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ARTIN SYMBOLS OVER IMAGINARY QUADRATIC FIELDS

Dong Sung Yoon

Abstract. Let K be an imaginary quadratic field with ring of integers
OK and N be a positive integer. By K(N) we mean the ray class field of

K modulo NOK . In this paper, for each prime p of K relatively prime to

NOK we explicitly describe the action of the Artin symbol (
K(N)/K

p
) on

special values of modular functions of level N . Furthermore, we extend
the Kronecker congruence relation for the elliptic modular function j to

some modular functions of higher level.

1. Introduction

Let L/K be a Galois extension of number fields. Let OK be the ring of alge-
braic integers in K and p be a prime of K (i.e., a nontrivial prime ideal of OK)
which is unramified in L. For a prime P of L lying above p, its decomposition
group is defined by

DP (=DP/K) = {σ ∈ Gal(L/K) ∣ Pσ =P}.

Then, DP is isomorphic to the Galois group of residue fields, that is,

DP ≃ G̃ = Gal((OL/P)/(OK/p)).

Thus there is a unique element σ ∈ DP which maps to the Frobenius automor-

phism of G̃, and so σ satisfies

νσ ≡ νN(p) (mod P) for all ν ∈ OL

where N(p) = ∣OK/p∣ is the norm of p ([3, Lemma 5.19]). This unique element

σ is called the Artin symbol and is denoted by (L/K
P
). In particular, if L/K

is an abelian extension, then the Artin symbol depends only on p and hence it

can be written as (L/K
p
). Some concrete examples of Artin symbols for K = Q

can be found in [4, §9.1].
In what follows, we let K be an imaginary quadratic field of discriminant

dK and N be a positive integer. Let C(NOK) denote the ray class group of K
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modulo NOK , namely, C(NOK) = I(NOK)/P1(NOK) where I(NOK) is the
group of fractional ideals of K relatively prime to NOK and P1(NOK) is its
subgroup defined by

P1(NOK) = ⟨νOK ∣ ν ∈ OK ∖ {0} and ν ≡ 1 (mod NOK)⟩.

Let K(N) be the ray class field of K modulo NOK so that all primes of K
ramified in K(N) divide NOK and the Artin map

(
K(N)/K

⋅
) ∶ I(NOK)→ Gal(K(N)/K)

induces an isomorphism C(NOK)
∼
→ Gal(K(N)/K). In particular, the Hilbert

class field HK = K(1) is the maximal unramified abelian extension of K. One
may refer to [3, §8] or [8, Chapter V] for class field theory.

For a lattice Λ in C, let j(Λ) be the j-invariant of any elliptic curve over C
isomorphic to C/Λ. Let a be a nontrivial ideal of OK . By the theory of complex
multiplication, Hasse ([7]) proved that for all but a finite number of primes p of
K satisfying p ≠ p

j(p−1a) ≡ j(a)p (mod P) with p = N(p) (1)

for any prime P of HK lying above p. This congruence is called the Kronecker
congruence relation. We also notice that there is an analog of (1) for the Weber
function. For a positive integer m, let Φm(x, y) ∈ Z[x, y] be the modular
polynomial for which Φm(j(τ), j(mτ)) = 0. Here, j stands for the elliptic
modular function defined on the complex upper half-plane H = {τ ∈ C ∣ Im(τ) >
0}. Prior to the work of Hasse, Weber ([15]) had derived a weaker form of (1)
in such a way that for each prime p

Φp(x, y) ≡ (x
p − y)(x − yp) (mod pZ[x, y]). (2)

See also [2] for a generalization of (2) to certain Hauptmoduln including j.
In this paper, we shall deal with the following three topics related to Artin

symbols.

(i) For a prime p of K which is relatively prime to NOK , we shall explicitly

describe the Artin symbol (
K(N)/K

p
) by utilizing the extended form class

group of level N which was developed by Eum, Koo and Shin in [5]
(Theorem 4.2).

(ii) From the description of (
K(N)/K

p
) we shall obtain a certain extension

of the Kronecker congruence relation (1) when a = OK to meromorphic
modular functions of level N (Corollaries 5.1 and 5.3).

