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SYMMETRICITY AND REVERSIBILITY FROM THE

PERSPECTIVE OF NILPOTENTS

Abdullah Harmanci, Handan Kose, and Burcu Ungor

Abstract. In this paper, we deal with the question that what kind of

properties does a ring gain when it satisfies symmetricity or reversibility
by the way of nilpotent elements? By the motivation of this question,

we approach to symmetric and reversible property of rings via nilpotents.
For symmetricity, we call a ring R middle right-(resp. left-)nil symmetric

(mr-nil (resp. ml-nil) symmetric, for short) if abc = 0 implies acb = 0

(resp. bac = 0) for a, c ∈ R and b ∈ nil(R) where nil(R) is the set of
all nilpotent elements of R. It is proved that mr-nil symmetric rings are

abelian and so directly finite. We show that the class of mr-nil symmetric

rings strictly lies between the classes of symmetric rings and weak right
nil-symmetric rings. For reversibility, we introduce left (resp. right) N-

reversible ideal I of a ring R if for any a ∈ nil(R), b ∈ R, being ab ∈ I

implies ba ∈ I (resp. b ∈ nil(R), a ∈ R, being ab ∈ I implies ba ∈
I). A ring R is called left (resp. right) N-reversible if the zero ideal

is left (resp. right) N-reversible. Left N-reversibility is a generalization

of mr-nil symmetricity. We exactly determine the place of the class of
left N-reversible rings which is placed between the classes of reversible

rings and CNZ rings. We also obtain that every left N-reversible ring

is nil-Armendariz. It is observed that the polynomial ring over a left
N-reversible Armendariz ring is also left N-reversible.

1. Introduction

Throughout this paper, all rings are associative with identity. A ring is called
reduced if it has no nonzero nilpotent elements. A weaker condition was defined
by Lambek in [18]. A ring R is said to be symmetric if for any a, b, c ∈ R,
abc = 0 implies acb = 0. The class of weak symmetric rings was discussed in
[26] and also studied in [12]. A ring R is called weak symmetric if abc ∈ nil(R)
implies acb ∈ nil(R) for all a, b, c ∈ R. Generalized weakly symmetric rings
(or GWS, for short) were studied in [30]. A ring R is called GWS if abc = 0
implies that bac is nilpotent for all a, b, c ∈ R. In [15], nil-symmetric rings

Received June 19, 2020; Accepted September 7, 2020.
2010 Mathematics Subject Classification. 16N40, 16S99, 16U80, 16U99.
Key words and phrases. Symmetric ring, middle right-nil symmetric ring, nil-symmetric

ring, reversible ring, left N-reversible ring.

c©2021 Korean Mathematical Society

209



210 A. HARMANCI, H. KOSE, AND B. UNGOR

were weakened to weak nil-symmetric rings. A ring R is called weak right nil-
symmetric if abc = 0 implies acb = 0 for all nilpotent a, b, c ∈ R and it is
called weak left nil-symmetric if abc = 0 implies cab = 0 for all nilpotent a, b,
c ∈ R, and R is called weak nil-symmetric if it is both weak right nil-symmetric
and weak left nil-symmetric. In [7], Chakraborty and Das called a ring R right
(resp. left) nil-symmetric if abc = 0 (resp. cab = 0) implies acb = 0 for all
nilpotent a, b ∈ R and c ∈ R and the ring R is nil-symmetric if it is both right
and left nil-symmetric.

As an another generalization of the symmetric property of a ring, Cohn [9]
called a ring R reversible if for a, b ∈ R, ab = 0 implies ba = 0. Anderson
and Camillo [3] observed the rings whose zero products commute, and used the
term ZC2 for what is called reversible. Prior to Cohn’s work, reversible rings
were studied under the names of completely reflexive by Mason in [21] and
zero commutative by Habeb in [10], and Tuganbaev [28] investigated reversible
rings in the name of commutative at zero. Following [17], a ring R is called
central reversible if ab = 0 for any a, b ∈ R implies ba is a central element of R.
Every reversible ring is central reversible. The reversible property of a ring is
also generalized as: A ring R is said to satisfy the commutativity of nilpotent
elements at zero [1, Definition 2.1] if ab = 0 for a, b ∈ nil(R) implies ba = 0.
For simplicity, a ring is called CNZ if it satisfies the commutativity of nilpotent
elements at zero. CNZ rings were generalized in [16]. A ring is called central
CNZ if for any nilpotent a, b ∈ R, ab = 0 implies ba is central in R. Another
generalization of reversible rings is nil-reversible. In [24], a ring R is called
nil-reversible if for every a ∈ R, b ∈ nil(R), ab = 0 if and only if ba = 0.

Nilpotent elements are important tools for studying the structures of rings.
In the light of aforementioned notions, we focus on the symmetricity and re-
versibility from the perspective of nilpotents. Motivated by the works on sym-
metric rings and reversible rings, the goal of this paper is to extend the notions
of symmetric rings and reversible rings via nilpotents, namely, mr-nil sym-
metric rings and left N-reversible rings. We present that the concept of left
N-reversible rings also generalizes that of mr-nil symmetric rings. We exactly
determine the places of these classes of rings in ring theory, in the meantime we
give various examples. We study the properties of mentioned classes of rings.
It is obtained that being a von Neumann regular ring and being a strongly reg-
ular ring coincide for left N-reversible rings. Also, for semiprime rings and right
p.p.-rings the concepts of reduced, symmetric, reversible, mr-nil symmetric and
left N-reversible rings are the same. On the other hand, some extensions such
as Dorroh extensions, Nagata extensions, polynomial rings of left N-reversible
rings are also studied.

