DOI QR코드

DOI QR Code

HILBERT 2-CLASS FIELD TOWERS OF INERT IMAGINARY QUADRATIC FUNCTION FIELDS

  • Jung, Hwanyup (Department of Mathematics Education, Chungbuk National University)
  • Received : 2012.10.30
  • Accepted : 2013.04.04
  • Published : 2013.05.31

Abstract

In this paper we study the infniteness of Hilbert 2-class field towers of inert imaginary quadratic function fields over $\mathbb{F}_q(T)$, where $q$ is a power of an odd prime number.

Keywords

References

  1. S. Bae, S. Hu & H. Jung: The generalized Redei matrix for function fields. Finite Fields and Their Applications 18 (2012), no 4, 760-780. https://doi.org/10.1016/j.ffa.2012.01.004
  2. H. Jung: Hilbert 2-class field towers of imaginary quadratic function fields. submitted.
  3. H. Jung: Hilbert 2-class field towers of real quadratic function fields. submitted.
  4. M. Rosen: The Hilbert class field in function fields. Exposition. Math. 5 (1987), no. 4, 365-378.
  5. M. Rosen: Number theory in function fields. Graduate Texts in Mathematics, 210. Springer-Verlag, New York, 2002.
  6. R. Schoof: Algebraic curves over ${\mathbb{F}}_2$ with many rational points. J. Number Theory 41 (1992), no. 1, 6-14. https://doi.org/10.1016/0022-314X(92)90079-5