(iii) For a prime P of K(N) such that P∩Q is unramified in K(N), we shall

investigate (
K(N)/Q

P
) or DP/Q. (Theorem 6.2).



ARTIN SYMBOLS OVER IMAGINARY QUADRATIC FIELDS 97

2. Theory of complex multiplication

In this section, we shall review some necessary facts of the theory of complex
multiplication.

Proposition 2.1. Let a be a nontrivial ideal of OK . Then, j(a) is an algebraic
integer which generates HK over K.

Proof. See [11, Theorem 4 in Chapter 5 and Theorem 1 in Chapter 10]. □

The idelic formalization of the theory of complex multiplication owing to
Shimura and A. Robert yields the following result.

Proposition 2.2. Let a be a nontrivial ideal of OK . For any nontrivial ideal
b of OK , we have

j(a)
(HK /K

b )
= j(b−1a).

Proof. See [11, Theorem 5 in Chapter 10] or [13, Theorem 5.7]. □

Remark 1. We observe by Proposition 2.2 that the Kronecker congruence rela-
tion (1) holds for every prime p of K such that p ≠ p. Furthermore, we may let
a = OK in (1) because the action of Gal(HK/K) transitively permutes primes
P of HK lying above p ([8, Theorem 6.8 in Chapter I]).

For a prime p we mean by (dK

p
) the Kronecker symbol. For ν1, ν2 ∈ C which

are linearly independent over R, we shall denote by [ν1, ν2] the lattice generated
by ν1 and ν2, namely, [ν1, ν2] = Zν1 +Zν2.

Lemma 2.3. Let p be a prime.

(i) p splits completely in K if and only if (dK

p
) = 1. In this case, there is

an integer u such u2 ≡ dK (mod 4p). Furthermore, p = [−u+
√
dK

2
, p] is

a prime of K such that pOK = pp.
(ii) p is inert in K if and only if (dK

p
) = −1.

(iii) p is ramified in K if and only if (dK

p
) = 0 (i.e., p ∣dK). In this case,

p =

⎧⎪⎪
⎨
⎪⎪⎩

[ 2+
√
dK

2
, 2] if p = 2 and dK

4
≡ 3 (mod 4),

[−dK+
√
dK

2
, p] otherwise

is a prime of K satisfying pOK = p
2.

Proof. See [1, Theorems 3 and 4 in §9.5]. □

Let τK be the element of H defined by

τK =

⎧⎪⎪
⎨
⎪⎪⎩

−1+
√
dK

2
if dK ≡ 1 (mod 4),√

dK

2
if dK ≡ 0 (mod 4),

and so OK = [τK , 1] ([3, Lemma 7.2]). For a prime p of K, the Artin symbol

(HK/K
p
) can be expressed in more detail as follows.
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Proposition 2.4. Let p be a prime and p be a prime of K lying above p.

(i) If p splits completely in K and so p = [−u+
√
dK

2
, p] for some integer u

such that u2 ≡ dK (mod 4p) by Lemma 2.3 (i), then we have

j(τK)
(HK /K

p )
= j (

u +
√
dK

2p
) .

(ii) If p is inert in K, then (HK/K
p
) is the identity map on HK .

(iii) If p is ramified in K, then we get that

j(τK)
(HK /K

p )
=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

j (−2+
√
dK

4
) if p = 2 and dK

4
≡ 3 (mod 4),

j (dK+
√
dK

2p
) otherwise.

Proof. Note that if Λ and Λ′ are homothetic lattices in C, then j(Λ) = j(Λ′)
([3, Theorem 10.9]). By Proposition 2.1, j(OK) = j(τK) generates HK over K.

(i) Since pOK = pp, we obtain by Proposition 2.2 that

j(OK)
(HK /K

p )
= j(p−1) = j(p−1p) = j (

u +
√
dK

2p
) .

(ii) Observe by Proposition 2.2 and the fact p = pOK that

j(OK)
(HK /K

p )
= j(p−1) = j(p−1OK) = j(OK).

This implies that (HK/K
p
) is the identity map on HK .