In what follows, Z denotes the ring of integers and for a positive integer n,
Zn is the ring of integers modulo n. For a ring R, U(R), Id(R), C(R), P (R) and
J(R) denote the group of units, the set of all idempotents in R, the center of
R, the prime radical and the Jacobson radical of R, respectively. Also, Mn(R)
stands for the ring of all n× n matrices, Un(R) is the ring of upper triangular
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matrices over R for a positive integer n ≥ 2, Dn(R) is the ring of all matrices in
Un(R) having main diagonal entries equal, and Vn(R) is the subring of Un(R):

Vn(R) =


n∑

i=j

n∑
j=1

aje(i−j+1)i | aj ∈ R

 .

For instance, elements of V4(R) has the form:
a1 a2 a3 a4
0 a1 a2 a3
0 0 a1 a2
0 0 0 a1

 ,
where a1, a2, a3, a4 ∈ R. Let (xn) denote the ideal generated by xn in R[x]. It
is obvious that R[x]/(xn) ∼= Vn(R). Also,

V k
n (R) =


n∑

i=j

k∑
j=1

aje(i−j+1)i +

n−k∑
i=j

n−k∑
j=1

aijej(k+i) | aj , aij ∈ R

 ,

where ai ∈ R, ajs ∈ R, 1 ≤ i ≤ k, 1 ≤ j ≤ n − k and k + 1 ≤ s ≤ n. For
instance, elements of V 2

4 (R) are of the form:
a1 a2 a13 a14
0 a1 a2 a24
0 0 a1 a2
0 0 0 a1

 ,
where a1, a2, a13, a14, a24 ∈ R and

Dk
n(R) =


k∑

i=1

n∑
j=k+1

aijeij +

n∑
j=k+2

b(k+1)je(k+1)j + cIn | aij , bij , c ∈ R

 ,

where k = [n/2], i.e., k satisfies n = 2k when n is an even integer, and n = 2k+1
when n is an odd integer. Elements of Dk

n(R) for n = 4 and n = 5 are of the
form: 

a1 0 a13 a14
0 a1 a23 a24
0 0 a1 a34
0 0 0 a1

 and


a1 0 a13 a14 a15
0 a1 a23 a24 a25
0 0 a1 a34 a35
0 0 0 a1 0
0 0 0 0 a1

 ,
respectively.

2. Middle right-(left-)nil symmetric rings

In this section, we introduce and study a class of rings, middle-nil symmetric
rings which is weaker than the class of symmetric rings and stronger than
the classes of nil-symmetric rings, weak symmetric rings and weak right nil-
symmetric rings.
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Definition 2.1. A ring R is called middle right-nil symmetric (simplicity, mr-
nil symmetric) if abc = 0 implies acb = 0 for a, c ∈ R, b ∈ nil(R). Similarly,
R is called middle left-nil symmetric (ml-nil symmetric, for short) if abc = 0
implies bac = 0 for a, c ∈ R, b ∈ nil(R).

We have the following hierarchy:

{symmetric rings} ⊆ {mr-nil symmetric rings}
⊆ {weak right nil-symmetric rings}.

The following examples show that the aforementioned implications are strict.
The next example also shows that the middle-nil symmetricity is not left-right
symmetric.

Example 2.2. Let F be a field and define the free algebra A = F 〈a, b〉 where a
and b are noncommuting indeterminates. Let I be the two-sided ideal generated
by the elements ab and b2 and consider the ring R = A/I. Then R is mr-nil
symmetric but not symmetric and not ml-nil symmetric.

Proof. Since ab = 0 and ba 6= 0, R is not symmetric. Also, aba = 0 but baa 6= 0.
Hence R is not ml-nil symmetric. Next we prove that R is mr-nil symmetric.
Note that nilpotent elements of R have the form bra, b and brb where r ∈ R.
We write a and b for their images in the factor ring R. The elements of R is
the finite sum of the some of the monomials of the form αaibj , βblam, γak and
δb where α, β, γ, δ ∈ F and i, j, l, m and k are positive integers. Let x, y ∈ R
and n ∈ nil(R) with xny = 0. Then n is one of the form b, brb or bra for some
r ∈ R. Note that (aibj)b = 0, (blam)b = 0, akb = 0 and bb = 0 where i, j, l, m
and k are positive integers. This implies yb = 0 for any y ∈ R. It follows that
xyn = 0. Therefore R is mr-nil symmetric. This completes the proof. �

Example 2.3. Let R be a reduced ring. Then U2(R) is weak right nil-
symmetric but not mr-nil symmetric.

Proof. Let Eij denote the matrix units in U2(R). Then U2(R) is weak right nil-
symmetric since the product of two nilpotents is zero in U2(R). Let A = E12 ∈
nil(U2(R)), B = E11 ∈ U2(R) and I be the unit matrix. Then IAB = 0 but
IBA 6= 0. Hence U2(R) is not mr-nil symmetric. �

An idempotent e of a ring R is called right (resp. left) semicentral if ex = exe
(resp. xe = exe) for each x ∈ R. The ring R is called right (resp. left)
semicentral in case every idempotent is right (resp. left) semicentral. A ring
R is called abelian if R is both left and right semicentral. A ring R is called
2-primal if P (R) = nil(R), and R is said to be an NI ring if nil(R) forms an
ideal. 2-primal rings are NI. In [6], Bell called a ring R to satisfy the Insertion-
of-Factors Property (in short, IFP) if ab = 0 implies aRb = 0 for a, b ∈ R. In
[23], a ring R is called nil-semicommutative if for every a, b ∈ nil(R), ab = 0
implies aRb = 0. In [1], a nil-semicommutative ring is called nil-IFP.
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Proposition 2.4. Let R be an mr-nil symmetric ring. Then the following
hold.

