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FORMULAS OF GALOIS ACTIONS OF SOME CLASS
INVARIANTS OVER QUADRATIC NUMBER FIELDS

WITH DISCRIMINANT D ≡ 1 (mod 12)

Daeyeol Jeon*

Abstract. A class invariant is the value of a modular function
that generates a ring class field of an imaginary quadratic number
field such as the singular moduli of level 1. In this paper, using
Shimura Reciprocity Law, we compute the Galois actions of some
class invariants from the generalized Weber functions g0, g1, g2 and
g3 over quadratic number fields with discriminant D ≡ 1 (mod 12).

1. Introduction

Let K be an imaginary quadratic number field with the discriminant
D with ring of integer O = Z[θ] where

(1.1) θ :=

{ √
D
2 , if D ≡ 0 (mod 4);
−1+

√
D

2 , if D ≡ 1 (mod 4).

Then the theory of complex multiplication states that the modular in-
variant j(O) = j(θ) generates the ring class field HO over K with degree
[HO : K] = h(O), the class number of O, and the conjugates of j(θ) un-
der the action of Gal(HO/K) are singular moduli j(τ), where τ := τQ

is the Heegner point determined by Q(τQ, 1) = 0 for a positive definite
integral primitive binary quadratic forms

Q(x, y) = [a, b, c] = ax2 + bxy + cy2

with discriminant D = b2 − 4ac. CM-theory also tells that the minimal
polynomial over Q of j(O) that is called the Hilbert class polynomial
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for the order O has integer coefficients [14]. For example, the class
polynomial for D = −71 is

H−71(X) = X7 + 313645809715X6 − 3091990138604570X5(1.2)
+98394038810047812049302X4

−823534263439730779968091389X3

+5138800366453976780323726329446X2

−425319473946139603274605151187659X
+737707086760731113357714241006081263.

Computing Hilbert class polynomials is very important in number
theory and its application to cryptography ([1], [5]), but a serious draw-
back of the polynomials is huge coefficients as seen in (1.2) even for
fairly small discriminant D = −71. A remedy for this hinderance is us-
ing other modular functions than j-function whose values at CM points
also generate the ring class fields HO but produce much smaller coeffi-
cients for Hilbert class polynomials. This method dates back to early
1900. In his Lehrbuch der Algebra [16], H. Weber calls the value of a
modular function f(θ) a class invariant if we have

K(f(θ)) = K(j(θ))

and gives several examples such as a holomorphic cube root γ2 : H→ C
of j-function and a modular function f2 : H→ C of level 48. The function
values ζ3γ2(θ) and ζ48f2(θ) at θ = −1+

√−71
2 are both class invariants .

While the coefficients of H−71(X) are enormously large, the minimal
polynomials of the class invariants are

Hζ3γ2(θ)
−71 (X) = X7 + 6745X6 − 327467x5 + 51857115X4

+2319299751X3 + 41264582513X2

−307873876442X + 903568991567

and

Hζ48f2(θ)
−71 (X) = X7 + X6 −X5 −X4 −X3 + X2 + 2X − 1.

Despite a long history of the problem (see [3, p. 378] for list of a
few of references), one began to treat class invariants in a systemic and
algorithmic way only after Shimura Reciprocity Law [13] became avail-
able. The reciprocity law provides not only a method of systematically
determining whether f(θ) is a class invariant but also a description of
the Galois conjugates of f(θ) under Gal(HO/K). This tool is well il-
lustrated in several works by Reinier M. Bröker, Alice Gee, and Peter
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Stevenhagen in [2, 7, 8, 9, 15]. Bröker’s Ph. D thesis [2] discusses p-adic
theory of class invariants as well.

Gee determined the class invariants from the generalized Weber func-
tions g0, g1, g2, g3 by using the Shimura Reciprocity Law as follows:

Theorem 1.1. [8, p. 73, Theorem 1] Let K be an imaginary qua-
dratic number field of discriminant D with the ring of integer O = Z[θ].
Suppose θ = −B+

√
D

2 as defined in (1.1). Evaluating the function in the
following table at θ gives an integral generator for HO over K.

D ≡ 1 (9) D ≡ 4 (9) D ≡ 7 (9) D ≡ 3 (9) D ≡ 6 (9)
D ≡ 1 (4) ζ3g

2
0 g2

0 ζ2
3g2

0
1

3
√−3

g6
2

1√−3
g2
2

ζ2
3g2

1 g2
1 ζ3g

2
1

D ≡ 0 (8) ζ2
3ζ4g

2
1 ζ3ζ4g

2
1 ζ4g

2
1

1
3
√

3
g6
0

1√
3
g2
0

ζ3ζ4g
2
2 ζ2

3g2
2 ζ4g

2
2

D ≡ 4 (8) ζ3g
4
1 ζ2

3g4
1 g4

1
1
33 g12

0
1
3g4

0

ζ2
3g4

2 ζ3g
4
2 g4

2

However, she did not give the explicit Galois actions of the class
invariants induced by the table above. As it is very useful to obtain Ga-
lois actions of class invariants in determining Hilbert class polynomials
that are important in computational number theory, we compute the
actions of the class invariants given in the table in the case when D ≡ 1
(mod 12).

