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HILBERT 2-CLASS FIELD TOWERS OF IMAGINARY
QUADRATIC FUNCTION FIELDS

Hwanyup JuNG

ABSTRACT. In this paper we study the infiniteness of Hilbert 2-class field
towers of imaginary quadratic function fields over Fq(T'), where ¢ is a
power of an odd prime number.

1. Introduction and statement of the results

For a number field F, let Fé2) = I and F’r(zi)l be the Hilbert 2-class field of
Fr(f) for n > 0. Then the sequence of fields

F=FPcFr?Pc...cF?c...

is called the Hilbert 2-class field tower of F' and we say that F' has an infinite

Hilbert 2-class field tower if F\%) # F’r(zi)l for all n > 0. Assume that F'is an
imaginary quadratic number field. Let r2(Clr) denote the 2-rank of class group
Clp of F. By Golod-Shafarevich’s Theorem, F' has an infinite Hilbert 2-class
field tower if ro(Clp) > 5. It has been conjectured by Martinet [6] that the
Hilbert 2-class field tower of F' is infinite if 72(Clp) > 4. Let r4(Clr) = ro(Cl%)
be the 4-rank of Clp. It has been shown by Koch [5] and Hajir [3, 4] that
F has an infinite Hilbert 2-class field tower if r4(Clp) > 3. In [2], Gerth has
proved that a positive proportion of the imaginary quadratic number fields F
with r2(Clp) = r have infinite Hilbert 2-class field towers and r4(Clp) = s for
r=3,1<s<3andforr=4,0<s<4.

Let k = Fy(T') be a rational function field over the finite field Fy, co = (1/T)
and A = IF,[T]. For a finite separable extension F of k, write O for the integral
closure of A in F' and Hp for the Hilbert class field of F' with respect to Op

(see [7]). Let £ be a prime number. Let FO(Z) = F and Fy(f21 be the Hilbert

{-class field of F,SZ) forn >0, i.e., F,g?l is the maximal extension of F,(f) inside
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H ) whose degree over F,Se) is a power of £. The sequence of fields

F=FYcr9c...cr®c...
is called the Hilbert ¢-class field tower of F. We say that the Hilbert /-class
field tower of F is infinite if F\) # F'"), for each n > 0. Let Clp and O}
be the ideal class group and the group of units of Op, respectively. For any
multiplicative abelian group A, write 7(A) = dimg,(A4/A?) for the f-rank of
A. The following theorem is a function field analog of Golod-Shafarevich due
to Schoof.

Theorem 1.1 (Schoof [9]). Let F' be a finite separable extension of k. Then
the Hilbert £-class field tower of F' is infinite if

T@(CZF) >242 Tg(o;) + 1.

Assume that ¢ is odd. Let F' be an imaginary quadratic function field over
k, i.e., F' is a quadratic extension of k in which oo is ramified. Fix a generator
v of F. Let P be the set of monic irreducible polynomials in A. Then F' can be
written as F' = k(v/D) with D = 4*P,---P,, a € {0,1}, P € Pfor 1 <i <t
and 2 1 deg D. Here, D is uniquely determined by F' and write Dp = D. Let
sr be the number of monic irreducible divisors P; of D of odd degree. Since
deg D is odd, sg is a positive odd integer. We will assume that deg P; is odd
for 1 < i < sp and deg P; is even for sp +1 < i <t. For 0 # N € A, write
w(N) for the number of monic irreducible divisors of N. By genus theory ([1,
Corollary 3.5]), we have r3(Clp) = w(Dr)— 1. Since O = F; and r2(OF) = 1,
by Theorem 1.1, we see that F' has an infinite Hilbert 2-class field tower if
w(Dp) > 6. The following theorem is a function field analogue of Koch and
Hajir’s one.

Theorem 1.2. Let F be an imaginary quadratic function field over k. Let
sp be the number of distinct monic irreducible divisors of D of odd degree.
If r4(Clp) > 3, then the Hilbert 2-class field tower of F is infinite, except the
cases that ¢ = 1 mod 4, w(Dp) = 4 and sp = 3. In this exceptional case, if
Dpg has monic irreducible divisors P and Q such that deg P is divisible by 4
and (5)4 =1, then the Hilbert 2-class field tower of F is infinite, where (%)4
s the 4-th power residue symbol.