(1) R is abelian.
(2) R is nil-semicommutative.
(3) R is 2-primal.
(4) Subrings of R is mr-nil symmetric.

Proof. (1) Let e ∈ Id(R) and r ∈ R. Then er − ere, re − ere ∈ nil(R) and
1(er−ere)e = 0. Hence by hypothesis, er = ere. Similarly, 1(re−ere)(1−e) =
0. By hypothesis, (1 − e)(re − ere) = 0. We have re = ere. Thus er = re for
each r ∈ R. Therefore R is abelian.

(2) Let a, b ∈ nil(R) with ab = 0. For any r ∈ R, abr = 0. By hypothesis
arb = 0. Hence aRb = 0.

(3) Let a ∈ nil(R) and an = 0 for some positive integer n. For any r1 ∈ R,
an−1ar1 = 0. By hypothesis, an−1r1a = 0. Let r2 ∈ R. Then an−1r1ar2 = 0.
By hypothesis, an−2r1ar2a = 0. Let r3 ∈ R. Then an−2r1ar2ar3 = 0. By hy-
pothesis, again an−3r1ar2ar3a = 0. Continuing in this way ar1ar2ar3a · · · arna
= 0 for all r1, r2, r3, . . . , rn ∈ R. Hence ar1ar2ar3a · · · rn−1aRa = 0. Let
P be any prime ideal of R. Then ar1ar2ar3a · · · rn−1aRa ⊆ P . If a ∈ P ,
there is nothing to do. Otherwise, ar1ar2ar3a · · · rn−2aRa ⊆ P . Since a /∈ P ,
ar1ar2ar3a · · · rn−3aRa ⊆ P . Continuing in this way we reach aRa ⊆ P . Hence
a ∈ P . This contradiction proves that all nilpotents belong to P (R).

(4) It is clear. �

The first three conditions of Proposition 2.4 are all left-right agnostic, so we
have the following result.

Proposition 2.5. Let R be an ml-nil symmetric ring. Then the following hold.

(1) R is abelian.
(2) R is nil-semicommutative.
(3) R is 2-primal.
(4) Subrings of R is ml-nil symmetric.

Proof. Similar to the proof of Proposition 2.4. �

Examples 2.6. (1) For any ring R and any positive integer n ≥ 2, Un(R)
and Mn(R) are not mr-nil symmetric.

(2) For a commutative ring R and a positive integer n, Vn(R) is mr-nil
symmetric.

(3) There are abelian rings that are not mr-nil symmetric.

Proof. (1) It is enough to show for n = 2. Let R be a ring and consider
A = [ 1 0

0 0 ], C = [ 1 1
0 0 ] ∈ U2(R) and B = [ 0 1

0 0 ] ∈ nil(U2(R)). Then ABC = 0.
However, ACB = B 6= 0.

(2) Clear from the fact that R is commutative if and only if Vn(R) is com-
mutative.



214 A. HARMANCI, H. KOSE, AND B. UNGOR

(3) We consider the ring

R =

{[
a b
c d

]
∈M2(Z) | a, b, c, d ∈ Z, a ≡ d (mod 2), b ≡ c ≡ 0 (mod 2)

}
.

The idempotents of R are zero and identity matrices. So R is an abelian ring.
Let A = [ 2 0

2 0 ] ∈ R, B = [ 0 2
0 0 ] ∈ nil(R), C = [ 2 2

0 0 ] ∈ R. Then ABC = 0. But
ACB 6= 0. So R is abelian but not mr-nil symmetric. �

The class of mr-nil symmetric rings is closed under taking subrings and
isomorphisms of rings, however, it is not closed forming factor rings as the next
example shows.

Example 2.7. Let F be a field and R = F 〈a, b, c〉 be the free algebra with
noncommuting indeterminates a, b, c. Then R does not contain nonzero nilpo-
tents and so is an mr-nil symmetric ring. Let I be the ideal of R generated by
ab, a2 and b2. Let R = R/I and a = a + I, b = b + I, r = r + I ∈ R. By the
definition of the ideal I, a is nilpotent in R and cab = 0, but cba 6= 0. Hence
R is not mr-nil symmetric.

For any ring R and a positive integer n ≥ 2, Mn(R) is not mr-nil symmetric.
However, there are subrings of Mn(R) that are mr-nil symmetric as shown
below.

Proposition 2.8. Let R be a ring with no zero divisors. Then Vn(R) is mr-nil
symmetric for every positive integer n.

Proof. The cases n = 1 and n = 2 are clear. Firstly, we give a proof for n = 3.

Let n = 3 and A =
[ a x y
0 a x
0 0 a

]
, C =

[
c d t
0 c d
0 0 c

]
∈ V3(R), B =

[
0 b z
0 0 b
0 0 0

]
∈ nil(V3(R))

with ABC = 0. Then

ABC =

0 abc abd+ azc+ xbc
0 0 abc
0 0 0

 = 0.

Hence abc = 0 and abd+ azc+ xbc = 0. Note that

ACB =

0 acb acz + adb+ xcb
0 0 acb
0 0 0

 .
Since abc = 0, by hypothesis, a = 0 or bc = 0. If a = 0, then ABC = 0 implies
xbc = 0. Then x = 0 or bc = 0. Hence x = 0 or cb = 0. Thus ACB = 0.

Assume that a 6= 0 and bc = 0. Then cb = 0. Hence ABC = 0 implies
abd+ azc = 0. We consider this equality in two cases:
Case I. If b = 0 and c 6= 0, then z = 0. Hence ACB = 0.
Case II. If b 6= 0 and c = 0, then d = 0. Hence ACB = 0.
To complete the proof, we generalize the discussion for the integer n ≥ 4.