2. Preliminary

2.1. Shimura reciprocity law

Let FN be the modular function field of level N defined over Q(ζN ),
where ζN is a primitive N -th root of unity. That is, if f ∈ FN , then
f is meromorphic on the completed upper half plane H, has a Laurent
series expansion in the variable q1/N centered at q = 0 with coefficients
in Q(ζN ) and is invariant with respect to the matrix group

Γ(N) := ker[SL2(Z) → SL(Z/NZ)].

The second main theorem of complex multiplication tells us that the
value of a modular function f ∈ FN at θ lies in the ray class field of
conductor N for the order O = Z[θ] of an imaginary quadratic number
field K and the ray class field is generated by the values g(θ) for the
functions g ∈ FN with no poles at θ, where θ is defined in (1.1)
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Let Kab denote the maximal abelian extension of K. For f ∈ FN , if
f(θ) lies in HO, then all automorphisms in Gal(Kab/HO) act trivially on
f(θ). The Shimura Reciprocity Law states that the image of f(θ) under
the inverse image of the Artin map of Gal(Kab/HO) can be obtained as
the value at θ of a modular function that is conjugate to f over Q(j).

We follow the exposition in [4] that we can easily employ to prove of
our results. Let Q0

D be the set of primitive quadratic forms and C(D) =
Q0

D/Γ(1) denote the form class group of discriminant D. One obtains a
complete set of representatives in C(D) by choosing the reduced forms
[a, b, c] such that

|b| ≤ a ≤ c and b ≥ 0 if either |b| = a or a = c.

The class of [a, b−1, c] is the inverse of [a, b, c] in C(D).
Given f ∈ FN , if f(θ) ∈ HO, there is an explicit formula for comput-

ing the action of C(D) on f(θ) which is a consequence of the Shimura
Reciprocity Law. This is given as follows:

Theorem 2.1. [4, 7] Let Z[θ] be the ring of integers of an imaginary
quadratic number field K of discriminant D and let Q = [a, b, c] be a

primitive quadratic form of discriminant D. Let θ = −B+
√

D
2 as defined

in (1.1) and τQ = −b+
√

D
2a . Let M = M[a,b,c] ∈ GL2(Z/NZ) be given as

follows: For D ≡ 0 (mod 4),

(2.1) M ≡





(
a b

2
0 1

)
(mod prp) if p - a;

(− b
2 −c

1 0

)
(mod prp) if p | a and p - c;

(− b
2 − a − b

2 − c
1 −1

)
(mod prp) if p | a and p | c,

and for D ≡ 1 (mod 4),

(2.2) M ≡





(
a b−1

2
0 1

)
(mod prp) if p - a;

(−b−1
2 −c
1 0

)
(mod prp) if p | a and p - c;

(−b−1
2 − a −1−b

2 − c
1 −1

)
(mod prp) if p | a and p | c.

where p runs over all prime factors of N and prp ||N . Then the Galois
action of the class of [a,−b, c] in C(D) with respect to the Artin map is
given by

f(θ)[a,−b,c] = fM (τQ)
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for any f ∈ FN such that f(θ) ∈ HO. Here fM denotes the image of f
under the action of M .

The action of M depends only on Mprp for all primes p|N where
Mprp ∈ GL2(Z/prpZ) is the reduction modulo prp of M . Every Mprp

with determinant x decomposes as Mprp =
(

1 0
0 x

)(
a b
c d

)
for some

(
a b
c d

)
∈ GL2(Z/prpZ). Since SL2(Z/prpZ) is generated by Sprp and

Tprp , it suffices to find the action of
(

1 0
0 x

)

prp

, Sprp and Tprp on f

for all p|N . For
(

1 0
0 x

)

prp

, the action on f is given by lifting the

automorphism of Q(ζN ) determined by

ζprp 7→ ζx
prp and ζqrq 7→ ζqrq

for all prime factors q|N with q 6= p. In order that the actions of the
matrices at different primes commute with each other, we lift Sprp and
Tprp to matrices in SL2(Z/NZ) such that they reduce to the identity
matrix in SL2(Z/qrqZ) for all q 6= p.