For any positive integers n, 7 and integer s with 0 < s < r, let X,.,, be the set
of imaginary quadratic function fields F' with ro(Clp) = r and deg(Dp) = n,
X sn be the subset of X,.,, consisting of F' € X, with 74(Clr) = s and X[,
be the subset of X, ., consisting of F' € X, ., having an infinite Hilbert 2-class
field tower. We define a density 4, ; by
§) . = liminf M
T ea Xl

Then we have:
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Theorem 1.3. 05, > 277 for 1 <s <3 and 05 , > 27" for 0 < s < 4.

Remark 1.4. Theorem 1.3 means that a positive proportion of imaginary qua-
dratic function fields F' with ro(Clp) = r have infinite Hilbert 2-class field
towers and r4(Clp) = s forr =3,1 < s <3 and for r =4,0 < s < 4.

2. Preliminaries
2.1. Martinet’s inequality

Let F and K be finite geometric separable extensions of k such that F/K is
a cyclic extension of degree ¢ with A = Gal(E/K), where £ is a prime number
not dividing g. Let Og be the integral closure of A in E and O% be the group of
units of Og. Then HY(A, O%) and H (A, O%) are elementary abelian ¢-groups
with o
HY(A, O _
pag-o
E Poc €500 (K)
where Soo(K) is the set of primes of K lying above co and A,_ denotes the
decomposition group of po, in A. Following the arguments in [6, §2], we get
the following proposition.

|Apoo|7

Proposition 2.1. Let E/K be as above. Let yg/k be the number of prime
ideals of Oy that ramify in E and pg i be the number of primes poo in Seo ()
that ramify or inert in E. Then the Hilbert £-class field tower of E is infinite

if
(21)  vp/r > |So(K)| = pp/r +3+ 2\/f|5<>o(K)| + (1= Opp/x +1.

The inequality (2.1) is called the Martinet’s inequality. Now, by using Propo-
sition 2.1, we give some sufficient conditions for an imaginary quadratic function
field F' to have infinite Hilbert 2-class field tower. Let (Z) denote the quadratic
residue symbol in A.

Corollary 2.2. Let F' be an imaginary quadratic function field over k. If there
exists a nonconstant diwvisor D' of D such that either D' or D /D’ is monic
of even degree and (%) =1 for monic irreducible divisors P; (1 < i < 4) of
Dp, then F has an inﬁnite Hilbert 2-class field tower.

Proof. Let K = k(\/ﬁ) and E = KF. Since either D’ or Dp/D’ is monic
of even degree, the infinite prime po, of F' splits in E. It is easy to see that
any finite primes of F' is unramified in . Hence E is contained in F1(2). Since
Py, Py, P3 and Py split in K, we have yg/x > 8. We also have |S.(K)| =
pE/K =2 0ot (|Soo(K)|, pr/K) = (1,0) according as D’ is monic of even degree
or Dp/D’ is monic of even degree. By Proposition 2.1 on F/K, we see that F
has an infinite Hilbert 2-class field tower. Since E is contained in F1(2)7 F also
has an infinite Hilbert 2-class field tower. O
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Corollary 2.3. Let F' be an imaginary quadratic function field over k. If
Dpg has two distinct nonconstant monic divisors D1 and Dy of even degrees
satisfying (%) = (%) =1 for monic irreducible divisors P; (i = 1,2) of Dp,

then F has an inﬁnize Hilbert 2-class field tower.

Proof. Let K = k(v/D1,v/Dz) and E = KF. Since co splits completely in K,
the infinite prime po, of F splits in E. It is easy to see that any finite primes of
F' is unramified in E. Hence FE is contained in F1(2). By applying Proposition
2.1 on E/K with 7g/x > 8 and [Sw(K)| = pp/x = 4, we see that £ has an
infinite Hilbert 2-class field tower. Since E is contained in F1(2), F' also has an
infinite Hilbert 2-class field tower. O

Corollary 2.4. Let F be an imaginary quadratic function field over k. If
Dpg has two distinct nonconstant monic divisors D1 and Dy of even degrees
satisfying (%11) = (%12) =1 for monic irreducible divisor P, of Dy and D has
two monic irreducible divisors Py, P3 which are different from Py and P; 1 D1 D4

(i =2,3), then F has an infinite Hilbert 2-class field tower.