Let A =
n∑

i=j

n∑
j=1

aje(i−j+1)i ∈ Vn(R), B =
n∑

i=j

n∑
j=2

bje(i−j+1)i ∈ nil(Vn(R)) and
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C =
n∑

i=j

n∑
j=1

cje(i−j+1)i ∈ Vn(R) with ABC = 0. Then we have the following

equalities:

a1b2c1 = 0,(1)

a1b2c2 + (a1b3 + a2b2)c1 = 0,(2)

a1b2c3 + (a1b3 + a2b2)c2 + (a1b4 + a2b3 + a3b2)c1 = 0,(3)

a1b2c4 + (a1b3 + a3b2)c3 + (a1b4 + a2b3 + a3b2)c2(4)

+ (a1b5 + a2b4 + a3b3 + a4b2)c1 = 0,

...

a1b2cn−2 + (a1b3 + a2b2)cn−3 + (a1b4 + a2b3 + a3b2)cn−4(n-1)

+ · · ·+ (AB)(1,n−1)c1 = 0,

a1b2cn−1 + (a1b3 + a2b2)cn−2 + (a1b4 + a2b3 + a3b2)cn−3(n)

+ · · ·+ (AB)(1,n−1)c2 + (AB)(1,n)c1 = 0,

where (AB)(1,n−1) stands for a1bn−1 +a2bn−2 +a3bn−3 + · · ·+an−3b3 +an−2b2
the (1, n−1) entry of AB, (AB)(1,n) is a1bn +a2bn−1 +a3bn−2 + · · ·+an−3b4 +
an−2b3 + an−1b2 the (1, n) entry of AB.

Since a1b2c1 = 0 and R has no zero divisors, we have the following cases.
Case I. a1 = 0 and b2c1 6= 0. Then (2) implies a2 = 0, (3) implies a3 = 0, . . . ,
(n-1) implies an−2 = 0 and from (n) we have an−1 = 0. Hence ACB = 0.
Case II. a1 6= 0 and b2c1 = 0.
Subcase (i) c1 = 0. Then (2) implies b2c2 = 0 and c2b2 = 0. (3) implies
b2c3 + b3c2 = 0. Multiplying the latter from the left by c2 yields (b3c2)2 = 0.
Hence b3c2 = 0, c2b3 = 0, similarly, we have b2c3 = 0, c3b2 = 0. By (4) we
get b2c4 + b3c3 + b4c2 = 0. Multiplying the latter from the left by c2, we get
c2b4 = 0, b4c2 = 0 and b2c4+b3c3 = 0. Multiplying the latter from the left by c3
and using c3b2 = 0, we get b3c3 = 0, therefore c3b3 = 0, b2c4 = 0 and c4b2 = 0.
Continuing in this way, (n-1) implies bicj = 0 and cjbi = 0 for 1 ≤ i, j ≤ n− 2.
Then (n) reads b2cn−1+b3cn−2+b4cn−3+· · ·+bn−2c3+bn−1c2 = 0. Multiplying
the latter from the left by c2 we have bn−1c2 = 0 and c2bn−1 = 0. The remaining
is b2cn−1 + b3cn−2 + b4cn−3 + · · · + bn−2c3 = 0. Again multiplying the latter
from the left by c3, we have bn−2c3 = 0 and c3bn−2 = 0. Continuing in this
way, bicn−(i−1) = 0 and cn−(i−1)bi = 0 for 2 ≤ i ≤ n − 1. It follows that
ACB = 0.
Subcase (ii) c1 6= 0 and b2 = 0. Then (2) implies a1b3c1 = 0. Since a1 6= 0
and c1 6= 0, b3 = 0. (3) implies a1b4c1 = 0. So b4 = 0. (4) implies a1b5c1 = 0.
So b5 = 0. Continuing in this way we reach to b6 = · · · = bn−1 = 0. Thus
ACB = 0. This completes the proof. �
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Proposition 2.9. Let R be a ring and S denote any one of the subrings Vn(R),
V k
n (R), Dn(R) and Dk

n(R) of Mn(R). If S is mr-nil symmetric, then R is mr-
nil symmetric.

Proof. Let a, c ∈ R and b ∈ nil(R) with abc = 0. Consider A = aIn, B = bIn
and C = cIn. Then B ∈ nil(S) and ABC = 0. By hypothesis ACB = 0. Hence
acb = 0. It follows that R is mr-nil symmetric. �

3. Left (Right) N-reversible rings

As noted in Introduction, the reversible ring property is generalized as cen-
tral reversible, CNZ and central CNZ ring properties. In this section, we ap-
proach to reversibility from the perspective of nilpotents, namely, left (right)
N-reversible rings. This notion is also a generalization of the mr-nil symmetric
ring.

Definition 3.1. A ring R is called left N-reversible if for any nilpotent a ∈ R
and b ∈ R, ab = 0 implies ba = 0. Right N-reversible ring is defined similarly. A
ring R is called N-reversible if it is both left N-reversible and right N-reversible.

The concept of a left (right) N-reversible ring is placed between that of
reversible rings and CNZ rings, i.e.,

{symmetric rings} ⊆ {reversible rings}
⊆ {left (right) N-reversible rings}
⊆ {CNZ rings}.

Note that the subring of a left N-reversible ring is left N-reversible. In [29], a
ring R is called central reduced if all nilpotent elements of R are central. Clearly,
every central reduced ring is N-reversible. The property of N-reversibility of a
ring is not left-right symmetric as shown below.

