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HILBERT 2-CLASS FIELD TOWERS OF IMAGINARY

QUADRATIC FUNCTION FIELDS

Hwanyup Jung

Abstract. In this paper we study the infiniteness of Hilbert 2-class field
towers of imaginary quadratic function fields over Fq(T ), where q is a
power of an odd prime number.

1. Introduction and statement of the results

For a number field F , let F
(2)
0 = F and F

(2)
n+1 be the Hilbert 2-class field of

F
(2)
n for n ≥ 0. Then the sequence of fields

F = F
(2)
0 ⊂ F

(2)
1 ⊂ · · · ⊂ F (2)

n ⊂ · · ·
is called the Hilbert 2-class field tower of F and we say that F has an infinite

Hilbert 2-class field tower if F
(2)
n 6= F

(2)
n+1 for all n ≥ 0. Assume that F is an

imaginary quadratic number field. Let r2(ClF ) denote the 2-rank of class group
ClF of F . By Golod-Shafarevich’s Theorem, F has an infinite Hilbert 2-class
field tower if r2(ClF ) ≥ 5. It has been conjectured by Martinet [6] that the
Hilbert 2-class field tower of F is infinite if r2(ClF ) ≥ 4. Let r4(ClF ) = r2(Cl2F )
be the 4-rank of ClF . It has been shown by Koch [5] and Hajir [3, 4] that
F has an infinite Hilbert 2-class field tower if r4(ClF ) ≥ 3. In [2], Gerth has
proved that a positive proportion of the imaginary quadratic number fields F
with r2(ClF ) = r have infinite Hilbert 2-class field towers and r4(ClF ) = s for
r = 3, 1 ≤ s ≤ 3 and for r = 4, 0 ≤ s ≤ 4.

Let k = Fq(T ) be a rational function field over the finite field Fq, ∞ = (1/T )
and A = Fq[T ]. For a finite separable extension F of k, writeOF for the integral
closure of A in F and HF for the Hilbert class field of F with respect to OF

(see [7]). Let ℓ be a prime number. Let F
(ℓ)
0 = F and F

(ℓ)
n+1 be the Hilbert

ℓ-class field of F
(ℓ)
n for n ≥ 0, i.e., F

(ℓ)
n+1 is the maximal extension of F

(ℓ)
n inside
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H
F

(ℓ)
n

whose degree over F
(ℓ)
n is a power of ℓ. The sequence of fields

F = F
(ℓ)
0 ⊂ F

(ℓ)
1 ⊂ · · · ⊂ F (ℓ)

n ⊂ · · ·
is called the Hilbert ℓ-class field tower of F . We say that the Hilbert ℓ-class

field tower of F is infinite if F
(ℓ)
n 6= F

(ℓ)
n+1 for each n ≥ 0. Let ClF and O∗

F

be the ideal class group and the group of units of OF , respectively. For any
multiplicative abelian group A, write rℓ(A) = dimFℓ

(A/Aℓ) for the ℓ-rank of
A. The following theorem is a function field analog of Golod-Shafarevich due
to Schoof.

Theorem 1.1 (Schoof [9]). Let F be a finite separable extension of k. Then

the Hilbert ℓ-class field tower of F is infinite if

rℓ(ClF ) ≥ 2 + 2
√

rℓ(O∗
F ) + 1.

Assume that q is odd. Let F be an imaginary quadratic function field over
k, i.e., F is a quadratic extension of k in which ∞ is ramified. Fix a generator
γ of F∗

q . Let P be the set of monic irreducible polynomials in A. Then F can be

written as F = k(
√
D) with D = γaP1 · · ·Pt, a ∈ {0, 1}, Pi ∈ P for 1 ≤ i ≤ t

and 2 ∤ degD. Here, D is uniquely determined by F and write DF = D. Let
sF be the number of monic irreducible divisors Pi of DF of odd degree. Since
degDF is odd, sF is a positive odd integer. We will assume that degPi is odd
for 1 ≤ i ≤ sF and degPi is even for sF + 1 ≤ i ≤ t. For 0 6= N ∈ A, write
ω(N) for the number of monic irreducible divisors of N . By genus theory ([1,
Corollary 3.5]), we have r2(ClF ) = ω(DF )−1. Since O∗

F = F∗
q and r2(O∗

F ) = 1,
by Theorem 1.1, we see that F has an infinite Hilbert 2-class field tower if
ω(DF ) ≥ 6. The following theorem is a function field analogue of Koch and
Hajir’s one.