2.2. Weber functions

Recall that the normalized Eisenstein series

g2(z) = 60
∑

(m,n)∈Z2\{(0,0)}

1
(m + nz)4

g3(z) = 140
∑

(m,n)∈Z2\{(0,0)}

1
(m + nz)6

are modular forms of weights 4 and 6, respectively. The Dedekind-eta
function

η(z) = q1/24
∞∏

n=1

(1− qn), with q = e2πiz

is holomorphic and non-zero for z in the complex upper half plane H
and ∆(z) = η24(z) is modular form of weight 12 with no poles or zeros
on H. The classical j-invariant is defined for z ∈ H by

j(z) = 123 g3
2(z)

(2π)12∆(z)
= 123 + 66 g2

3(z)
(2π)12∆(z)

is invariant under the group Γ(1), and Weber functions are given by
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γ2(z) =
12g2(z)

(2π)4η8(z)
, γ3(z) =

216g3(z)
(2π)6η12(z)

,

f(z) = ζ−1
48

η( z+1
2 )

η(z)
, f1(z) =

η( z
2)

η(z)
, f2(z) =

√
2
η(2z)
η(z)

.

One can generalize Weber functions by taking the holomorphic 24-th
root of the Siegel function

φ = n12 ∆(Aτ)
∆(τ)

,

where A =
(

1 k
0 n

)
for k ∈ Z and a positive integer n. If n = 2, we have

Weber functions and if n = 3, we consider

(2.3)

g0(z) =
η( z

3)
η(z)

, g1(z) = ζ−1
24

η( z+1
3 )

η(z)
, g2(z) =

η( z+2
3 )

η(z)
, g3(z) =

√
3
η(3z)
η(z)

.

The Siegel function has a long story [6, 12] and the study on its 24-th
root of unity for arbitrary n has been made pretty recently [8, 10, 11].

Note that the functions in (2.3) are modular of level 72. For the

generating matrices S, T ∈ Γ(1) given by S =
(

0 −1
1 0

)
and T =

(
1 1
0 1

)
, the transformation rules η ◦ S(z) =

√−izη(z) and η ◦ T (z) =

ζ24η(z) hold. Hence

(g0, g1, g2, g3) ◦ S = (g3, ζ
−2
24 g2, ζ

2
24g1, g0),(2.4)

(g0, g1, g2, g3) ◦ T = (g1, ζ
−2
24 g2, g0, ζ

2
24g3).

3. Results

In this section, we compute the action of a primitive quadratic form
Q = [a, b, c] on the class invariants when D ≡ 1 (mod 12) in the table in
Theorem 1.1. For that we need to find the action of Mm ∈ GL2(Z/mZ)
with m = 8, 9. Combining Lemma 6 of [7] and the transformation rule
(2.4), we obtain the following:
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Lemma 3.1. The actions of

(
1 0
0 x

)

m

, Sm and Tm (m = 8, 9) on

g2
i (i = 0, 1, 2, 3) are given by

g2
0 g2

1 g2
2 g2

3(
1 0
0 x

)

8

g2
0 g2

1 g2
2 g2

3

S8 −g2
0 −g2

1 −g2
2 −g2

3

T8 −g2
0 −g2

1 −g2
2 −g2

3(
1 0
0 x

)

9

, x = −3k + 1 g2
0 ζ2k

3 g2
1 ζk

3 g2
2 g2

3(
1 0
0 x

)

9

, x = −3k − 1 g2
0 ζ2k

3 g2
2 ζk

3 g2
1 g2

3

S9 −g2
3 ζ3g

2
2 ζ2

3g2
1 −g2

0

T9 −g2
1 ζ3g

2
2 −g2

0 ζ2
3g2

3

Using this, together with Theorem 2.1, we have the following theo-
rems.

Theorem 3.2. Let Z[θ] be the ring of integers of an imaginary qua-
dratic number field K of discriminant D ≡ 1(mod 36) and let Q =
[a, b, c] be a reduced primitive quadratic form of discriminant D. Let

θ = −1+
√

D
2 , τQ = −b+

√
D

2a and u = (−1)
b+1
2

+ac+a+c. Then the actions of

[a,−b, c] on ζ3g
2
0(θ) are as follows:

(1) The case 3 - a.

a) If b ≡ 1 (mod 3), then ζ3g
2
0(θ)