Proof. Let K = k(v/D1,v/D3) and E = KF. As in the proof of Corollary 2.3,
we can show that E is contained in F1(2). Since (%1) = (%12) =1, P splits
completely in K. Each P; (i = 2,3) splits in at least one of k(v/D1), k(v/D2)
and k(v/D1Ds). Hence we have yg,x > 8 and |Soo(K)| = pg/x = 4. Then by
applying Proposition 2.1, E has an infinite Hilbert 2-class field tower. Since E

is contained in Fl(z), F also has an infinite Hilbert 2-class field tower. O

2.2. Rédei-matrix and 4-rank of class group

Let F' be an imaginary quadratic function field over k with Dp = y*P; - - - P;.
Let d; € Fy be defined by d; = deg P, mod 2 for 1 < i < t. We will separate
two cases:

e (CASE A) ¢ =1 mod 4 with a =0 or ¢ =3 mod 4 with a =1,
e (CASE B) ¢ =1 mod 4 with a =1 or ¢ = 3 mod 4 with a = 0.

We associate a t x t matrix Rp = (e;;)1<4,j<t over Fo to F, where e;; € Fy is
defined by (—1)¢7 = (%) for 1 <4 # j <t and the diagonal entries e;; € FFo
J

are defined to satisfy the relation

i 0  (CASE A),

eij =

= d; (CASE B).

Let sp be the number of monic irreducible divisors P; of D of odd degree.

Since deg D is odd, sp is an odd integer. We will assume that deg P; is odd
for1 <i<sp.Ilfg=3mod4and 1< j < spg, we have

t t t
doe=et Y (et + Yo ei=) e
=1 =1

1<i<sp,i#] i=sp+1
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since s is odd. Otherwise, since e;; = e;;, we trivially have the same equality.
Hence, the diagonal entries e;; of R also satisfy the relation

zt: 0  (CASE A),

€ij =

p d; (CASE B).

Proposition 2.5. For an imaginary quadratic function field F' over k, we have

(Clr) t—1—rank Rp (CASE A),
T =
e t —rank Rp (CASE B).

Proof. Let Mp be the (t + 1) x (¢t + 1) matrix over Fy given by

e1r - el (a + €)d1
Mp = : : ,

€41 <o [ (a + G)dt

d - d 1

where ¢ = 0 if ¢ = 1 mod 4, ¢ = 1 if ¢ = 3 mod 4 and the entries ¢;; € Fo are
defined to satisfy (a+ €)d; + Z;Zl ei; = 0. Then r4(Clr) satisfies the following
equality ([1, Corollary 3.8]):

(22) T4(CZF) :tfrankMF.

In (CASE A), we have a + € = 0 in Fy. Hence we can see that rank Mp =
rank Rp + 1 and the entries e;; satisfy 2221 ei; = 0. By (2.2), we have
r4(Clp) =t — 1 —rank Rp .

Now, we consider (CASE B). Then a + € =1 in Fa, so

e;n -+ ey dp
Mp = :
eqr o ey dy
d - dp 1

and the entries e;; satisfy d; + 2;21 e;; = 0. By adding first ¢ columns to the
last column on Mp, we can see that rank Mp = rank M., where

€11 - €1t
o
Mp =
€1 0 6t
di - ds

By adding first ¢ rows to the last row on M}, we can see that rank M}, =
rank Rp, so r4(Clp) =t — rank Rp by (2.2). O
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2.3. Some asymptotic results

Let P be the set of all monic irreducible polynomials in A. For positive
integers n and ¢, we write P(n) for the subset of P consisting of P € P with
deg P = n, P(n,t) for the set of monic square free polynomials N € A with
deg N = n and w(N) = ¢ and P’'(n,t) for the subset of P(n,t) consisting of
N =D, --- P, € P(n,t) such that deg(P;) # deg(P;) for i # j. As n — oo, we
have

q"(logn)'~ q"(logn)'~*
2.3 1) = O( )
(2.3 Pinn] = L
n(] t—1
(2.4) [P(n,t)\ P (n, )] = o(%)
The following two lemmas are due to Wittmann ([10, Lemmas 3.3 and 3.5]).