(iii) Since pOK = p
2, we derive by Proposition 2.2 that

j(OK)
(HK /K

p )
= j(p−1) = j(p−1p) = j(p) = j(p).

Then the result follows from Lemma 2.3 (iii).

□

Let FN be the field of meromorphic modular functions for the principal
congruence subgroup

Γ(N) = {γ ∈ SL2(Z) ∣ γ ≡ I2 (mod NM2(Z))}

whose Fourier expansions with respect to q
1
N
τ (qτ = e2πiτ ) have coefficients in

the Nth cyclotomic field Q(ζN) where ζN = e
2πi
N . As is well known, FN is a

Galois extension of F1 whose Galois group is isomorphic to GL2(Z/NZ)/⟨−I2⟩.

Proposition 2.5. Let α ∈ GL2(Z/NZ)/⟨−I2⟩ and f ∈ FN with Fourier expan-

sion f = ∑n≫−∞ cnq
n
N
τ (cn ∈ Q(ζN)).

(i) If α ∈ SL2(Z/NZ)/⟨−I2⟩, then fα = f ○ α̃ where α̃ is any preimage of α
via the reduction SL2(Z)→ SL2(Z/NZ)/⟨−I2⟩.
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(ii) If α = [
1 0
0 d

] for some integer d relatively prime to N , then fα =

∑n≫−∞ cσd
n q

n
N
τ where σd is the automorphism of Q(ζN) defined by ζN ↦

ζdN .

Proof. See [11, Theorem 3 in Chapter 6] and [13, Proposition 6.9 (1)]. □

Essentially due to Hasse ([7]) we get the following proposition.

Proposition 2.6. We have K(N) =K (f(τK) ∣ f ∈ FN is finite at τK).

Proof. See [11, Corollary to Theorem 2 in Chapter 10]. □

3. The extended form class group of level N

We shall introduce the extended form class group of level N and its action
on special values of modular functions of level N .

Let QN(dK) be the set of binary quadratic forms given by

QN(dK) = {Q(x, y) = Q([
x
y
]) = ax2 + bxy + cy2 ∈ Z[x, y] ∣ b2 − 4ac = dK , a > 0,

gcd(a, b, c) = gcd(a, N) = 1
} .

The congruence subgroup

Γ1(N) = {γ ∈ SL2(Z) ∣ γ ≡ [
1 ∗
0 1

] (mod NM2(Z))}

of SL2(Z) acts on the set QN(dK) from the right so as to have

Q([
x
y
])

γ

= Q(γ [
x
y
]) (Q ∈ QN(dK), γ ∈ Γ1(N)).

This action of Γ1(N) naturally defines the equivalence relation ∼N on QN(dK)
as follows : for Q, Q′ ∈ QN(dK)

Q ∼N Q′ ⇐⇒ Q′ = Qγ for some γ ∈ Γ1(N).

Denote by CN(dK) the set of equivalence classes, that is, CN(dK) = QN(dK)/ ∼N .
For each Q = ax2 + bxy + cy2 ∈ QN(dK), let ωQ be the zero of the quadratic
polynomial Q(x, 1) lying in H so that

ωQ =
−b +

√
dK

2a
.

Proposition 3.1. One can equip the set CN(dK) with the group structure in
such a way that the mapping

CN(dK) → C(NOK)

[Q] ↦ [[ωQ, 1]]

becomes a well-defined isomorphism.

Proof. See [5, Theorem 2.9 and Remark 2.10 (iv)]. □
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Remark 2. (i) We shall call the group CN(dK) the extended form class
group of discriminant dK and level N .

(ii) For a negative integer D such that D ≡ 0 or 1 (mod 4), let Q(D) be the
set of primitive binary quadratic forms over Z of discriminant D. Then,
the modular group SL2(Z) gives rise to the proper equivalence ∼ on the
set Q(D). Gauss’ direct composition (or, the Dirichlet composition)
makes the set of equivalence classes C(D) = Q(D)/ ∼ an abelian group,
which is now called the form class group ([6]). Moreover, if O is the

order of discriminant D in the imaginary quadratic field K = Q(
√
D),

then C(D) is isomorphic to the O-ideal class group ([3, Theorem 7.7]).
Jung et al. quite recently generalized C(D) and constructed a form
class group isomorphic to the ray class group of O modulo NO ([10,
Definition 5.7 and Theorem 9.4]).