Theorem 1.2. Let F be an imaginary quadratic function field over k. Let

sF be the number of distinct monic irreducible divisors of DF of odd degree.

If r4(ClF ) ≥ 3, then the Hilbert 2-class field tower of F is infinite, except the

cases that q ≡ 1 mod 4, ω(DF ) = 4 and sF = 3. In this exceptional case, if

DF has monic irreducible divisors P and Q such that degP is divisible by 4
and (PQ )4 = 1, then the Hilbert 2-class field tower of F is infinite, where (∗

∗
)4

is the 4-th power residue symbol.

For any positive integers n, r and integer s with 0 ≤ s ≤ r, let Xr;n be the set
of imaginary quadratic function fields F with r2(ClF ) = r and deg(DF ) = n,
Xr,s;n be the subset of Xr;n consisting of F ∈ Xr;n with r4(ClF ) = s and X∗

r,s;n

be the subset ofXr,s;n consisting of F ∈ Xr,s;n having an infinite Hilbert 2-class
field tower. We define a density δ∗r,s by

δ∗r,s = lim inf
n→∞
n:odd

|X∗
r,s;n|

|Xr;n|
.

Then we have:
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Theorem 1.3. δ∗3,s ≥ 2−9 for 1 ≤ s ≤ 3 and δ∗4,s ≥ 2−14 for 0 ≤ s ≤ 4.

Remark 1.4. Theorem 1.3 means that a positive proportion of imaginary qua-
dratic function fields F with r2(ClF ) = r have infinite Hilbert 2-class field
towers and r4(ClF ) = s for r = 3, 1 ≤ s ≤ 3 and for r = 4, 0 ≤ s ≤ 4.

2. Preliminaries

2.1. Martinet’s inequality

Let E and K be finite geometric separable extensions of k such that E/K is
a cyclic extension of degree ℓ with ∆ = Gal(E/K), where ℓ is a prime number
not dividing q. Let OE be the integral closure of A in E and O∗

E be the group of
units of OE . Then H0(∆,O∗

E) and H1(∆,O∗
E) are elementary abelian ℓ-groups

with
|H0(∆,O∗

E)|
|H1(∆,O∗

E)|
= ℓ−1

∏

p∞∈S∞(K)

|∆p∞
|,

where S∞(K) is the set of primes of K lying above ∞ and ∆p∞
denotes the

decomposition group of p∞ in ∆. Following the arguments in [6, §2], we get
the following proposition.

Proposition 2.1. Let E/K be as above. Let γE/K be the number of prime

ideals of OK that ramify in E and ρE/K be the number of primes p∞ in S∞(K)
that ramify or inert in E. Then the Hilbert ℓ-class field tower of E is infinite

if

(2.1) γE/K ≥ |S∞(K)| − ρE/K + 3 + 2
√

ℓ|S∞(K)|+ (1− ℓ)ρE/K + 1.

The inequality (2.1) is called theMartinet’s inequality. Now, by using Propo-
sition 2.1, we give some sufficient conditions for an imaginary quadratic function
field F to have infinite Hilbert 2-class field tower. Let (∗

∗
) denote the quadratic

residue symbol in A.

Corollary 2.2. Let F be an imaginary quadratic function field over k. If there
exists a nonconstant divisor D′ of DF such that either D′ or DF /D

′ is monic

of even degree and (D
′

Pi
) = 1 for monic irreducible divisors Pi (1 ≤ i ≤ 4) of

DF , then F has an infinite Hilbert 2-class field tower.

Proof. Let K = k(
√
D′) and E = KF . Since either D′ or DF/D

′ is monic
of even degree, the infinite prime p∞ of F splits in E. It is easy to see that

any finite primes of F is unramified in E. Hence E is contained in F
(2)
1 . Since

P1, P2, P3 and P4 split in K, we have γE/K ≥ 8. We also have |S∞(K)| =
ρE/K = 2 or (|S∞(K)|, ρE/K) = (1, 0) according as D′ is monic of even degree
or DF /D

′ is monic of even degree. By Proposition 2.1 on E/K, we see that E

has an infinite Hilbert 2-class field tower. Since E is contained in F
(2)
1 , F also

has an infinite Hilbert 2-class field tower. �
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Corollary 2.3. Let F be an imaginary quadratic function field over k. If

DF has two distinct nonconstant monic divisors D1 and D2 of even degrees

satisfying (D1

Pi
) = (D2

Pi
) = 1 for monic irreducible divisors Pi (i = 1, 2) of DF ,

then F has an infinite Hilbert 2-class field tower.