Lemma 2.6. For P,...,P, € P and e1,...,&, € {£1}, as n = oo, we have

n n/2

> i=2fyo(T)
n n
PeP(n)

1<i<u:(P; /P)=¢;

Lemma 2.7. Let n be a positive integer and dy,...,d: € {0,1} satisfying
Zle d; =nmod 2. Then, as n — oo, we have
)i=2

> L —penlloan o losn)T Ty

0<ny <--<ng L (t—1)n n

n1=dy(2),..., ny=d¢(2)
ni+-tng=n

For di,...,d; € {0,1} and ¢;; € {£1} for 1 <i < j <t, let

Jn({di}§{€ij}) = Z Z Z Z 1.

0<ny<---<ng PLeP(ny1) P2eP(n2) PyeP(ng)
n1=dqy(2),..., ntEdt(Z) (PI/PZ): £12 V'L<t:(Pi/Pt): it
ni+-Fng=n
Lemma 2.8. Asn — oo, we have
—1 n t—2
210 q"(logn)? q"(logn)
I (o) =2 CUBI L llogm)' 2y
n({ 1}5{ U}) (t—l)'n n

Proof. Let J = J,({d;};{eij})- As n — oo, using Lemmas 2.6 and 2.7, we get

¢ X qni qni/Q
S oY e o)
0<ny < -<ny =1 n; N

n1=dqy(2),...,nt=d¢(2)
ni4--+np=n

7’!17;/2

RGN 1 nt q
S M= e L (0 S D

0<ng < <ny 0<ng <--<ny
n1=d1(2),...,ng=d¢(2) it dni=n

ni+-+ng=n
)' (]

91— 5t q" (logn)"*

(t—1n

n t—2
o (¢ le)
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For N = P ---P,N = P/---P] € P'(n,t), we say that N and N’ are
equivalent if deg(P;) = deg(P/)mod2 for 1 < i < ¢ and (£) = (%) for
i i
1 <i<j<t Write N(N) for the set of polynomials in P’(n,t) which are
equivalent to N.

Proposition 2.9. For any N € P'(n,t), as n — oo, we have

n t—1
17L2+‘) q"(logn)

(t—1)n
Proof. Let N = Py---P; € P'(n,t). Then we have IN(N)| = J,({d:}; {zi;}),
where di,...,d; € {0,1} satisfying deg P, = d; mod 2 for 1 < i <t and ¢;; =
(%) for 1 < i < j < t. Now, the result follows immediately from Lemma
2.8. O

V)| =2 o(Lloen) Ty

3. Proof of Theorem 1.2

Let F' be an imaginary quadratic function field with Dp = y*P; --- P;. By
Theorem 1.1, the Hilbert 2-class field tower of F' is infinite if ro(Clp) > 5.
Hence, it remains to consider the cases (r2(Clg),74(Clr)) = (3,3),(4,3) or
(4,4). Recall that sp denotes the number of monic irreducible divisors P; of
Dp of odd degree. Since deg D is odd, s is an odd integer. We will assume
that deg P; is odd for 1 < i < sp. Write Ri for the i-th row vector of Rr and
0 for the zero row vector. In (CASE B), we always have R; #+ 0for1<i<sp
since e;1 + - -+ + e+ = 1. In the following proof, we will consider the cases that
rank Rp = 0,1 or 2.

e Ifrank Rr = 0, then Rr = O, so we have (%) =1foralll <i##j<t.

e If rank Rp = 1, then any nonzero row of Rp forms a basis for the row
space of Rp. Especially, {él} is always a basis for the row space of
Rp in (CASE B).

e If rank Rp = 2, then any two distinct nonzero rows of Ry forms a basis
for the row space of Rp.