Let min(τK , Q) = x2 + bKx+ cK (∈ Z[x]). By virtue of Shimura’s reciprocity
law ([13, Theorem 6.31]), we get an extension of Proposition 2.2 over the Hilbert
class field HK to something over the ray class field K(N).

Proposition 3.2. Let a ∈ I(NOK). By Proposition 3.1, there exists a quadratic
form Q = ax2+bxy+cy2 ∈ QN(dK) so that [a] = [[ωQ, 1]] in C(NOK). If f ∈ FN

is finite at τK , then we establish

f(τK)
(

K(N)/K
a )

= f
[1 −a

′( b+bK2 )
0 a′

]
(−ωQ)

where a′ is an integer satisfying aa′ ≡ 1 (mod N).

Proof. See Proposition 2.6 and [16, Theorem 3.5]. □

Remark 3. Note that b and bK have the same parity for Q = ax2 + bxy + cy2 ∈
QN(dK) because b2 − 4ac = dK = b

2
K − 4cK .

4. Description of Artin symbols

In this section, for a prime p ofK we shall describe the Arin symbol (
K(N)/K

p
)

in a concrete way as some generalization of Proposition 2.4. Due to Stevenhagen
we get the following explicit version of Shimura’s reciprocity law ([13, Theorem
6.31]).

Lemma 4.1. Let s and t be integers not both zero such that (sτK + t)OK is
relatively prime to NOK . If f ∈ FN is finite at τK , then we have

f(τK)
(

K(N)/K
(sτK+t)OK

)
= f
[ t−bKs −cKs

s t
]
(τK).

Proof. See [14, (3.4)]. □

Remark 4. (i) Let Ẑ = ∏p ∶primesZp and K̂ = K ⊗Z Ẑ. Let [ ⋅ , K] ∶ K̂∗ →

Gal(Kab/K) be the Artin reciprocity map for (finite) ideles, where Kab

is the maximal abelian extension of K. Then the class field theory
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asserts that [ ⋅ , K] is a surjection with kernel K∗ ([3, §15.F] and [12,
§IV.6]). Here we observe that

(
K(N)/K

(sτK + t)OK
) = [(xp)p, K]∣K(N) where xp = {

1 if p ∣N,
sτK + t if p ∤ N.

(ii) More generally, if O is an order in K and HO is the ring class field of
O, then Stevenhagen actually expressed Gal(Kab/HO) as the image of

a subset of K̂∗ via the reciprocity map [ ⋅ , K] ([14, §3]).

Theorem 4.2. Let p be a prime relatively prime to N and p be a prime of K
lying above p. Let f ∈ FN be finite at τK .

(i) If p splits completely in K and so p = [−u+
√
dK

2
, p] for some integer u

satisfying u2 ≡ dK (mod 4p) by Lemma 2.3 (i), then

f(τK)
(

K(N)/K
p )

= f
[p −

u+bK
2

0 1
]
(
u +
√
dK

2p
) .

(ii) If p is inert in K, then

f(τK)
(

K(N)/K
p )

= f
[p 0
0 p ](τK).

(iii) If p is ramified in K, then

f(τK)
(

K(N)/K
p )

=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

f
[2 −

−2+bK
2

0 1
]
(−2+

√
dK

4
) if p = 2 and dK

4
≡ 3 (mod 4),

f
[p −

dK+bK
2

0 1
]
(dK+

√
dK

2p
) otherwise.

Proof. (i) We see that

p = pOK [
−u +

√
dK

2p
, 1] = pOK[ωQ, 1] with Q = px2 + uxy +

u2 − dK
4p

y2.

Thus we achieve that

f(τK)
(

K(N)/K
p )

= f(τK)
(

K(N)/K
pOK

)(
K(N)/K
[ωQ,1] )

= f
[p 0
0 p ](τK)

(
K(N)/K
[ωQ,1] ) by Lemma 4.1

= f
[p 0
0 p ][

1 −p′(u+bK2 )
0 p′

]
(
u +
√
dK

2p
)

where p′ is an integer such that pp′ ≡ 1 (mod N) by Proposition 3.2

= f
[p −

u+bK
2

0 1
]
(
u +
√
dK

2p
) .