[a,−b,c] is given by the following
table:

b ≡ 1 (mod 9) b ≡ 4 (mod 9) b ≡ 7 (mod 9)
a ≡ 1 (mod 9) uζ3g

2
0(τQ) ug2

0(τQ) uζ2
3g2

0(τQ)
a ≡ 2 (mod 9) uζ3g

2
0(τQ) uζ2

3g2
0(τQ) ug2

0(τQ)
a ≡ 4 (mod 9) ug2

0(τQ) uζ2
3g2

0(τQ) uζ3g
2
0(τQ)

a ≡ 5 (mod 9) ug2
0(τQ) uζ3g

2
0(τQ) uζ2

3g2
0(τQ)

a ≡ 7 (mod 9) uζ2
3g2

0(τQ) uζ3g
2
0(τQ) ug2

0(τQ)
a ≡ 8 (mod 9) uζ2

3g2
0(τQ) ug2

0(τQ) uζ3g
2
0(τQ)

b) If a(b − 1) ≡ 1 (mod 3), then ζ3g
2
0(θ)

[a,−b,c] is given by the
following table:

b ≡ 2 (mod 9) b ≡ 5 (mod 9) b ≡ 8 (mod 9)
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a ≡ 1 (mod 9) −ug2
2(τQ) −uζ2

3g2
2(τQ) −uζ3g

2
2(τQ)

a ≡ 4 (mod 9) −ug2
2(τQ) −uζ2

3g2
2(τQ) −uζ3g

2
2(τQ)

a ≡ 7 (mod 9) −ug2
2(τQ) −uζ2

3g2
2(τQ) −uζ3g

2
2(τQ)

b ≡ 0 (mod 9) b ≡ 3 (mod 9) b ≡ 6 (mod 9)
a ≡ 2 (mod 9) −uζ2

3g2
2(τQ) −ug2

2(τQ) −uζ3g
2
2(τQ)

a ≡ 5 (mod 9) −ug2
2(τQ) −uζ3g

2
2(τQ) −uζ2

3g2
2(τQ)

a ≡ 8 (mod 9) −uζ3g
2
2(τQ) −uζ2

3g2
2(τQ) −ug2

2(τQ)

c) If a(b − 1) ≡ −1 (mod 3), then ζ3g
2
0(θ)

[a,−b,c] is given by the
following table:

b ≡ 0 (mod 9) b ≡ 3 (mod 9) b ≡ 6 (mod 9)
a ≡ 1 (mod 9) −uζ2

3g2
1(τQ) −uζ3g

2
1(τQ) −ug2

1(τQ)
a ≡ 4 (mod 9) −ug2

1(τQ) −uζ2
3g2

1(τQ) −uζ3g
2
1(τQ)

a ≡ 7 (mod 9) −uζ3g
2
1(τQ) −ug2

1(τQ) −uζ2
3g2

1(τQ)

b ≡ 2 (mod 9) b ≡ 5 (mod 9) b ≡ 8 (mod 9)
a ≡ 2 (mod 9) −ug2

1(τQ) −uζ3g
2
1(τQ) −uζ2

3g2
1(τQ)

a ≡ 5 (mod 9) −ug2
1(τQ) −uζ3g

2
1(τQ) −uζ2

3g2
1(τQ)

a ≡ 8 (mod 9) −ug2
1(τQ) −uζ3g

2
1(τQ) −uζ2

3g2
1(τQ)

(2) The cases 3|a and 3 - c.
a) If b ≡ −1 (mod 3), then ζ3g

2
0(θ)

[a,−b,c] is given by the following
table:

b ≡ 2 (mod 9) b ≡ 5 (mod 9) b ≡ 8 (mod 9)
c ≡ 1 (mod 9) −uζ2

3g2
3(τQ) −ug2

3(τQ) −uζ3g
2
3(τQ)

c ≡ 2 (mod 9) −uζ3g
2
3(τQ) −ug2

3(τQ) −uζ2
3g2

3(τQ)
c ≡ 4 (mod 9) −uζ2

3g2
3(τQ) −ug2

3(τQ) −uζ3g
2
3(τQ)

c ≡ 5 (mod 9) −uζ3g
2
3(τQ) −ug2

3(τQ) −uζ2
3g2

3(τQ)
c ≡ 7 (mod 9) −uζ2

3g2
3(τQ) −ug2

3(τQ) −uζ3g
2
3(τQ)

c ≡ 8 (mod 9) −uζ3g
2
3(τQ) −ug2

3(τQ) −uζ2
3g2

3(τQ)
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b) If (b + 1)c ≡ 1 (mod 3), then ζ3g
2
0(θ)