3.1. Case TQ(ClF) = ’I“4(ClF) = 3 with DF = ’yaP1P2P3P4

We first consider (CASE A). By Proposition 2.5, we have rank Rp = 0, i.e.,

Rp = 0. If sp = 1, we have (£) = (£) = 1 for i € {1,2}, so F has an infinite
Hilbert 2-class field tower by Corollary 2.3. If sp = 3, we have ¢ = 1 mod 4

since (%) = (%) = 1. In this case, we suppose that deg P, is divisible by

4 and (%)4 = 1. Then oo and P; splits completely in K = k(+/Py). Since
(£2) = (£2) = 1, P, and Ps split in k(v/P;). Put E = KF. Then F is

P Ps
contained in F1(2). By applying Proposition 2.1 on E/K with vp,r > 8 and
|Seo (K)| = pp/k = 4, we see that £ has an infinite Hilbert 2-class field tower.

)

Since E is contained in F1(2 , F also has an infinite Hilbert 2-class field tower.
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Now, we consider (CASE B). By Proposition 2.5, we have rank Rp = 1. Since
Ri 4+ Ry + R3 + Ry = €, where

o J1000) ifsp=1,
S l(1110) ifsp =3,

WehaveR E{Oe}for1<z<4 If sp = 1, we have Ry = & and Ry =
Rs = Ry = 0. Then we have (—3) = (1;4) 1 for i € {1,2}, so F has
an infinite Hilbert 2-class field tower by Corollary 2.3. If sp = 3, we have
Ry = Ry = Ry = @and Ry = 0. We also have ¢ = 1 mod 4 since (11;1) = (I;f)
In this case, as in above (CASE A), we can show that F also has an infinite

Hilbert 2-class field tower.

3.2. Case 7"2(ClF) = 7’4(ClF)) = 4 with DF = ’7aP1P2P3P4P5

First consider (CASE A). By Proposition 2.5, we have rank Rp = 0, i.e.,
Rrp = O. If sp < 3, then (—5) =1for 1 <i <4, so F has an infinite Hilbert
2-class field tower by Corollary 2.2. If sp =5, for Dy = PP, and Dy = P, Ps,
we have (%) = (113,2) =1 for i € {4,5}, so F has an infinite Hilbert 2-class
field tower by Corollary 2.3.

Consider (CASE B). By Proposition 2.5, we have rank Rp = 1. Since {R,}
is a basis for the row space of Rr and R1 + R2 + Rg + R4 + R5 f, where

(10000) ifsp=1,
F=4(11100) ifsp=3,
(11111) ifsp=5,
we have él = f If sp < 3, we have é5 = 0 since es1 = e15 = 0. Then (%) =1
for 1 <4 < 4, so so F has an infinite Hilbert 2-class field tower by Corollary
2.2. IfSF:5, Wehaveéi:ffor 1 S’L§5 FOI‘D1 :P1P2 aHdD2:P1P3,
we have (%_1) = (%_2) =1 for i € {4,5}, so F has an infinite Hilbert 2-class
field tower by Corollary 2.3.

3.3. Case r2(Cly) = 4 and r4(Clp) = 3 with Dp = v*P, P P3P, P;s

First consider (CASE A). By Proposition 2.5, we have rank Rp = 1. Assume
sp=1.If R; =0 for some 2 < i <5, say Rs = 0, then (&)*1forl<z<4
so F' has an infinite Hilbert 2-class field tower by Corollary 2.2. Otherwise,
we have R2 Rg R4 —R5 7&0 For Dl —P3P4 and D2 —P3P5, we have
(1133_1) (%) =1 for ¢ € {1,2}, so F has an infinite Hilbert 2-class field tower
by Corollary 2.3.

Assume sp = 3. If §4 0 or R5 = 0 say R5 = 0 then (—") 1 for
1 <4 <4, so F has an infinite Hilbert 2-class field tower by Corollary 2.2. We
may assume R4 = R5 #* 0. If R1 = Rg = Rg, for D1 = PiP> and Dy = P, P3,
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we have (%) = (%) = 1 for i € {4,5}, so F has an infinite Hilbert 2-

class field tower by Corollary 2.3. We may assume B ;é Ry = Rs. Since
R1+R2+R3+R4+R5—0 WehaveleOanng Rg R4—R57£0
Then we have ¢ = 1 mod 4 and a = 0. Since Dp/P; is monic of even degree
and (%) =1 for 2 <4 < 5, F has an infinite Hilbert 2-class field tower by
Corollary 2.2.