Examples 3.2. (1) There are CNZ rings that are not left N-reversible.
(2) There are left N-reversible rings but not right N-reversible and so not

reversible.
(3) A ring is nil-reversible if and only if it is N-reversible.
(4) Every mr-nil symmetric ring is left N-reversible.
(5) There are left N-reversible rings which are not mr-nil symmetric.

Proof. (1) Let F be a field and R = U2(F ). Then nil(R) = [ 0 F
0 0 ]. Let A,

B ∈ nil(R), then AB = 0 implies BA = 0. So R is CNZ. For A = [ 0 1
0 0 ],

B = [ 1 1
0 0 ] ∈ R, we have AB = 0 but BA 6= 0. Hence R is not left N-reversible.

(2) Let F be a field and A = F 〈a, b〉 be the free algebra generated by the
noncommuting indeterminates a and b. Let I denote the ideal of A generated
by ba and a2. Then the ring R = A/I is left N-reversible but not right N-
reversible and so not reversible. The ring R has a and abt as only nonzero
nilpotent elements where t is any positive integer. Any element of R has the
form f(a, b) = k0 + k1a + k2b

n + k3ab
m. Assume that af(a, b) = 0. Then
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k0a + k2ab
n = 0. Hence k0 = k2 = 0 since a and abn are not in I. So

f(a, b)a = k1a
2 + k3ab

ma = 0. Similarly, abtf(a, b) = 0 implies f(a, b)abt = 0.
Thus R is left N-reversible. Since ba = 0 and ab 6= 0, R is not right N-reversible.
This also shows R is not reversible.

(3) Let R be a nil-reversible ring and a ∈ nil(R) and b ∈ R with ab = 0.
Since ab = 0 if and only if ba = 0, ab = 0 implies ba = 0 and then R is left
N-reversible. If ba = 0 and R is nil-reversible, then ab = 0. Hence R is right
N-reversible. Conversely, assume that R is N-reversible. Let a ∈ R and b ∈
nil(R). If ab = 0, then R being right N-reversible implies ba = 0. If ba = 0,
then R being left N-reversible implies ab = 0. Therefore R is nil-reversible.

(4) Assume that R is an mr-nil symmetric ring. Let a ∈ nil(R) and b ∈ R
with 1ab = 0 and 1 denote the identity of R. Then 1ba = 0. So R is left
N-reversible.

(5) Let R = A/I denote the ring considered in [20, Example 5], where
A = F 〈x, y, z〉 is the free algebra with F a field and the ideal I is defined by
I = (AxA)2 + (AyA)2 + (AzA)2 +AxyzA+AyzxA+AzxyA. Also it is noted
that R is a local, 13-dimensional F -algebra, with vector space basis

{1, x, y, z, xy, yx, xz, zx, yz, zy, xzy, zyx, yxz}.

It is mentioned that, obviously, R is not symmetric. In fact, it is not mr-nil
symmetric. Namely, xyz = 0 with y2 = 0 but xzy 6= 0. It is also proved that
R is reversible, therefore it is left N-reversible. �

In [11], an ideal I of a ring R is called left N-reflexive if for any a ∈ nil(R),
b ∈ R, being aRb ⊆ I implies bRa ⊆ I, and the ring R is called left N-reflexive
if the zero ideal is left N-reflexive.

Theorem 3.3. Let R be a left N-reversible ring. Then the following hold.

(1) R is a nil-semicommutative ring.
(2) R is a left N-reflexive ring.
(3) R is a CNZ ring.

Proof. Assume that R is a left N-reversible ring.
(1) Let a, b ∈ nil(R) with ab = 0. Then ba = 0. So bar = 0 for all r ∈ R.

By assumption arb = 0. Hence R is nil-semicommutative.
(2) To show that R is left N-reflexive, let a ∈ nil(R), b ∈ R with aRb = 0.

Then ab = 0. For any r ∈ R, abr = 0. By assumption bra = 0. Hence bRa = 0.
Thus R is left N-reflexive.

(3) Let a, b ∈ nil(R) with ab = 0. By hypothesis ba = 0. �

The converse statement of Theorem 3.3(1) need not hold in general by the
following example.

Example 3.4. For every reduced ring R, U3(R) is a nil-semicommutative
ring [23, Example 2.2] which is neither left nor right N-reversible. Indeed for
A = E23 ∈ nil(U3(R)) and B = E11 +E12 +E23 ∈ U3(R), we have AB = 0 but
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BA 6= 0. So U3(R) is not left N-reversible. For A = E11 +E13 +E33 ∈ U3(R),
B = E23 ∈ nil(U3(R)), we get AB = 0 but BA 6= 0. Hence U3(R) is not right
N-reversible.

Proposition 3.5. Every left N-reversible ring is abelian.

Proof. Assume that R is a left N-reversible ring. Let e ∈ Id(R) and x ∈ R.
Then ex − exe, xe − exe are nilpotent and (ex − exe)e = 0. By assumption,
e(ex− exe) = 0. Hence ex = exe or e is right semicentral. On the other hand,
(xe − exe)(1 − e) = 0 and the assumption implies (1 − e)(xe − exe) = 0 from
which we get xe = exe. Hence ex = xe. Therefore R is abelian. �

We now give an example of an abelian ring which is not N-reversible.

Example 3.6. We consider the ring R in Examples 2.6(3). The idempotents of
R are only zero and identity matrices. So R is an abelian ring. For A = [ 0 0

2 0 ] ∈
nil(R) and B = [ 0 0

2 2 ] ∈ R, we have AB = 0 but BA 6= 0. Also for C = [ 2 0
2 0 ] ∈

R, we get CA = 0 but AC 6= 0. Hence R is neither left N-reversible nor right
N-reversible.