[a,−b,c] is given by the
following table:

b ≡ 0 (mod 9) b ≡ 3 (mod 9) b ≡ 6 (mod 9)
c ≡ 1 (mod 9) −ug2

2(τQ) −uζ3g
2
2(τQ) −uζ2

3g2
2(τQ)

c ≡ 4 (mod 9) −uζ2
3g2

2(τQ) −ug2
2(τQ) −uζ3g

2
2(τQ)

c ≡ 7 (mod 9) −uζ3g
2
2(τQ) −uζ2

3g2
2(τQ) −ug2

2(τQ)

b ≡ 1 (mod 9) b ≡ 4 (mod 9) b ≡ 7 (mod 9)
c ≡ 2 (mod 9) −uζ3g

2
2(τQ) −ug2

2(τQ) −uζ2
3g2

2(τQ)
c ≡ 5 (mod 9) −uζ2

3g2
2(τQ) −uζ3g

2
2(τQ) −ug2

2(τQ)
c ≡ 8 (mod 9) −ug2

2(τQ) −uζ2
3g2

2(τQ) −uζ3g
2
2(τQ)

c) If (b + 1)c ≡ −1 (mod 3), then ζ3g
2
0(θ)

[a,−b,c] is given by the
following table:

b ≡ 1 (mod 9) b ≡ 4 (mod 9) b ≡ 7 (mod 9)
c ≡ 1 (mod 9) −ug2

1(τQ) −uζ3g
2
1(τQ) −uζ2

3g2
1(τQ)

c ≡ 4 (mod 9) −uζ3g
2
1(τQ) −uζ2

3g2
1(τQ) −ug2

1(τQ)
c ≡ 7 (mod 9) −uζ2

3g2
1(τQ) −uζ3g

2
1(τQ) −ug2

1(τQ)

b ≡ 0 (mod 9) b ≡ 3 (mod 9) b ≡ 6 (mod 9)
c ≡ 2 (mod 9) −uζ2

3g2
1(τQ) −uζ3g

2
1(τQ) −ug2

1(τQ)
c ≡ 5 (mod 9) −uζ3g

2
1(τQ) −ug2

1(τQ) −uζ2
3g2

1(τQ)
c ≡ 8 (mod 9) −ug2

1(τQ) −uζ2
3g2

1(τQ) −uζ3g
2
1(τQ)

(3) The cases 3|a and 3|c.
a) If b ≡ 1 (mod 9), then ζ3g

2
0(θ)

[a,−b,c] is given by the following
table:

c ≡ 0 (mod 9) c ≡ 3 (mod 9) c ≡ 6 (mod 9)
a ≡ 0 (mod 9) ug2

0(τQ) uζ3g
2
0(τQ) uζ2

3g2
0(τQ)

a ≡ 3 (mod 9) ug2
0(τQ) uζ3g

2
0(τQ) uζ2

3g2
0(τQ)

a ≡ 6 (mod 9) ug2
0(τQ) uζ3g

2
0(τQ) uζ2

3g2
0(τQ)
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b) If b ≡ 2 (mod 9), then ζ3g
2
0(θ)

[a,−b,c] is given by the following
table:

c ≡ 0 (mod 9) c ≡ 3 (mod 9) c ≡ 6 (mod 9)
a ≡ 0 (mod 9) −uζ2

3g2
3(τQ) −uζ2

3g2
3(τQ) −uζ2

3g2
3(τQ)

a ≡ 3 (mod 9) −ug2
3(τQ) −ug2

3(τQ) −ug2
3(τQ)

a ≡ 6 (mod 9) −uζ3g
2
3(τQ) −uζ3g

2
3(τQ) −uζ3g

2
3(τQ)

c) If b ≡ 4 (mod 9), then ζ3g
2
0(θ)

[a,−b,c] is given by the following
table:

c ≡ 0 (mod 9) c ≡ 3 (mod 9) c ≡ 6 (mod 9)
a ≡ 0 (mod 9) uζ2

3g2
0(τQ) ug2

0(τQ) uζ3g
2
0(τQ)

a ≡ 3 (mod 9) uζ2
3g2

0(τQ) ug2
0(τQ) uζ3g

2
0(τQ)

a ≡ 6 (mod 9) uζ2
3g2

0(τQ) ug2
0(τQ) uζ3g

2
0(τQ)

d) If b ≡ 5 (mod 9), then ζ3g
2
0(θ)

[a,−b,c] is given by the following
table:

c ≡ 0 (mod 9) c ≡ 3 (mod 9) c ≡ 6 (mod 9)
a ≡ 0 (mod 9) −uζ3g

2
3(τQ) −uζ3g

2
3(τQ) −uζ3g

2
3(τQ)

a ≡ 3 (mod 9) −uζ2
3g2

3(τQ) −uζ2
3g2

3(τQ) −uζ2
3g2

3(τQ)
a ≡ 6 (mod 9) −ug2

3(τQ) −ug2
3(τQ) −ug2

3(τQ)

e) If b ≡ 7 (mod 9), then ζ3g
2
0(θ)