If sp = 5, then at least three rows of Rr are equal, say Rg R4 = R5 For
Dy = P3Py and Dy = P3Ps5, we have (%) = (Dz) =1 for i € {1,2}, so F has
an infinite Hilbert 2-class field tower by Corollary 2.3.

Now we consider (CASE B). In this case we have rank Rp = 2 by Proposition
2.5. Assume sp = 1. If B; = 0 for some 2 < i < 5, say Rs = 0, then(P5) = 1for
1 <4 <4, so F has an infinite Hilbert 2-class field tower by Corollary 2.2. We
may assume R ;é 0for2<i<b5. It only need to consider the case that either
{Rl, f} or {R5, f} is a basis of the row space of Rp. In any case, since R; ;é 0
and e;1 + e;0 + ej3 + €4 + €55 =0 for 2 <7 < 5, we have R2 Rg R4 7R5
For Dy = P3P, and Dy = P3Ps, we have (5’;) =(Z)=1forie{l,2},s0 F
has an infinite Hilbert 2-class field tower by Corollary 2.3.

Assume sp = 3. If R4 0 or R5 = 0 say R5 = 0 then (—") 1 for
1 <4 <4, so F has an infinite Hilbert 2-class field tower by Corollary 2.2. We
may assume R; # 0 for i € {4, 5} Then {Rl,R4} forms a basis of the row
space of Rp, so we have Rs = Ry and R; € {R,, R, + Ry} for i € {2,3}. If
Ry = Ry = Rj, then, for Dy = P\ P; and Dy = Py P3, we have (%) = (22) =1
for i € {4,5}, so F has an infinite Hilbert 2-class field tower by Corollary 2.3.
By changmg the role of P1 and Pg if it is necessary, we are reduced to the case
R1 = R2 =+ Rg Since R1+R2+R3+R4+R5 = f, we have Rg = f and
Ri=R,= f + Ry, By usmg the polynormal quadratic reciprocity law, we can
see that ¢ = 1 mod 4 and By = Rs = (1101 1). Then (P—§)2 (—) =1,s0 F
has an infinite Hilbert 2-class field tower by Corollary 2.4.

If sp = 5, since R =+ 0 and ei1 + €2 + i3 + €ig + €5 = 1forl <4 <5,
at least three of rows of Rp are equal, say Rg =R, = R5 For Dy = P3Py
and Dy = P3Ps, we have (—1) = (%2) =1 for i € {1,2}, so F has an infinite
Hilbert 2-class field tower by Corollary 2.3.

4. Proof of Theorem 1.3

Let 7, s be integers with 0 < s < r and n be a positive odd integer. We have

Xpm = {k(\/ya]\f) cae{0,1} and N € P(n,r + 1)} :
Let X,.,, be the subset of X, consisting of kE(v/veN) € Xy, with N € P'(n, r+
1) and X/ ., = X,; N X/ ... Then, by (2.4), we have

8N

X,
(4.1) oy o = lim inf M

moda | Xl
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By (2.3) and (2.4), we have

n T n r—1
(12) (%, = 2L loen) (1 oen)

) as n — oo.
rin n

For any N € P'(n,r + 1), let

Sa(N) = {k(«/yaN’) N’ € N(N)} (a=0,1).

Then Sp(N) US1(N) is a subset of X,.,, and by Proposition 2.9, we have
(4.3)

3 n r n r—1
|So(N)| = |S1(N)] =2~ e (log n) +O<q (logn) ) as n — oo.
rin n

By (4.2) and (4.3), we have

N N etz
(4.4) lim M — lim M _2_%-

n— oo % _’Vl*)OC % -
n:odd |Xr;n| n:odd |Xr;n|

4.1. &5,

Consider F, = k(v/v2N) (a = 0,1), where N = Py P2 P3P, € P'(n,4) such
that 2| deg P; for 1 <i <3, 21 deg Py and (7) = 1for i = 1,2 and j = 3,4.
Then r2(Clp,) = 3 and F, has an infinite Hilbert 2-class field tower by Lemma
2.3. Moreover, every fields in Sq (V) also have infinite Hilbert 2-class field
towers.