Corollary 3.7. Every left N-reversible ring is directly finite.

In the next result, we show that von Neumann regularity and strongly reg-
ularity are the same for left N-reversible rings.

Theorem 3.8. Let R be a left N-reversible ring. Then R is von Neumann
regular if and only if it is strongly regular.

Proof. Assume that R is left N-reversible and von Neumann regular and x ∈ R.
There exists y ∈ R such that x = xyx. Then e = xy is central by Proposition
3.5. We have x = ex = xe = x2y. So R is strongly regular. The converse is
obvious. �

Compare the following proposition with Proposition 2.7 in [22].

Proposition 3.9. Let R be a ring. For any e ∈ Id(R) and a, b ∈ R, e = ab
implies e = eba if and only if R is abelian.

Proof. For the necessity, let e2 = e, a ∈ R. Let g = ea(1 − e) + e. Then g ∈
Id(R), eg = g and ge = e. By assumption eg = g implies gge = e. So g = e
and then ea(1− e) = 0. Now let g = (1− e)ae+ (1− e). Then g is idempotent,
(1− e)g = g and g(1− e) = 1− e. By invoking assumption, gg(1− e) = g. It
implies g = 1− e. So (1− e)ae = 0. Hence ea = ae. Thus R is abelian. For the
sufficiency, assume that R is abelian. By [22, Proposition 2.7], e = ab implies
e = bae. Thus e = eba. �

Theorem 3.10. R is a left N-reversible ring if and only if for any e ∈Id(R)
and a ∈ nil(R), b ∈ R, e = ab implies e = ba.
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Proof. For the necessity, let e = ab ∈ Id(R) where a ∈ nil(R), b ∈ R. By
Proposition 3.5, R is abelian. So we have e = eba = bae by Proposition 3.9.
Since ab(1 − e) = 0, by assumption b(1 − e)a = 0. Hence ba = bea. Since R
is abelian, ba = bea = bae = e. For the sufficiency, let a ∈ nil(R), b ∈ R with
ab = 0. Since 0 ∈ Id(R), by assumption, ba = 0. �

Theorem 3.11. For a semiprime ring R, the following statements are equiv-
alent.

(1) R is reduced.
(2) R is reversible.
(3) R is left N-reversible.
(4) R is mr-nil symmetric.

Proof. (1)⇒ (2)⇒ (3) and (1) ⇒ (4) are clear.
(3) ⇒ (1) Let a ∈ R such that a2 = 0. Then a(ar) = 0 for all r ∈ R. Since

R is left N-reversible, ara = 0. Then a = 0 since R is semiprime. Thus R is
reduced.

(4) ⇒ (3) By Examples 3.2(4). �

By Kaplansky [13], a ring R is called a right p.p.-ring if each principal right
ideal of R is projective, or equivalently, if the right annihilator of each element
of R is generated by an idempotent. A ring R is called a p.p.-ring if it is both
a right and a left p.p.-ring.

Theorem 3.12. Let R be a right p.p.-ring. Then the following statements are
equivalent.

(1) R is reduced.
(2) R is reversible.
(3) R is left N-reversible.
(4) R is mr-nil symmetric.

Proof. (1)⇒ (2)⇒ (3) and (1)⇒ (4) are clear.
(3) ⇒ (1) Let a ∈ R such that a2 = 0. Then a ∈ rR(a) = eR for some

e2 = e ∈ R. We have ae = ea = a = 0 since R is left N-reversible.
(4)⇒ (3) By Examples 3.2(4). �

Corollary 3.13. Let R be a von Neumann regular ring. Then the following
are equivalent.

(1) R is reduced.
(2) R is reversible.
(3) R is left N-reversible.
(4) R is mr-nil symmetric.

Proof. Since every regular ring is semiprime, the results are obtained from
Theorem 3.11. �

According to the next result, symmetricity and mr-nil symmetricity coincide
for semiprime rings and right p.p.-rings.
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Corollary 3.14. Let R be a semiprime or right p.p.-ring. Then R is symmetric
if and only if it is mr-nil symmetric.

Proof. Clear by Theorem 3.11 and Theorem 3.12. �

Proposition 3.15. For a reduced ring R, let S =
{[

a b c
0 a 0
0 0 a

]
| a, b, c ∈ R

}
be a

subring of M3(R). Then S is left N-reversible.

Proof. We note that nil(S) =
{[

0 b c
0 0 0
0 0 0

]
| b, c ∈ R

}
since R is reduced. Let A =[

0 b c
0 0 0
0 0 0

]
∈ nil(S), B =

[ x y z
0 x 0
0 0 x

]
∈ S with AB = 0. Then we have bx = cx = 0.

Hence xb = xc = 0 since R is reduced. Therefore BA = 0. �

Theorem 3.16. Let R be a left N-reversible ring. Then Ra is a nil left ideal
and aR is a nil right ideal for each a ∈ nil(R).

Proof. Let b ∈ nil(R) with bn = 0 for some positive integer n. Then bna =
b(bn−1a) = 0 for all a ∈ R. By hypothesis, bn−1ab = 0. Multiplying the latter
by a from the right we get b(bn−2aba) = 0. Again by hypothesis bn−2abab = 0.
Continuing on this way, we may reach b2(ab)n−2 = 0. Multiplying the latter
by a from the right we get b(b(ab)n−2a) = 0. Hence b(ab)n−2ab = 0 for each
a ∈ R. So (ab)n = 0 and (ba)n = 0. Hence bR is a nil right ideal and Rb is a
nil left ideal. �

Corollary 3.17. Every left N-reversible ring is weak symmetric.