Proof. Let K = k(
√
D1,

√
D2) and E = KF . Since ∞ splits completely in K,

the infinite prime p∞ of F splits in E. It is easy to see that any finite primes of

F is unramified in E. Hence E is contained in F
(2)
1 . By applying Proposition

2.1 on E/K with γE/K ≥ 8 and |S∞(K)| = ρE/K = 4, we see that E has an

infinite Hilbert 2-class field tower. Since E is contained in F
(2)
1 , F also has an

infinite Hilbert 2-class field tower. �

Corollary 2.4. Let F be an imaginary quadratic function field over k. If

DF has two distinct nonconstant monic divisors D1 and D2 of even degrees

satisfying (D1

P1
) = (D2

P1
) = 1 for monic irreducible divisor P1 of DF and DF has

two monic irreducible divisors P2, P3 which are different from P1 and Pi ∤ D1D2

(i = 2, 3), then F has an infinite Hilbert 2-class field tower.

Proof. Let K = k(
√
D1,

√
D2) and E = KF . As in the proof of Corollary 2.3,

we can show that E is contained in F
(2)
1 . Since (D1

P1
) = (D2

P1
) = 1, P1 splits

completely in K. Each Pi (i = 2, 3) splits in at least one of k(
√
D1), k(

√
D2)

and k(
√
D1D2). Hence we have γE/K ≥ 8 and |S∞(K)| = ρE/K = 4. Then by

applying Proposition 2.1, E has an infinite Hilbert 2-class field tower. Since E

is contained in F
(2)
1 , F also has an infinite Hilbert 2-class field tower. �

2.2. Rédei-matrix and 4-rank of class group

Let F be an imaginary quadratic function field over k with DF = γaP1 · · ·Pt.
Let di ∈ F2 be defined by di ≡ degPi mod 2 for 1 ≤ i ≤ t. We will separate
two cases:

• (case a) q ≡ 1 mod 4 with a = 0 or q ≡ 3 mod 4 with a = 1,
• (case b) q ≡ 1 mod 4 with a = 1 or q ≡ 3 mod 4 with a = 0.

We associate a t × t matrix RF = (eij)1≤i,j≤t over F2 to F , where eij ∈ F2 is

defined by (−1)eij = (Pi

Pj
) for 1 ≤ i 6= j ≤ t and the diagonal entries eii ∈ F2

are defined to satisfy the relation

t
∑

j=1

eij =

{

0 (case a),

di (case b).

Let sF be the number of monic irreducible divisors Pi of DF of odd degree.
Since degDF is odd, sF is an odd integer. We will assume that degPi is odd
for 1 ≤ i ≤ sF . If q ≡ 3 mod 4 and 1 ≤ j ≤ sF , we have

t
∑

i=1

eij = ejj +
∑

1≤i≤sF ,i6=j

(eji + 1) +

t
∑

i=sF+1

eji =

t
∑

i=1

eji
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since sF is odd. Otherwise, since eij = eji, we trivially have the same equality.
Hence, the diagonal entries eii of RF also satisfy the relation

t
∑

i=1

eij =

{

0 (case a),

dj (case b).

Proposition 2.5. For an imaginary quadratic function field F over k, we have

r4(ClF ) =
{

t− 1− rankRF (case a),

t− rankRF (case b).

Proof. Let MF be the (t+ 1)× (t+ 1) matrix over F2 given by

MF =











e11 · · · e1t (a+ ǫ)d1
...

...
...

et1 · · · ett (a+ ǫ)dt
d1 · · · dt 1











,

where ǫ = 0 if q ≡ 1 mod 4, ǫ = 1 if q ≡ 3 mod 4 and the entries eii ∈ F2 are
defined to satisfy (a+ ǫ)di+

∑t
j=1 eij = 0. Then r4(ClF ) satisfies the following

equality ([1, Corollary 3.8]):

(2.2) r4(ClF ) = t− rankMF .