[a,−b,c] is given by the following
table:

c ≡ 0 (mod 9) c ≡ 3 (mod 9) c ≡ 6 (mod 9)
a ≡ 0 (mod 9) uζ3g

2
0(τQ) uζ2

3g2
0(τQ) ug2

0(τQ)
a ≡ 3 (mod 9) uζ3g

2
0(τQ) uζ2

3g2
0(τQ) ug2

0(τQ)
a ≡ 6 (mod 9) uζ3g

2
0(τQ) uζ2

3g2
0(τQ) ug2

0(τQ)

f) If b ≡ 8 (mod 9), then ζ3g
2
0(θ)

[a,−b,c] is given by the following
table:

c ≡ 0 (mod 9) c ≡ 3 (mod 9) c ≡ 6 (mod 9)
a ≡ 0 (mod 9) −ug2

3(τQ) −ug2
3(τQ) −ug2

3(τQ)
a ≡ 3 (mod 9) −uζ3g

2
3(τQ) −uζ3g

2
3(τQ) −uζ3g

2
3(τQ)

a ≡ 6 (mod 9) −uζ2
3g2

3(τQ) −uζ2
3g2

3(τQ) −uζ2
3g2

3(τQ)
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Proof. As explained before, we compute the action ζ3g
2
0(θ)

[a,−b,c] by
using the following equality:

ζ3g
2
0(θ)

[a,−b,c] = (ζ3g
2
0)

M (τQ),

where M is defined in (2.2). Since (ζ3g
2
0)

M =
(
(ζ3g

2
0)

M8
)M9 , first con-

sider the action (g2
0)

M8 . In either case of m = 8 or 9, the matrix has the
following decomposition due to [7, Lemma 6]:

(3.1) Mm =





(
1 0
0 a

)

m

SmT−a−1

m SmT−a−1

m SmT
b−3
2a

m , p - a;
(

1 0
0 c

)

m

T
1−b
2

c
m SmT c−1

m SmT c
m, p|a ∧ p - c;

(
1 0
0 d

)

m

T
( 1−b−2a

2
)d

m SmT d−1

m SmT
(d−1)
m , p|a ∧ p|c,

where d = a + b + c and p = 2, 3. By using the decomposition (3.1) and
Lemma 3.1, we have the following action:

(g2
0)

M8 = (−1)
b+1
2

+ac+a+cg2
0.

Thus
(ζ3g

2
0)

M8 = uζ3g
2
0.

The action (g2
0)

M9 can be obtained by the same method and a case by
case computation, and then the result follows.

By the same method used in the proof of Theorem 3.2, we have the
following result:

Theorem 3.3. Let Z[θ] be the ring of integers of an imaginary qua-
dratic number field K of discriminant D ≡ 1(mod 36) and let Q =
[a, b, c] be a reduced primitive quadratic form of discriminant D. Let

θ = −1+
√

D
2 , τQ = −b+

√
D

2a and u = (−1)
b+1
2

+ac+a+c. Then the actions of

[a,−b, c] on ζ2
3g2

1(θ) are as follows:

(1) The case 3 - a.

a) If b ≡ −1 (mod 3), then ζ2
3g2

1(θ)
[a,−b,c] is given by the following

table:

b ≡ 2 (mod 9) b ≡ 5 (mod 9) b ≡ 8 (mod 9)
a ≡ 1 (mod 9) −uζ3g

2
0(τQ) −ug2

0(τQ) −uζ2
3g2

0(τQ)
a ≡ 2 (mod 9) −uζ3g

2
0(τQ) −uζ2

3g2
0(τQ) −ug2

0(τQ)
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a ≡ 4 (mod 9) −ug2
0(τQ) −uζ2

3g2
0(τQ) −uζ3g

2
0(τQ)

a ≡ 5 (mod 9) −ug2
0(τQ) −uζ3g

2
0(τQ) −uζ2

3g2
0(τQ)

a ≡ 7 (mod 9) −uζ2
3g2

0(τQ) −uζ3g
2
0(τQ) −ug2

0(τQ)
a ≡ 8 (mod 9) −uζ2

3g2
0(τQ) −ug2

0(τQ) −uζ3g
2
0(τQ)

b) If a + b ≡ −1 (mod 3), then ζ2
3g2

1(θ)
[a,−b,c] is given by the fol-

lowing table:

b ≡ 1 (mod 9) b ≡ 4 (mod 9) b ≡ 7 (mod 9)
a ≡ 1 (mod 9) uζ2

3g2
1(τQ) uζ3g

2
1(τQ) ug2

1(τQ)
a ≡ 4 (mod 9) ug2

1(τQ) uζ2
3g2

1(τQ) uζ3g
2
1(τQ)

a ≡ 7 (mod 9) uζ3g
2
1(τQ) ug2

1(τQ) uζ2
3ζ3g

2
1(τQ)