Proof. By Theorem 3.16 and [12, Theorem 2.2]. �

Corollary 3.18. Every left N-reversible ring is 2-primal.

Proof. Note that for any a ∈ nil(R), by Theorem 3.16, aR ⊆ nil(R) and Ra ⊆
nil(R). We now show that nil(R) ⊆ P (R). Let b ∈ nil(R) with bn = 0 for
some positive integer n. For any r1, r2, . . . , rn ∈ R, by hypothesis, bn−1br1 = 0
implies br1b

n−2br2 = 0. Similarly, br2br1b
n−2r3 = 0. We continue in this way,

brnbrn−1 · · · br2br1bRb = 0. The rest is clear from the proof of Proposition 2.4
and therefore nil(R) ⊆ P (R). �

In [8], W. Chen called a ring R nil-semicommutative if for any a, b ∈ R, ab ∈
nil(R) implies aRb ⊆ nil(R).

Corollary 3.19. Every left N-reversible ring is nil-semicommutative.

Proof. Assume that R is a left N-reversible ring. Let ab ∈ nil(R) for a, b ∈ R.
Then ba ∈ nil(R). By Theorem 3.16, bar is nilpotent for each r ∈ R. Then
there exists a positive integer k such that (bar)k = 0. So we have (arb)k+1 = 0.
Hence R is nil-semicommutative. �

In [14], a ring R is called to satisfy the reflexive-nilpotents-property, or simply
called an RNP ring if aRb = 0 for a, b ∈ nil(R) implies bRa = 0.
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Proposition 3.20. Every left N-reversible ring is RNP.

Proof. Let aRb = 0 for any nilpotents a, b ∈ R. In particular, ab = 0. Then
a(br) = 0 for all r ∈ R. Since R is left N-reversible bra = 0, and so bRa = 0.
Thus R is RNP. �

The following example shows that there exists an RNP ring which is not left
N-reversible. By this example, we also say that Un(R) is not left N-reversible,
where n ≥ 2 because each subring of a left N-reversible ring is also left N-
reversible.

Example 3.21. Let R be a reduced ring. Then U2(R) is RNP but not left
N-reversible.

Proof. Let R be a reduced ring. By [14, Proposition 2.12(2)], U2(R) is RNP.
Let A = [ 0 1

0 0 ] ∈ nil(U2(R)) and B = [ 1 1
0 0 ] ∈ U2(R), we have AB = 0 but

BA = [ 0 1
0 0 ] 6= 0. �

For a nonempty subset S of a ring R, rnil(R)(S) = {x ∈ nil(R) | Sx = 0}
is called the right annihilator of S in nil(R). The left annihilator is defined
similarly and written by lnil(R)(S). If S = {a}, then we write rnil(R)(a) (resp.,
lnil(R)(a)) instead of rnil(R)({a}) (resp., lnil(R)({a})).

Proposition 3.22. For a ring R, the following are equivalent.

(1) R is left N-reversible.
(2) lnil(R)(S) ⊆ rnil(R)(S) for any nonempty subset S of R.
(3) For each b ∈ R, lnil(R)(b) ⊆ rnil(R)(b).
(4) AB = 0 implies BA = 0 for any nonempty subsets A of nil(R) and B

of R.

Proof. It is clear from the definition of a left N-reversible ring. �

Proposition 3.23. Let R be a ring and I be a proper ideal of R. If R/I
is left N-reversible and I is reduced as a ring without identity, then R is left
N-reversible.

Proof. Let a ∈ nil(R), b ∈ R with ab = 0. Then ā ∈ nil(R̄), b̄ ∈ R̄ and āb̄ = 0̄
where R̄ = R/I. Since R/I is left N-reversible, b̄ā = 0̄ and so ba ∈ I. We
have (ba)2 = b(ab)a = 0 and so ba = 0 since I is reduced. Hence R is left
N-reversible. �

We say an ideal I of a ring R left N-reversible if ab ∈ I implies ba ∈ I for
a ∈
√
I, b ∈ R, where

√
I = {s ∈ R | sn ∈ I for some positive integer n}.

Proposition 3.24. Let I be an ideal of a ring R. Then R/I is left N-reversible
if and only if I is left N-reversible.

Proof. Let R denote the ring R/I. Assume that I is a left N-reversible ideal.
Let ā ∈ nil(R̄) and b̄ ∈ R̄ with āb̄ = 0̄. Then there exists a positive integer
n such that an ∈ I and ab ∈ I. By assumption, ba ∈ I. So we have b̄ā = 0̄.



222 A. HARMANCI, H. KOSE, AND B. UNGOR

Hence R̄ is left N-reversible. Conversely, assume that R̄ is left N-reversible.
Let a ∈

√
I, b ∈ R such that ab ∈ I. The ring R̄ being left N-reversible implies

ba ∈ I. Thus I is left N-reversible. �

Proposition 3.25. Let I be an index set and {Ri}i∈I be a class of left N-
reversible rings and let R =

∏
i∈I Ri be the direct product of {Ri}i∈I . Then R

is left N-reversible if and only if Ri is left N-reversible for each i ∈ I.

Proof. We note that nil(
∏

i∈I Ri) =
∏

i∈Inil(Ri). Assume that Ri is left N-
reversible for each i ∈ I. Let a = (ai)i∈I ∈ nil(

∏
i∈I Ri) and b = (bi)i∈I ∈∏

i∈I Ri with ab = 0. So aibi = 0 for each i ∈ I. By assumption, biai = 0 for
each i ∈ I, that is ba = 0. Conversely, assume that

∏
i∈I Ri is left N-reversible.

