• Title/Summary/Keyword: ideal-reversible ring

Search Result 5, Processing Time 0.015 seconds

RINGS WITH IDEAL-SYMMETRIC IDEALS

  • Han, Juncheol;Lee, Yang;Park, Sangwon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1913-1925
    • /
    • 2017
  • Let R be a ring with identity. An ideal N of R is called ideal-symmetric (resp., ideal-reversible) if $ABC{\subseteq}N$ implies $ACB{\subseteq}N$ (resp., $AB{\subseteq}N$ implies $BA{\subseteq}N$) for any ideals A, B, C in R. A ring R is called ideal-symmetric if zero ideal of R is ideal-symmetric. Let S(R) (called the ideal-symmetric radical of R) be the intersection of all ideal-symmetric ideals of R. In this paper, the following are investigated: (1) Some equivalent conditions on an ideal-symmetric ideal of a ring are obtained; (2) Ideal-symmetric property is Morita invariant; (3) For any ring R, we have $S(M_n(R))=M_n(S(R))$ where $M_n(R)$ is the ring of all n by n matrices over R; (4) For a quasi-Baer ring R, R is semiprime if and only if R is ideal-symmetric if and only if R is ideal-reversible.

SYMMETRICITY AND REVERSIBILITY FROM THE PERSPECTIVE OF NILPOTENTS

  • Harmanci, Abdullah;Kose, Handan;Ungor, Burcu
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.209-227
    • /
    • 2021
  • In this paper, we deal with the question that what kind of properties does a ring gain when it satisfies symmetricity or reversibility by the way of nilpotent elements? By the motivation of this question, we approach to symmetric and reversible property of rings via nilpotents. For symmetricity, we call a ring R middle right-(resp. left-)nil symmetric (mr-nil (resp. ml-nil) symmetric, for short) if abc = 0 implies acb = 0 (resp. bac = 0) for a, c ∈ R and b ∈ nil(R) where nil(R) is the set of all nilpotent elements of R. It is proved that mr-nil symmetric rings are abelian and so directly finite. We show that the class of mr-nil symmetric rings strictly lies between the classes of symmetric rings and weak right nil-symmetric rings. For reversibility, we introduce left (resp. right) N-reversible ideal I of a ring R if for any a ∈ nil(R), b ∈ R, being ab ∈ I implies ba ∈ I (resp. b ∈ nil(R), a ∈ R, being ab ∈ I implies ba ∈ I). A ring R is called left (resp. right) N-reversible if the zero ideal is left (resp. right) N-reversible. Left N-reversibility is a generalization of mr-nil symmetricity. We exactly determine the place of the class of left N-reversible rings which is placed between the classes of reversible rings and CNZ rings. We also obtain that every left N-reversible ring is nil-Armendariz. It is observed that the polynomial ring over a left N-reversible Armendariz ring is also left N-reversible.

ON ANNIHILATIONS OF IDEALS IN SKEW MONOID RINGS

  • Mohammadi, Rasul;Moussavi, Ahmad;Zahiri, Masoome
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.381-401
    • /
    • 2016
  • According to Jacobson [31], a right ideal is bounded if it contains a non-zero ideal, and Faith [15] called a ring strongly right bounded if every non-zero right ideal is bounded. From [30], a ring is strongly right AB if every non-zero right annihilator is bounded. In this paper, we introduce and investigate a particular class of McCoy rings which satisfy Property (A) and the conditions asked by Nielsen [42]. It is shown that for a u.p.-monoid M and ${\sigma}:M{\rightarrow}End(R)$ a compatible monoid homomorphism, if R is reversible, then the skew monoid ring R * M is strongly right AB. If R is a strongly right AB ring, M is a u.p.-monoid and ${\sigma}:M{\rightarrow}End(R)$ is a weakly rigid monoid homomorphism, then the skew monoid ring R * M has right Property (A).

STUDY OF THE ANNIHILATOR IDEAL GRAPH OF A SEMICOMMUTATIVE RING

  • Alibemani, Abolfazl;Hashemi, Ebrahim
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.415-427
    • /
    • 2019
  • Let R be an associative ring with nonzero identity. The annihilator ideal graph of R, denoted by ${\Gamma}_{Ann}(R)$, is a graph whose vertices are all nonzero proper left ideals and all nonzero proper right ideals of R, and two distinct vertices I and J are adjacent if $I{\cap}({\ell}_R(J){\cup}r_R(J)){\neq}0$ or $J{\cap}({\ell}_R(I){\cup}r_R(I)){\neq}0$, where ${\ell}_R(K)=\{b{\in}R|bK=0\}$ is the left annihilator of a nonempty subset $K{\subseteq}R$, and $r_R(K)=\{b{\in}R|Kb=0\}$ is the right annihilator of a nonempty subset $K{\subseteq}R$. In this paper, we assume that R is a semicommutative ring. We study the structure of ${\Gamma}_{Ann}(R)$. Also, we investigate the relations between the ring-theoretic properties of R and graph-theoretic properties of ${\Gamma}_{Ann}(R)$. Moreover, some combinatorial properties of ${\Gamma}_{Ann}(R)$, such as domination number and clique number, are studied.

WEAK α-SKEW ARMENDARIZ RINGS

  • Zhang, Cuiping;Chen, Jianlong
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.455-466
    • /
    • 2010
  • For an endomorphism $\alpha$ of a ring R, we introduce the weak $\alpha$-skew Armendariz rings which are a generalization of the $\alpha$-skew Armendariz rings and the weak Armendariz rings, and investigate their properties. Moreover, we prove that a ring R is weak $\alpha$-skew Armendariz if and only if for any n, the $n\;{\times}\;n$ upper triangular matrix ring $T_n(R)$ is weak $\bar{\alpha}$-skew Armendariz, where $\bar{\alpha}\;:\;T_n(R)\;{\rightarrow}\;T_n(R)$ is an extension of $\alpha$ If R is reversible and $\alpha$ satisfies the condition that ab = 0 implies $a{\alpha}(b)=0$ for any a, b $\in$ R, then the ring R[x]/($x^n$) is weak $\bar{\alpha}$-skew Armendariz, where ($x^n$) is an ideal generated by $x^n$, n is a positive integer and $\bar{\alpha}\;:\;R[x]/(x^n)\;{\rightarrow}\;R[x]/(x^n)$ is an extension of $\alpha$. If $\alpha$ also satisfies the condition that ${\alpha}^t\;=\;1$ for some positive integer t, the ring R[x] (resp, R[x; $\alpha$) is weak $\bar{\alpha}$-skew (resp, weak) Armendariz, where $\bar{\alpha}\;:\;R[x]\;{\rightarrow}\;R[x]$ is an extension of $\alpha$.