1 |
B. Cho and J. K. Koo, Constructions of class fields over imaginary quadratic fields and applications, Q. J. Math. 61 (2010), no. 2, 199-216.
DOI
ScienceOn
|
2 |
D. A. Cox, Primes of the form , Fermat, Class Field, and Complex Multiplication, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1989.
|
3 |
F. Diamond and J. Shurman, A First Course in Modular Forms, Grad. Texts in Math. 228, Springer-Verlag, New York, 2005.
|
4 |
D. R. Dorman, Singular moduli, modular polynomials, and the index of the closure of in , Math. Ann. 283 (1989), no. 2, 177-191.
DOI
|
5 |
B. Gross and D. Zagier, On singular moduli, J. Reine Angew. Math. 355 (1985), 191-220.
|
6 |
H. Hasse, Neue Begrundung der komplexen Multiplikation. I, J. Reine Angew. Math. 157 (1927), 115-139.
|
7 |
H. Y. Jung, J. K. Koo, and D. H. Shin, Normal bases of ray class fields over imaginary quadratic fields, Math. Z. 271 (2012), no. 1-2, 109-116.
DOI
|
8 |
J. K. Koo and D. H. Shin, On some arithmetic properties of Siegel functions, Math. Z. 264 (2010), no. 1, 137-177.
DOI
|
9 |
D. Kubert and S. Lang, Modular Units, Grundlehren der mathematischen Wis-senschaften 244, Spinger-Verlag, New York-Berlin, 1981.
|
10 |
S. Lang, Elliptic Functions, With an appendix by J. Tate, 2nd edition, Grad. Texts in Math. 112, Springer-Verlag, New York, 1987.
|
11 |
R. Schertz, Construction of ray class fields by elliptic units, J. Theor. Nombres Bordeaux 9 (1997), no. 2, 383-394.
DOI
|
12 |
G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten and Princeton University Press, Princeton, N. J., 1971.
|
13 |
J. H. Silverman, The Arithmetic of Elliptic Curves, Grad. Texts in Math. 106, Springer-Verlag, New York, 1992.
|
14 |
P. Stevenhagen, Hilbert's 12th problem, complex multiplication and Shimura reciprocity, Class Field Theory-Its Centenary and Prospect (Tokyo, 1998), 161-176, Adv. Stud. Pure Math. 30, Math. Soc. Japan, Tokyo, 2001.
|