct real quadratic extension F = k(y). This completes
the proof of Theorem 1.1.

4. Proof of Theorem 1.2

Let g be a positive integer ≥ 2. Let U ∈ A be a monic polynomial,

A =

{
Ug + 1 if g is odd,

Ug + U + 1 if g is even,

and B = γU2g, where γ ∈ Fq \ P(Fq) with P(x) = x2 + x. Let y satisfy the
equation x2 + Ax + B = 0. Then, by Lemma 2.2, we see that F = k(y) is an
inert imaginary quadratic extension of k.

Lemma 4.1. Let A,B, y be as above. If A is square-free, then OF = A[y].

Proof. We have to show that for any irreducible polynomial P dividing A, the
congruence (2.1) is not solvable in A. Suppose that D is a solution of (2.1).
Then D ≡ βUg mod P for β ∈ F∗

q with β2 = γ. Then

(4.1) 0 ≡ D2 +AD + B ≡ βUgA mod P 2,

which is impossible, since A is square-free and (A,U) = 1. �

Lemma 4.2. Let A,B, y be as above. If A is square-free, then the ideal class

group of OF contains an element of order g.

Proof. Note that N (y) = y(y +A) = B = γU2g. Let U =
∏

i P
ei
i . Since

x2 +Ax+B ≡ x2 + x ≡ x(x + 1) mod Pi,

Pi splits in F . Choose a prime ideal Pi of OF lying over Pi such that Pi|y. Let
A =

∏
iP

ei
i . Then A2g = yOF and A′2g = (y +A)OF . As before, N (A) = αU

with α ∈ F∗

q .
Suppose that Ar is principal for some r < g, say Ar = (C +Dy). Then

(4.2) qr degU = ||N (Ar)|| = ||N (C +Dy)|| = ||C2 +ACD +BD2||,
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sinceN(C+Dy) = (C+Dy)(C+D(y+A)) = C2+ACD+BD2. Since r < g, we
must have degC2 = degBD2 or degACD = degBD2 or degC2 = degACD.
In any case degC = degDUg = degD + g degU . Furthermore, let c and
d be the leading coefficients of C and D, respectively. Then we must have
c2 + cd+ γd2 = 0, which implies that γ = P(c/d), contradicting the choice of
γ. Thus, g ≤ r|2g, and so r is divisible by g. Then the ideal class of A or A2

is of order g. �

Let A(t) ∈ A be tg + 1 or tg + t + 1 according as g is odd or even. By
Lemma 2.4, there are ≫ qk monic polynomials U of degree k such that A(U)
is square-free. Now we check the repetitions on A(U). When g is odd, it can
be easily shown that for U, V ∈ Mk(A), A(U) = A(V ) if and only if U = V .
So, by Lemma 2.5, there are at most q times repetitions on A(U). Thus there

are ≫ q
ℓ
g monic square-free polynomials A(U) with degA(U) ≤ ℓ. By Lemma

4.2, the corresponding inert imaginary quadratic extensions F = k(y) have an
element of order g in their ideal class groups. We remark that distinct choice of
A(U) give rise to distinct inert imaginary quadratic extension F = k(y). This
completes the proof of Theorem 1.2.

5. Proof of Theorem 1.3

Let g be a positive integer ≥ 2. Let U ∈ A be a monic polynomial, A =
Ug−1 +U +1 and B = U2g−1 +Ug +U4 +U3 +U2. Let y satisfy the equation
x2 +Ax+B = 0, and F = k(y). For any C ∈ A, we have that deg(C2 +AC +
B) = degC2 > 2 degA if degC > degA, and deg(C2 + AC + B) = degB >
2 degA if degC ≤ degA. Hence, by Lemma 2.2, we see that F = k(y) is a
ramified imaginary quadratic extension of k.

Lemma 5.1. Let A,B, y be as above. If A is square-free, then OF = A[y].

Proof. We have to show that for any irreducible polynomial P dividing A, the
congruence (2.1) is not solvable in A. Suppose that D is a solution of (2.1).
Since

B ≡ U(U + 1)2 + U(U + 1) + U4 + U3 + U2 ≡ U4 mod P,

we see that D ≡ U2 mod P . Then

0 ≡ D2 +AD +B ≡ AU2 + U2g−1 + Ug + U3 + U2

≡ A2U +AU2 +AU ≡ A(U2 + U) mod P 2,

which is impossible, since A is square-free and P ∤ (U2 + U). �

Lemma 5.2. Let A,B, y be as above and assume that degU is odd. If A is

square-free, then the ideal class group of OF contains an element of order g.

Proof. Note that N (y + Ug + U2) = U2g. Let U =
∏

i P
ei
i . Since

x2 +Ax+B ≡ x2 + x ≡ x(x + 1) mod Pi,
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Pi splits in F . Choose a prime ideal Pi of OF lying over Pi such that Pi|(y +
Ug + U2). Let A =

∏
i P

ei
i . Then A2g = (y + Ug + U2)OF and A′2g =

(y + Ug + U2 +A)OF . As before, N (A) = αU with α ∈ F∗

q.
Suppose that Ar is principal for some r < g, say Ar = (C +Dy). Then

(5.1) qr degU = ||N (Ar)|| = ||N (C +Dy)|| = ||C2 +ACD +BD2||,
since N(C + Dy) = (C + Dy)(C + D(y + A)) = C2 + ACD + BD2. Since
r < g, we must have (1) degC2 = degBD2 or (2) degACD = degBD2

or (3) degC2 = degACD. The case (1) cannot happen, since we assumed
that degU is odd. In case (2), we have degC = g degU + degD, and so
degC2 > degACD = degBD2 > r degU , which contradicts to (5.1). In case
(3), we have degC = (g − 1) degU + degD. Then degBD2 > degC2, and we
get a contradiction to (5.1). Thus, g ≤ r|2g, and so r is divisible by g. Then
the ideal class of A or A2 is of order g. �

Let A(t) = tg−1 + t+ 1 ∈ A. By Lemma 2.4, there are ≫ qk monic polyno-
mials U of degree k such that A(U) is square-free. By Lemma 2.5, there are

at most q times repetitions on A(U). Thus there are ≫ q
ℓ

g−1 monic square-
free polynomials A(U) with degA(U) ≤ ℓ. By Lemma 5.2, the corresponding
ramified imaginary quadratic extensions F = k(y) have an element of order g
in their ideal class groups. We remark that distinct choice of A(U) give rise to
distinct ramified imaginary quadratic extension F = k(y). This completes the
proof of Theorem 1.3.
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