(ii) Since p = pOK , the result directly follows from Lemma 4.1.
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(iii) By Lemma 2.3 (iii), we have pOK = p
2 where

p =

⎧⎪⎪
⎨
⎪⎪⎩

2OK[
2+
√
dK

4
, 1] if p = 2 and dK

4
≡ 3 (mod 4),

pOK[
−dK+

√
dK

2p
, 1] otherwise

= pOK[ωQ, 1] with Q =

⎧⎪⎪
⎨
⎪⎪⎩

2x2 − 2xy + 4−dK

8
y2 if p = 2 and dK

4
≡ 3 (mod 4),

px2 + dKxy +
d2
K−dK

4p
y2 otherwise.

In a similar way to (i), one can derive by using Lemma 4.1 and Propo-
sition 3.2 that

f(τK)
(

K(N)/K
p )

= f(τK)
(

K(N)/K
pOK

)(
K(N)/K
[ωQ,1] )

=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

f
[2 −

−2+bK
2

0 1
]
(−2+

√
dK

4
) if p = 2 and dK

4
≡ 3 (mod 4),

f
[p −

dK+bK
2

0 1
]
(dK+

√
dK

2p
) otherwise.

□

5. The Kronecker congruence relations

As corollaries of Theorem 4.2, we shall exhibit the Kronecker congruence
relations extending (1) to modular functions of higher level.

Corollary 5.1. Let p be a prime relatively prime to N and P be a prime of
K(N) lying above p. Let f ∈ FN be integral over Z[j].

(i) If p splits completely in K and so P∩K = [−u+
√
dK

2
, p] for some integer

u such that u2 ≡ dK (mod 4p) by Lemma 2.3, then

f
[p −

u+bK
2

0 1
]
(
u +
√
dK

2p
) ≡ f(τK)

p (mod P).

(ii) If p is inert in K, then

f
[p 0
0 p ](τK) ≡ f(τK)

p2

(mod P).

(iii) If p is ramified in K, then

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

f
[2 −

−2+bK
2

0 1
]
(−2+

√
dK

4
) ≡ f(τK)

p (mod P) if p = 2 and dK

4
≡ 3 (mod 4),

f
[p −

dK+bK
2

0 1
]
(dK+

√
dK

2p
) ≡ f(τK)

p (mod P) otherwise.

Proof. Since f is integral over Z[j] and j(τK) is an algebraic integer by Propo-
sition 2.1, f(τK) is also an algebraic integer. Furthermore, f(τK) belongs to
K(N) by Proposition 2.6. Now, the corollary follows from Theorem 4.2. □

Lemma 5.2. The field K(N) is Galois over Q.

Proof. See [9, Lemma 9.1]. □
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Corollary 5.3. Let p be a prime such that p ≡ 1 or −1 (mod N). Let f be
a meromorphic modular function for Γ1(N) with rational Fourier coefficients
which is integral over Z[j]. If p splits completely in K and so there is an integer
u satisfying u2 ≡ dK (mod 4p) by Lemma 2.3, then we have

(f(ω)p − f (
ω

p
))(f(ω) − f (

ω

p
)
p

) ≡ 0 (mod pOK(N)) where ω =
u +
√
dK

2
.

Proof. Since f is integral over Z[j] and belongs to FN , f(τK) is an algebraic

integer in K(N) by Propositions 2.1 and 2.6. If we let p = [−u+
√
dK

2
, p], then we

get pOK = pp by Lemma 2.3 (i) and derive that

f(τK)
(

K(N)/K
p )

= f
[p −

u+bK
2

0 1
]
(
ω

p
) by Theorem 4.2 (i)

= f
[1 0
0 p ][

p −u+bK
2

0 p′
]
(
ω

p
) where p′ is an integer such that pp′ ≡ 1 (mod N)

= f
[p −

u+bK
2

0 p′
]
(
ω

p
) by Proposition 2.5 (ii)

because f has rational Fourier coefficients

= f (
ω

p
) by Proposition 2.5 (i)

since p ≡ ±1 (mod N) and f is modular for Γ1(N).