In (case a), we have a + ǫ = 0 in F2. Hence we can see that rankMF =

rankRF + 1 and the entries eii satisfy
∑t

j=1 eij = 0. By (2.2), we have

r4(ClF ) = t− 1− rankRF .
Now, we consider (case b). Then a+ ǫ = 1 in F2, so

MF =











e11 · · · e1t d1
...

...
...

et1 · · · ett dt
d1 · · · dt 1











and the entries eii satisfy di +
∑t

j=1 eij = 0. By adding first t columns to the

last column on MF , we can see that rankMF = rankM ′
F , where

M ′
F =











e11 · · · e1t
...

...
et1 · · · ett
d1 · · · dt











.

By adding first t rows to the last row on M ′
F , we can see that rankM ′

F =
rankRF , so r4(ClF ) = t− rankRF by (2.2). �
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2.3. Some asymptotic results

Let P be the set of all monic irreducible polynomials in A. For positive
integers n and t, we write P(n) for the subset of P consisting of P ∈ P with
degP = n, P(n, t) for the set of monic square free polynomials N ∈ A with
degN = n and ω(N) = t and P ′(n, t) for the subset of P(n, t) consisting of
N = P1 · · ·Pt ∈ P(n, t) such that deg(Pi) 6= deg(Pj) for i 6= j. As n → ∞, we
have

|P(n, t)| = qn(log n)t−1

(t− 1)!n
+O

( qn(logn)t−2

n

)

,(2.3)

|P(n, t) \ P ′(n, t)| = o
(qn(logn)t−1

n

)

.(2.4)

The following two lemmas are due to Wittmann ([10, Lemmas 3.3 and 3.5]).

Lemma 2.6. For P1, . . . , Pu ∈ P and ε1, . . . , εu ∈ {±1}, as n → ∞, we have

∑

P∈P(n)
1≤i≤u:(Pi/P)=εi

1 = 2−u q
n

n
+O

(qn/2

n

)

.

Lemma 2.7. Let n be a positive integer and d1, . . . , dt ∈ {0, 1} satisfying
∑t

i=1 di ≡ n mod 2. Then, as n → ∞, we have

∑

0<n1<···<nt
n1≡d1(2),...,nt≡dt(2)

n1+···+nt=n

1

n1 · · ·nt
= 2−(t−1) (logn)

t−1

(t− 1)!n
+O

( (log n)t−2

n

)

.

For d1, . . . , dt ∈ {0, 1} and εij ∈ {±1} for 1 ≤ i < j ≤ t, let

Jn({di}; {εij}) =
∑

0<n1<···<nt
n1≡d1(2),...,nt≡dt(2)

n1+···+nt=n

∑

P1∈P(n1)

∑

P2∈P(n2)

(P1/P2)= ε12

· · ·
∑

Pt∈P(nt)
∀i<t:(Pi/Pt)= εit

1.

Lemma 2.8. As n → ∞, we have

Jn({di}; {εij}) = 21−
t2+t

2
qn(logn)t−1

(t− 1)!n
+O

(qn(log n)t−2

n

)

.

Proof. Let J = Jn({di}; {εij}). As n → ∞, using Lemmas 2.6 and 2.7, we get

J =
∑

0<n1<···<nt
n1≡d1(2),...,nt≡dt(2)

n1+···+nt=n

t
∏

i=1

(

2−(i−1) q
ni

ni
+O

(qni/2

ni

))

= 2−
(t2−t)

2 qn
∑

0<n1<···<nt
n1≡d1(2),...,nt≡dt(2)

n1+···+nt=n

1

n1 · · ·nt
+O

(

qn
t

∑

i=1

∑

0<n1<···<nt
n1+···+nt=n

q−ni/2

n1 · · ·nt

)

= 21−
t2+t

2
qn(log n)t−1

(t− 1)!n
+O

(qn(logn)t−2

n

)

.
�
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For N = P1 · · ·Pt, N
′ = P ′

1 · · ·P ′
t ∈ P ′(n, t), we say that N and N ′ are

equivalent if deg(Pi) ≡ deg(P ′
i ) mod 2 for 1 ≤ i ≤ t and (Pi

Pj
) = (

P ′
i

P ′
j
) for

1 ≤ i < j ≤ t. Write N (N) for the set of polynomials in P ′(n, t) which are
equivalent to N .