b ≡ 0 (mod 9) b ≡ 3 (mod 9) b ≡ 6 (mod 9)
a ≡ 2 (mod 9) uζ2

3g2
1(τQ) ug2

1(τQ) uζ3g
2
1(τQ)

a ≡ 5 (mod 9) uζ2
3g2

1(τQ) ug2
1(τQ) uζ3g

2
1(τQ)

a ≡ 8 (mod 9) uζ2
3g2

1(τQ) ug2
1(τQ) uζ3g

2
1(τQ)

c) If a−b ≡ 1 (mod 3), then ζ2
3g2

1(θ)
[a,−b,c] is given by the following

table:

b ≡ 0 (mod 9) b ≡ 3 (mod 9) b ≡ 6 (mod 9)
a ≡ 1 (mod 9) uζ3g

2
2(τQ) ug2

2(τQ) uζ2
3g2

2(τQ)
a ≡ 4 (mod 9) uζ3g

2
2(τQ) ug2

2(τQ) uζ2
3g2

2(τQ)
a ≡ 7 (mod 9) uζ3g

2
2(τQ) ug2

2(τQ) uζ2
3g2

2(τQ)

b ≡ 1 (mod 9) b ≡ 4 (mod 9) b ≡ 7 (mod 9)
a ≡ 2 (mod 9) uζ2

3g2
2(τQ) ug2

2(τQ) uζ3g
2
2(τQ)

a ≡ 5 (mod 9) ug2
2(τQ) uζ3g

2
2(τQ) uζ2

3g2
2(τQ)

a ≡ 8 (mod 9) uζ3g
2
2(τQ) uζ2

3g2
2(τQ) ug2

2(τQ)

(2) The cases 3|a and 3 - c.
a) If b ≡ 1 (mod 3), then ζ2

3g2
1(θ)

[a,−b,c] is given by the following
table:
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b ≡ 1 (mod 9) b ≡ 4 (mod 9) b ≡ 7 (mod 9)
c ≡ 1 (mod 9) uζ2

3g2
3(τQ) ug2

3(τQ) uζ3g
2
3(τQ)

c ≡ 2 (mod 9) uζ3g
2
3(τQ) ug2

3(τQ) uζ2
3g2

3(τQ)
c ≡ 4 (mod 9) uζ2

3g2
3(τQ) ug2

3(τQ) uζ3g
2
3(τQ)

c ≡ 5 (mod 9) uζ3g
2
3(τQ) ug2

3(τQ) uζ2
3g2

3(τQ)
c ≡ 7 (mod 9) uζ2

3g2
3(τQ) ug2

3(τQ) uζ3g
2
3(τQ)

c ≡ 8 (mod 9) uζ3g
2
3(τQ) ug2

3(τQ) uζ2
3g2

3(τQ)

b) If b+c ≡ 1 (mod 3), then ζ2
3g2

1(θ)
[a,−b,c] is given by the following

table:

b ≡ 0 (mod 9) b ≡ 3 (mod 9) b ≡ 6 (mod 9)
c ≡ 1 (mod 9) ug2

1(τQ) uζ3g
2
1(τQ) uζ2

3g2
1(τQ)

c ≡ 4 (mod 9) uζ3g
2
1(τQ) uζ2

3g2
1(τQ) ug2

1(τQ)
c ≡ 7 (mod 9) uζ2

3g2
1(τQ) ug2

1(τQ) uζ3g
2
1(τQ)

b ≡ 2 (mod 9) b ≡ 5 (mod 9) b ≡ 8 (mod 9)
c ≡ 2 (mod 9) uζ3g

2
1(τQ) ug2

1(τQ) uζ2
3g2

1(τQ)
c ≡ 5 (mod 9) ug2

1(τQ) uζ2
3g2

1(τQ) uζ3g
2
1(τQ)

c ≡ 8 (mod 9) uζ2
3g2

1(τQ) uζ3g
2
1(τQ) ug2

1(τQ)

c) If b−c ≡ 1 (mod 3), then ζ2
3g2

1(θ)
[a,−b,c] is given by the following

table:

b ≡ 2 (mod 9) b ≡ 5 (mod 9) b ≡ 8 (mod 9)
c ≡ 1 (mod 9) uζ3g

2
2(τQ) uζ2

3g2
2(τQ) ug2

2(τQ)
c ≡ 4 (mod 9) ug2

2(τQ) uζ3g
2
2(τQ) uζ2

3g2
2(τQ)

c ≡ 7 (mod 9) uζ2
3g2

2(τQ) ug2
2(τQ) uζ3g

2
2(τQ)

b ≡ 0 (mod 9) b ≡ 3 (mod 9) b ≡ 6 (mod 9)
c ≡ 2 (mod 9) uζ3g

2
2(τQ) ug2

2(τQ) uζ2
3g2

2(τQ)
c ≡ 5 (mod 9) uζ2

3g2
2(τQ) uζ3g

2
2(τQ) ug2

2(τQ)
c ≡ 8 (mod 9) ug2

2(τQ) uζ2
3g2

2(τQ) uζ3g
2
2(τQ)