e Case () = (%) = —1. We have

Rp, =

0 0
0 0
1 1] Ba=
10

OO = =
OO = =
OO = =
OO ==
= -0 O
— -0 O

with rank Rp, = 3 and rank Rp, = 2, so r4(Clg,) = 14(Clp,) = 1. Hence
Fo, F1 € X34, and So(N) US1(N) C X34, so we have

S| IS

TIVIAI>1010 Y -
|X3;n| |X3;n|

* .
53,1 > }Hn
n n:odd

odd
e Case (%) =—1 and (%) = 1. We have
1
1
0

1 0 0 1 100
1 0 0 1 10 0
RBro =1 o ol =10 0 0 o
00 0 1 000 0

with rank Rp, = 2 and rank Rp, = 1, so 74(Clg,) = 74(Clr,) = 2. Hence
Fo, F1 € X35, and So(N)US1(N) C X35, so we have

N TC R T0]

n— oo v n— oo v -
n:odd |X3;n| n:odd |X3;n|

279,
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o Case (£) = (%) = 1. We have

1

000 0 0000
000 0 0000
Bro =10 0 0 ol Bn=f0 0 0 o
00 0 1 0000

with rank Rr, = 1 and rank Rp, = 0, so r4(Clg,) = r4(Clp,) = 3. Hence
Fo, F1 € X33, and So(N)US1(N) C X33, so we have
S|, SO

033 > lim = =
' modd |X3;n| Tiodd |X3;n|

4.2. 8,

Now consider F, = k(v/y*N) (a = 0,1), where N = PP P3P, P5 € P'(n,5)
such that 2|deg P; for 1 < i < 4, 2t deg Ps and (%) =1forl<i<j<d4.
Then r2(Clp,) = 4 and F, has an infinite Hilbert 2-class field tower by Lemma
2.3, so every field in the set S,(N) also has an infinite Hilbert 2-class field

tower.
o Case (%) =—1 for 1 <i<4. We have

1 0 0 0 1 1 0 0 0 1
01 0 0 1 01 0 0 1
Re=|0 010 1|, Rp=|0 01 0 1
0 0 0 1 1 0O 0 0 1 1
1 1 1 1 1 1 1 1 1 0
with rank Rp, = 5 and rank Rp, = 4, so 74(Clp,) = 74(Clr,) = 0. Hence
Fo, F1 € X[ ., and So(N)US1(N) C X].,,, S0 we have
N N
s i SO 1SO]
' roda |X4;n| modd |X4;n|
oCase(%):1f0r1§i§s<4and(%):—lfors—l—lgigél. We

have

. 01 OQ o Ol 02
RFo - <O3 MO) ) RFI - <O3 Ml)

where O; is the s X s zero matrix, O is the s x (5 — s) zero matrix, O3 is the
(5 — s) X s zero matrix and My, M; are the (5 — s) x (5 — s) matrices given by

10 --- 0 1 10 --- 01

0 1 0 1 o1 --- 01
My=|: SN R

0 0 1 1 0 0 1 1

11 1 s+1 1 1 1 s
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Since rank Rp, = rank My :_5 — s,rank Rp, = rank M, = 4 — s, we have
7“4(F0) = 7“4(F1) =s, Fy, Fy € X and So(N) USl(N) C XZ,S;’”' Hence

4.s5m
N N
85> lim |59(7)|+ lim M:Z_M.
’ iodd |X4;n| oda |X4;n|
oCase(f;f)zlforlgigél. We have
0 0 0 0 O 0O 0 0 0 O
0 0 0 0 O 0O 0 0 0 O
Rpmy=10 000 0|, Ron=|0 0000
0 0 0 0 O 0O 0 0 0 O
0 0 0 0 1 0O 0 0 0 O
with rank R, = 1 and rank Rp, = 0, so 74(Clp,) = r4(Clp,) = 4. Hence

Fo, Fy € X} ., and So(N) U8 (N) C X 4., so we have

So(N Si1(N
s g S SO
n:odd |X4;n| n:odd |X4;n|
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