Proposition 2.9. For any N ∈ P ′(n, t), as n → ∞, we have

|N (N)| = 21−
(t2+t)

2
qn(log n)t−1

(t− 1)!n
+O

( qn(logn)t−2

n

)

.

Proof. Let N = P1 · · ·Pt ∈ P ′(n, t). Then we have |N (N)| = Jn({di}; {εij}),
where d1, . . . , dt ∈ {0, 1} satisfying degPi ≡ di mod 2 for 1 ≤ i ≤ t and εij =

(Pi

Pj
) for 1 ≤ i < j ≤ t. Now, the result follows immediately from Lemma

2.8. �

3. Proof of Theorem 1.2

Let F be an imaginary quadratic function field with DF = γaP1 · · ·Pt. By
Theorem 1.1, the Hilbert 2-class field tower of F is infinite if r2(ClF ) ≥ 5.
Hence, it remains to consider the cases (r2(ClF ), r4(ClF )) = (3, 3), (4, 3) or
(4, 4). Recall that sF denotes the number of monic irreducible divisors Pi of
DF of odd degree. Since degDF is odd, sF is an odd integer. We will assume

that degPi is odd for 1 ≤ i ≤ sF . Write ~Ri for the i-th row vector of RF and
~0 for the zero row vector. In (case b), we always have ~Ri 6= ~0 for 1 ≤ i ≤ sF
since ei1 + · · ·+ eit = 1. In the following proof, we will consider the cases that
rankRF = 0, 1 or 2.

• If rankRF = 0, then RF = O, so we have (Pi

Pj
) = 1 for all 1 ≤ i 6= j ≤ t.

• If rankRF = 1, then any nonzero row of RF forms a basis for the row

space of RF . Especially, { ~R1} is always a basis for the row space of
RF in (case b).

• If rankRF = 2, then any two distinct nonzero rows of RF forms a basis
for the row space of RF .

3.1. Case r2(ClF ) = r4(ClF ) = 3 with DF = γaP1P2P3P4

We first consider (case a). By Proposition 2.5, we have rankRF = 0, i.e.,
RF = O. If sF = 1, we have (P3

Pi
) = (P4

Pi
) = 1 for i ∈ {1, 2}, so F has an infinite

Hilbert 2-class field tower by Corollary 2.3. If sF = 3, we have q ≡ 1 mod 4
since (P1

P2
) = (P2

P1
) = 1. In this case, we suppose that degP4 is divisible by

4 and (P4

P1
)4 = 1. Then ∞ and P1 splits completely in K = k( 4

√
P4). Since

(P4

P2
) = (P4

P3
) = 1, P2 and P3 split in k(

√
P4). Put E = KF . Then E is

contained in F
(2)
1 . By applying Proposition 2.1 on E/K with γE/K ≥ 8 and

|S∞(K)| = ρE/K = 4, we see that E has an infinite Hilbert 2-class field tower.

Since E is contained in F
(2)
1 , F also has an infinite Hilbert 2-class field tower.
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Now, we consider (case b). By Proposition 2.5, we have rankRF = 1. Since
~R1 + ~R2 + ~R3 + ~R4 = ~e, where

~e =

{

(1 0 0 0) if sF = 1,

(1 1 1 0) if sF = 3,

we have ~Ri ∈ {~0, ~e} for 1 ≤ i ≤ 4. If sF = 1, we have ~R1 = ~e and ~R2 =
~R3 = ~R4 = ~0. Then we have (P3

Pi
) = (P4

Pi
) = 1 for i ∈ {1, 2}, so F has

an infinite Hilbert 2-class field tower by Corollary 2.3. If sF = 3, we have
~R1 = ~R2 = ~R3 = ~e and ~R4 = 0. We also have q ≡ 1 mod 4 since (P1

P2
) = (P2

P1
).

In this case, as in above (case a), we can show that F also has an infinite
Hilbert 2-class field tower.

3.2. Case r2(ClF ) = r4(ClF )) = 4 with DF = γaP1P2P3P4P5

First consider (case a). By Proposition 2.5, we have rankRF = 0, i.e.,
RF = O. If sF ≤ 3, then (P5

Pi
) = 1 for 1 ≤ i ≤ 4, so F has an infinite Hilbert

2-class field tower by Corollary 2.2. If sF = 5, for D1 = P1P2 and D2 = P1P3,
we have (D1

Pi
) = (D2

Pi
) = 1 for i ∈ {4, 5}, so F has an infinite Hilbert 2-class

field tower by Corollary 2.3.