(3) The cases 3|a and 3|c.
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a) If b ≡ 1 (mod 9), then ζ2
3g2

1(θ)
[a,−b,c] is given by the following

table:

c ≡ 0 (mod 9) c ≡ 3 (mod 9) c ≡ 6 (mod 9)
a ≡ 0 (mod 9) ug2

3(τQ) ug2
3(τQ) ug2

3(τQ)
a ≡ 3 (mod 9) uζ2

3g2
3(τQ) uζ2

3g2
3(τQ) uζ2

3g2
3(τQ)

a ≡ 6 (mod 9) uζ3g
2
3(τQ) uζ3g

2
3(τQ) uζ3g

2
3(τQ)

b) If b ≡ 2 (mod 9), then ζ2
3g2

1(θ)
[a,−b,c] is given by the following

table:

c ≡ 0 (mod 9) c ≡ 3 (mod 9) c ≡ 6 (mod 9)
a ≡ 0 (mod 9) −uζ3g

2
0(τQ) −ug2

0(τQ) −uζ2
3g2

0(τQ)
a ≡ 3 (mod 9) −uζ3g

2
0(τQ) −ug2

0(τQ) −uζ2
3g2

0(τQ)
a ≡ 6 (mod 9) −uζ3g

2
0(τQ) −ug2

0(τQ) −uζ2
3g2

0(τQ)

c) If b ≡ 4 (mod 9), then ζ2
3g2

1(θ)
[a,−b,c] is given by the following

table:

c ≡ 0 (mod 9) c ≡ 3 (mod 9) c ≡ 6 (mod 9)
a ≡ 0 (mod 9) uζ3g

2
3(τQ) uζ3g

2
3(τQ) uζ3g

2
3(τQ)

a ≡ 3 (mod 9) ug2
3(τQ) ug2

3(τQ) ug2
3(τQ)

a ≡ 6 (mod 9) uζ2
3g2

3(τQ) uζ2
3g2

3(τQ) uζ2
3g2

3(τQ)

d) If b ≡ 5 (mod 9), then ζ2
3g2

1(θ)
[a,−b,c] is given by the following

table:

c ≡ 0 (mod 9) c ≡ 3 (mod 9) c ≡ 6 (mod 9)
a ≡ 0 (mod 9) −uζ2

3g2
0(τQ) −uζ3g

2
0(τQ) −ug2

0(τQ)
a ≡ 3 (mod 9) −uζ2

3g2
0(τQ) −uζ3g

2
0(τQ) −ug2

0(τQ)
a ≡ 6 (mod 9) −uζ2

3g2
0(τQ) −uζ3g

2
0(τQ) −ug2

0(τQ)

e) If b ≡ 7 (mod 9), then ζ2
3g2

1(θ)
[a,−b,c] is given by the following

table:

c ≡ 0 (mod 9) c ≡ 3 (mod 9) c ≡ 6 (mod 9)
a ≡ 0 (mod 9) uζ2

3g2
3(τQ) uζ2

3g2
3(τQ) uζ2

3g2
3(τQ)

a ≡ 3 (mod 9) uζ3g
2
3(τQ) uζ3g

2
3(τQ) uζ3g

2
3(τQ)

a ≡ 6 (mod 9) ug2
3(τQ) ug2

3(τQ) ug2
3(τQ)
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f) If b ≡ 8 (mod 9), then ζ2
3g2

1(θ)
[a,−b,c] is given by the following

table:

c ≡ 0 (mod 9) c ≡ 3 (mod 9) c ≡ 6 (mod 9)
a ≡ 0 (mod 9) −ug2

0(τQ) −uζ2
3g2

0(τQ) −uζ3g
2
0(τQ)

a ≡ 3 (mod 9) −ug2
0(τQ) −uζ2

3g2
0(τQ) −uζ3g

2
0(τQ)

a ≡ 6 (mod 9) −ug2
0(τQ) −uζ2

3g2
0(τQ) −uζ3g

2
0(τQ)

Remark 3.4. The Galois actions of g2
0(θ) and g2

1(θ) for the discrimi-
nant D ≡ 13 (mod 36) can be obtained by multiplying proper powers of
ζ3 to the Galois actions in Theorem 3.2 and 3.3, and so are the Galois
actions of ζ2

3g2
0(θ) and ζ3g

2
1(θ) for the discriminant D ≡ 25 (mod 36).
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