This assertion also implies that f(ω
p
) is an algebraic integer in K(N). Moreover,

we see that

f(τK) = f (ω −
u + bK

2
) = f ([

1 −u+bK
2

0 1
] (ω)) = f(ω)

because f is modular for Γ1(N). Hence we obtain that

f(ω)
(

K(N)/K
p )

= f (
ω

p
) . (3)

We further find by (3) and the fact p ≡ ±1 (mod N) that

f (
ω

p
)
(

K(N)/K

p
)
= f(ω)

(
K(N)/K

p )(
K(N)/K

p
)
= f(ω)

(
K(N)/K

pOK
)
= f(ω). (4)

On the other hand, it follows from Lemma 5.2 that for any prime P of K(N)
lying above p, P is also a prime of K(N) lying above p which is different from
P. Now that

f(ω)
(

K(N)/K
p )

≡ f(ω)p (mod P) and f (
ω

p
)
(

K(N)/K

p
)
≡ f (

ω

p
)
p

(mod P),
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we deduce by (3) and (4) that

(f(ω)p − f (
ω

p
))(f(ω) − f (

ω

p
)
p

) ≡ 0 (mod PP).

Therefore we conclude by the fact

pOK(N) = (pOK(N))(pOK(N)) = (P1P2⋯Pg)(P1P2⋯Pg)

for some distinct primes P1, P2, . . . , Pg of K(N) and the Chinese remainder
theorem that

(f(ω)p − f (
ω

p
))(f(ω) − f (

ω

p
)
p

) ≡ 0 (mod pOK(N)).

□

6. Artin symbols over Q

The field K(N) is a Galois extension of Q, however, it is not necessarily

abelian. In this last section, we shall consider the Artin symbol (
K(N)/Q

P
) for a

prime P of K(N).

Lemma 6.1. If t is a nonzero integer relatively prime to N , then the order of

(
K(N)/K
tOK

) in Gal(K(N)/K) is the smallest positive integer ℓ such that tℓ ≡ 1 or

−1 (mod N).

Proof. See Propositions 2.5, 2.6 and [14, (3.5)]. □

Let c denote the complex conjugation on K(N).

Theorem 6.2. Let p be a prime relatively prime to NdK , p be a prime of K
lying above p, and P be a prime of K(N) lying above p. Let ℓ be the smallest

positive integer such that pℓ ≡ 1 or −1 (mod N), and let σ be an element of

Gal(K(N)/K) which maps P to P.

(i) If p splits completely in K, then

(
K(N)/Q

P
) = (

K(N)/K

p
) .

(ii) If p is inert in K, then

DP/Q = ⟨(cσ)
ℓ
2e (

K(N)/K

p
)

2e

⟩

where e ≥ 0 is the exponent of 2 in the prime factorization of ℓ.
(iii) If p is inert in K and ℓ is odd, then

(
K(N)/Q

P
) = (cσ)ℓ (

K(N)/K

p
)

ℓ+1
2

.

Proof. Note that Gal(K(N)/K) is a subgroup of Gal(K(N)/Q) and Gal((OK(N)/P)/(OK/p))

is a subgroup of Gal((OK(N)/P)/(Z/pZ)).



ARTIN SYMBOLS OVER IMAGINARY QUADRATIC FIELDS 105

(i) Since p splits completely in K, OK/p is isomorphic to Z/pZ. Thus

(
K(N)/K

p
) coincides with (

K(N)/Q
P
).

(ii) Since p is inert in K, we get p = pOK . Then we achieve by Lemma 6.1
that

∣DP/K ∣ = ℓ and so ∣DP/Q∣ = 2ℓ. (5)

Moreover, since cσ ∈DP/Q ∖DP/K , we obtain

DP/Q =DP/K ⊍ (cσ)DP/K ,

which yields that

(
K(N)/Q

P
) = (cσ)(

K(N)/K

p
)

v

for some integer v.