Consider (case b). By Proposition 2.5, we have rankRF = 1. Since { ~R1}
is a basis for the row space of RF and ~R1 + ~R2 + ~R3 + ~R4 + ~R5 = ~f , where

~f =











(1 0 0 0 0) if sF = 1,

(1 1 1 0 0) if sF = 3,

(1 1 1 1 1) if sF = 5,

we have ~R1 = ~f . If sF ≤ 3, we have ~R5 = ~0 since e51 = e15 = 0. Then (P5

Pi
) = 1

for 1 ≤ i ≤ 4, so so F has an infinite Hilbert 2-class field tower by Corollary

2.2. If sF = 5, we have ~Ri = ~f for 1 ≤ i ≤ 5. For D1 = P1P2 and D2 = P1P3,
we have (D1

Pi
) = (D2

Pi
) = 1 for i ∈ {4, 5}, so F has an infinite Hilbert 2-class

field tower by Corollary 2.3.

3.3. Case r2(ClF ) = 4 and r4(ClF ) = 3 with DF = γaP1P2P3P4P5

First consider (case a). By Proposition 2.5, we have rankRF = 1. Assume

sF = 1. If ~Ri = ~0 for some 2 ≤ i ≤ 5, say ~R5 = ~0, then (P5

Pi
) = 1 for 1 ≤ i ≤ 4,

so F has an infinite Hilbert 2-class field tower by Corollary 2.2. Otherwise,

we have ~R2 = ~R3 = ~R4 = ~R5 6= ~0. For D1 = P3P4 and D2 = P3P5, we have
(D1

Pi
) = (D2

Pi
) = 1 for i ∈ {1, 2}, so F has an infinite Hilbert 2-class field tower

by Corollary 2.3.

Assume sF = 3. If ~R4 = ~0 or ~R5 = ~0, say ~R5 = ~0, then (P5

Pi
) = 1 for

1 ≤ i ≤ 4, so F has an infinite Hilbert 2-class field tower by Corollary 2.2. We

may assume ~R4 = ~R5 6= ~0. If ~R1 = ~R2 = ~R3, for D1 = P1P2 and D2 = P1P3,
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we have (D1

Pi
) = (D2

Pi
) = 1 for i ∈ {4, 5}, so F has an infinite Hilbert 2-

class field tower by Corollary 2.3. We may assume ~R1 6= ~R2 = ~R3. Since
~R1 + ~R2 + ~R3 + ~R4 + ~R5 = ~0, we have ~R1 = ~0 and ~R2 = ~R3 = ~R4 = ~R5 6= ~0.
Then we have q ≡ 1 mod 4 and a = 0. Since DF /P1 is monic of even degree
and (P1

Pi
) = 1 for 2 ≤ i ≤ 5, F has an infinite Hilbert 2-class field tower by

Corollary 2.2.

If sF = 5, then at least three rows of RF are equal, say ~R3 = ~R4 = ~R5. For
D1 = P3P4 and D2 = P3P5, we have (D1

Pi
) = (D2

Pi
) = 1 for i ∈ {1, 2}, so F has

an infinite Hilbert 2-class field tower by Corollary 2.3.
Now we consider (case b). In this case we have rankRF = 2 by Proposition

2.5. Assume sF = 1. If ~Ri = ~0 for some 2 ≤ i ≤ 5, say ~R5 = ~0, then (P5

Pi
) = 1 for

1 ≤ i ≤ 4, so F has an infinite Hilbert 2-class field tower by Corollary 2.2. We

may assume ~Ri 6= ~0 for 2 ≤ i ≤ 5. It only need to consider the case that either

{ ~R1, ~f} or { ~R5, ~f} is a basis of the row space of RF . In any case, since ~Ri 6= ~0

and ei1 + ei2 + ei3 + ei4 + ei5 = 0 for 2 ≤ i ≤ 5, we have ~R2 = ~R3 = ~R4 = ~R5.
For D1 = P3P4 and D2 = P3P5, we have (D1

Pi
) = (D2

Pi
) = 1 for i ∈ {1, 2}, so F

has an infinite Hilbert 2-class field tower by Corollary 2.3.

Assume sF = 3. If ~R4 = ~0 or ~R5 = ~0, say ~R5 = ~0, then (P5

Pi
) = 1 for

1 ≤ i ≤ 4, so F has an infinite Hilbert 2-class field tower by Corollary 2.2. We

may assume ~Ri 6= ~0 for i ∈ {4, 5}. Then { ~R1, ~R4} forms a basis of the row

space of RF , so we have ~R5 = ~R4 and ~Ri ∈ { ~R1, ~R1 + ~R4} for i ∈ {2, 3}. If
~R1 = ~R2 = ~R3, then, for D1 = P1P2 and D2 = P1P3, we have (

D1

Pi
) = (D2

Pi
) = 1

for i ∈ {4, 5}, so F has an infinite Hilbert 2-class field tower by Corollary 2.3.
By changing the role of P1 and P3 if it is necessary, we are reduced to the case
~R1 = ~R2 6= ~R3. Since ~R1 + ~R2 + ~R3 + ~R4 + ~R5 = ~f , we have ~R3 = ~f and
~R1 = ~R2 = ~f + ~R4. By using the polynomial quadratic reciprocity law, we can

see that q ≡ 1 mod 4 and ~R4 = ~R5 = (1 1 0 1 1). Then (P4

P3
) = (P5

P3
) = 1, so F

has an infinite Hilbert 2-class field tower by Corollary 2.4.

If sF = 5, since ~Ri 6= ~0 and ei1 + ei2 + ei3 + ei4 + ei5 = 1 for 1 ≤ i ≤ 5,

at least three of rows of RF are equal, say ~R3 = ~R4 = ~R5. For D1 = P3P4

and D2 = P3P5, we have (D1

Pi
) = (D2

Pi
) = 1 for i ∈ {1, 2}, so F has an infinite

Hilbert 2-class field tower by Corollary 2.3.

4. Proof of Theorem 1.3

Let r, s be integers with 0 ≤ s ≤ r and n be a positive odd integer. We have

Xr;n =
{

k(
√

γaN) : a ∈ {0, 1} and N ∈ P(n, r + 1)
}

.

Let X̄r;n be the subset ofXr;n consisting of k(
√
γaN) ∈ Xr;n withN ∈ P ′(n, r+

1) and X̄∗
r,s;n = X̄r;n ∩X∗

r,s;n. Then, by (2.4), we have

(4.1) δ∗r,s = lim inf
n→∞
n:odd

|X̄∗
r,s;n|

|X̄r;n|
.
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By (2.3) and (2.4), we have

|X̄r;n| =
2qn(log n)r

r!n
+O

(qn(log n)r−1

n

)

as n → ∞.(4.2)

For any N ∈ P ′(n, r + 1), let

Sa(N) =
{

k(
√

γaN ′) : N ′ ∈ N (N)
}

(a = 0, 1).

Then S0(N) ∪ S1(N) is a subset of X̄r;n and by Proposition 2.9, we have
(4.3)

|S0(N)| = |S1(N)| = 2−
r(r+3)

2
qn(logn)r

r!n
+O

(qn(log n)r−1

n

)

as n → ∞.

By (4.2) and (4.3), we have

(4.4) lim
n→∞
n:odd

|S0(N)|
|X̄r;n|

= lim
n→∞
n:odd

|S1(N)|
|X̄r;n|

= 2−
(r+1)(r+2)

2 .

4.1. δ∗
3,s

Consider Fa = k(
√
γaN) (a = 0, 1), where N = P1P2P3P4 ∈ P ′(n, 4) such

that 2| degPi for 1 ≤ i ≤ 3, 2 ∤ degP4 and (
Pj

Pi
) = 1 for i = 1, 2 and j = 3, 4.

Then r2(ClFa) = 3 and Fa has an infinite Hilbert 2-class field tower by Lemma
2.3. Moreover, every fields in Sa(N) also have infinite Hilbert 2-class field
towers.

• Case (P2

P1
) = (P4

P3
) = −1. We have

RF0 =









1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 0









, RF1 =









1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1









with rankRF0 = 3 and rankRF1 = 2, so r4(ClF0) = r4(ClF1) = 1. Hence
F0, F1 ∈ X̄∗

3,1;n and S0(N) ∪ S1(N) ⊂ X̄∗
3,1;n, so we have

δ∗3,1 ≥ lim
n→∞
n:odd

|S0(N)|
|X̄3;n|

+ lim
n→∞
n:odd

|S1(N)|
|X̄3;n|

= 2−9.