Write ℓ = 2eg for an odd positive integer g. If we let n be the order of
(cσ)g, then we see by (5) that n is a divisor of 2e+1. Furthermore, we
deduce again by (5) that

2 =

RRRRRRRRRRRR

⟨(
K(N)/Q

P
)

ℓ

⟩

RRRRRRRRRRRR

=

RRRRRRRRRRRR

⟨(cσ)ℓ (
K(N)/K

p
)

vℓ

⟩

RRRRRRRRRRRR

= ∣⟨(cσ)ℓ⟩∣ = ∣⟨{(cσ)g}2
e

⟩∣ =
n

gcd(n, 2e)
,

from which it follows that n = 2e+1. Since the order of (
K(N)/K

p
)
2e

is

g which is relatively prime to 2e+1, the order of (cσ)g (
K(N)/K

p
)
2e

is

2e+1g = 2ℓ. Hence

DP/Q = ⟨(cσ)
g (

K(N)/K

p
)

2e

⟩ .

(iii) By the fact [Gal(K(N)/Q) ∶ Gal(K(N)/K)] = 2 and the definition of
Artin symbol, we have

(
K(N)/Q

P
)

2

= (
K(N)/K

p
) . (6)

Since cσ is in DP/Q, we find by (5) that

⎧⎪⎪
⎨
⎪⎪⎩

(cσ)ℓ (
K(N)/K

p
)

ℓ+1
2 ⎫⎪⎪
⎬
⎪⎪⎭

2

= (cσ)2ℓ (
K(N)/K

p
)

ℓ+1

= (
K(N)/K

p
) . (7)

Here, ℓ+1
2

is an integer because ℓ is odd. If we let ϕ ∶ DP/Q → Z/2ℓZ be

the isomorphism sending (
K(N)/Q

P
) to 1 + 2ℓZ, then we establish that

ϕ(DP/K) = ⟨ϕ((
K(N)/K

p
))⟩ = ⟨2ϕ((

K(N)/Q
P

))⟩ = ⟨2 + 2ℓZ⟩ (8)



106 DONG SUNG YOON

by (6), and

2ϕ
⎛

⎝
(cσ)ℓ (

K(N)/K

p
)

ℓ+1
2 ⎞

⎠
= 2 + 2ℓZ (9)

by (6) and (7). On the other hand, since (cσ)ℓ (
K(N)/K

p
)

ℓ+1
2

does not

belong to Gal(K(N)/K) due to the fact that ℓ is odd, we derive from
(8) and (9) that

(
K(N)/Q

P
) = (cσ)ℓ (

K(N)/K

p
)

ℓ+1
2

as desired.

□

Remark 5. By Theorem 6.2, we have

(
K(N)/Q

P
) = (cσ)u (

K(N)/K

p
)

v

for some integers u and v. (10)

Now, consider the case where p is inert and ℓ is even. If c ∈ DP/Q, then we see
that

(
K(N)/Q

P
)

ℓ

= cuℓσuℓ (
K(N)/K

p
)

vℓ

by (10) and the fact that DP/Q is abelian

= idK(N) because c is of order 2 and ∣DP/K ∣ = ℓ is even.

But this contradicts the fact ∣DP/Q∣ = 2ℓ. Therefore, in this case, c does not
belong to DP/Q.

Remark 6. We observe that Gal(K(N)/Q) = Gal(K(N)/K) ⋊ ⟨c⟩. The action
of the group Γ1(N) on the set QN(dK) can be extended to the set of definite
quadratic forms

Q±N(dK) = {ax
2+bxy+cy2 ∈ Z[x, y] ∣ b2−4ac = dK , gcd(a, b, c) = gcd(a, N) = 1},

which induces the equivalence denote by ∼±N . Recently, Jung et al. showed
that the set C±N(dK) = Q

±
N(dK)/ ∼

±
N can be regarded as a group isomorphic to

Gal(K(N)/Q) ([9, Theorem 9.2]), and further defined the C±N(dK)-class invari-
ants as special values of modular functions of level N ([9, Definition 9.4 and
Theorem 9.6]).
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