• Case (P2

P1
) = −1 and (P4

P3
) = 1. We have

RF0 =









1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 1









, RF1 =









1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0









with rankRF0 = 2 and rankRF0 = 1, so r4(ClF0) = r4(ClF1) = 2. Hence
F0, F1 ∈ X̄∗

3,2;n and S0(N) ∪ S1(N) ⊂ X̄∗
3,2;n, so we have

δ∗3,2 ≥ lim
n→∞
n:odd

|S0(N)|
|X̄3;n|

+ lim
n→∞
n:odd

|S1(N)|
|X̄3;n|

= 2−9.
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• Case (P2

P1
) = (P4

P3
) = 1. We have

RF0 =









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1









, RF1 =









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









with rankRF0 = 1 and rankRF1 = 0, so r4(ClF0) = r4(ClF1) = 3. Hence
F0, F1 ∈ X̄∗

3,3;n and S0(N) ∪ S1(N) ⊂ X̄∗
3,3;n, so we have

δ∗3,3 ≥ lim
n→∞
n:odd

|S0(N)|
|X̄3;n|

+ lim
n→∞
n:odd

|S1(N)|
|X̄3;n|

= 2−9.

4.2. δ∗
4,s

Now consider Fa = k(
√
γaN) (a = 0, 1), where N = P1P2P3P4P5 ∈ P ′(n, 5)

such that 2| degPi for 1 ≤ i ≤ 4, 2 ∤ degP5 and (
Pj

Pi
) = 1 for 1 ≤ i < j ≤ 4.

Then r2(ClFa) = 4 and Fa has an infinite Hilbert 2-class field tower by Lemma
2.3, so every field in the set Sa(N) also has an infinite Hilbert 2-class field
tower.

• Case (P5

Pi
) = −1 for 1 ≤ i ≤ 4. We have

RF0 =













1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
1 1 1 1 1













, RF0 =













1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
1 1 1 1 0













with rankRF0 = 5 and rankRF1 = 4, so r4(ClF0) = r4(ClF1) = 0. Hence
F0, F1 ∈ X̄∗

4,0;n and S0(N) ∪ S1(N) ⊂ X̄∗
4,0;n, so we have

δ∗4,0 ≥ lim
n→∞
n:odd

|S0(N)|
|X̄4;n|

+ lim
n→∞
n:odd

|S1(N)|
|X̄4;n|

= 2−14.

• Case (P5

Pi
) = 1 for 1 ≤ i ≤ s < 4 and (P5

Pi
) = −1 for s + 1 ≤ i ≤ 4. We

have

RF0 =

(

O1 O2

O3 M0

)

, RF1 =

(

O1 O2

O3 M1

)

where O1 is the s× s zero matrix, O2 is the s× (5− s) zero matrix, O3 is the
(5− s)× s zero matrix and M0,M1 are the (5− s)× (5− s) matrices given by

M0 =















1 0 · · · 0 1
0 1 · · · 0 1
...

...
...

...
0 0 · · · 1 1
1 1 · · · 1 s+ 1















, M1 =















1 0 · · · 0 1
0 1 · · · 0 1
...

...
...

...
0 0 · · · 1 1
1 1 · · · 1 s















.
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Since rankRF0 = rankM0 = 5 − s, rankRF1 = rankM1 = 4 − s, we have
r4(F0) = r4(F1) = s, F0, F1 ∈ X̄∗

4,s;n and S0(N) ∪ S1(N) ⊂ X̄∗
4,s;n. Hence

δ∗4,s ≥ lim
n→∞
n:odd

|S0(N)|
|X̄4;n|

+ lim
n→∞
n:odd

|S1(N)|
|X̄4;n|

= 2−14.

• Case (P5

Pi
) = 1 for 1 ≤ i ≤ 4. We have

RF0 =













0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1













, RF0 =













0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













with rankRF0 = 1 and rankRF1 = 0, so r4(ClF0) = r4(ClF1) = 4. Hence
F0, F1 ∈ X̄∗

4,4;n and S0(N) ∪ S1(N) ⊂ X̄∗
4,4;n, so we have

δ∗4,4 ≥ lim
n→∞
n:odd

|S0(N)|
|X̄4;n|

+ lim
n→∞
n:odd

|S1(N)|
|X̄4;n|

= 2−14.
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