Let ai ∈ nil(Ri) and bi ∈ Ri with aibi = 0 for each i ∈ I. Let a denote the
element of nil(

∏
i∈I Ri) having ith-entry is ai and all other entries are zero and

b the element of
∏

i∈I Ri having ith-entry is bi and all other are entries zero.
Then ab = 0. By assumption, ba = 0 and so biai = 0 for each i ∈ I. �

4. Some extensions of left N-reversible rings

In this section, we study some kinds of extensions of left N-reversible rings.
Let R be a ring. The Dorroh extension D(Z, R) = {(n, r) | n ∈ Z, r ∈ R} of
a ring R is the ring defined by the direct sum Z⊕ R with the ring operations
(n1, r1)+(n2, r2) = (n1+n2, r1+r2) and (n1, r1)(n2, r2) = (n1n2, r1r2+n1r2+
n2r1), where ri ∈ R and ni ∈ Z for i = 1, 2. It is obvious that nil(D(Z, R)) =
{(0, r) | r ∈ nil(R)}.

Proposition 4.1. A ring R is left N-reversible if and only if D(Z, R) is left
N-reversible.

Proof. Assume that R is left N-reversible. Let (n, a) ∈ D(Z, R) and (0, r) ∈
nil(D(Z, R)) with (0, r)(n, a) = 0. Then (0, r)(n, a) = 0 implies r(a + n1R) =
0 and so (a + n1R)r = 0 since R is left N-reversible. Thus (n, a)(0, r) =
(0, (n1R + a)r) = 0. Conversely, let s ∈ R and r ∈ nil(R) with rs = 0. We
have (0, r) ∈ nil(D(Z, R)) and (0, r)(0, s) = 0. By hypothesis, (0, s)(0, r) = 0.
It follows that sr = 0. So R is left N-reversible. �

Let R be a commutative ring, M be an R-module, and σ be an endomor-
phism of R. Give R⊕M a ring structure with multiplication (r1,m1)(r2,m2) =
(r1r2, σ(r1)m2 +r2m1), where ri ∈ R and mi ∈M . This extension is called the
Nagata extension of R by M and σ, and denoted by N(R,M ;σ) (see [25]). We
now give examples to show that the left N-reversibility of Nagata extension of
the ring depends on the endomorphism σ. That is, there is a Nagata extension
which is left N-reversible for some α and there is a Nagata extension which is
not left N-reversible for some β.

Example 4.2. (1) Consider the direct sum R = Z4 ⊕ Z4. Then R is a
commutative ring, and so R is left N-reversible. Let σ1 : R→ R be the
identity endomorphism. Then N(R,R;σ1) is left N-reversible.
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(2) Consider the ring in (1). Let σ2 : R→ R be the endomorphism defined
by σ2((a, b)) = (b, a). Then N(R,R;σ2) is not left N-reversible.

Proof. (1) It is clear.
(2) For x = ((2, 0), (0, 0)) ∈ nil(N(R,R;σ2)) and y = ((0, 1), (1, 0)) ∈

N(R,R;σ2), we have xy = 0 but yx 6= 0. �

Let R be a ring and S be the subset of R consisting of central regular
elements. Set S−1R = {s−1r | s ∈ S, r ∈ R}. Then S−1R is a ring with the
usual addition and multiplication and it has an identity. Note that nil(S−1R) =
{1Rr | r ∈ nil(R)}.

Proposition 4.3. A ring R is left N-reversible if and only if S−1R is left
N-reversible.

Proof. Assume that R is left N-reversible, r ∈ nil(R) and s−1t ∈ S−1R with
(1Rr)(s

−1t) = 0. Since (1Rr)(s
−1t) = s−1rt and s is regular, rt = 0. Then left

N-reversibility of R implies tr = 0. It follows that (s−1t)(1Rr) = s−1tr = 0.
Conversely, let r ∈ nil(R) and t ∈ R with rt = 0. Then for 1Rr ∈ nil(S−1R),
1Rt ∈ S−1R we have (1Rr)(1Rt) = 1Rrt = 0. Since S−1R is left N-reversible,
we get (1Rt)(1Rr) = 0 and so tr = 0. �

Corollary 4.4. For a ring R, R[x] is left N-reversible if and only if R[x;x−1]
is left N-reversible.

Let R be a ring and S a subring of R and

T [R,S] = {(r1, r2, . . . , rn, s, s, . . .) | ri ∈ R, s ∈ S, 1 ≤ n, 1 ≤ i ≤ n, i, n ∈ Z}.

Then T [R,S] is a ring under the componentwise addition and multiplication.
In the following we give necessary and sufficient conditions for T [R,S] to be
left N-reversible.

Proposition 4.5. Let R be a ring and S a subring of R. Then the following
are equivalent.

(1) T [R,S] is left N-reversible.
(2) R is left N-reversible.

Proof. (1) ⇒ (2) Let a ∈ nil(R), b ∈ R with ab = 0. Let A = (a, 0, 0, 0, . . . ),
B = (b, 0, 0, 0, . . . ). Then A ∈ nil(T [R,S]) and AB = 0. By (1), BA = 0 in
T [R,S]. Hence ba = 0 and so R is left N-reversible.

(2) ⇒ (1) Assume that A = (a1, a2, . . . , an, s, s, . . . ) ∈ nil(T [R,S]) and
B = (b1, b2, . . . , bm, t, t, . . . ) ∈ T [R,S] with AB = 0. Then all components
of A are nilpotent in R. Since R is left N-reversible, we obtain BA = 0. Hence
T [R,S] is left N-reversible. �
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5. Polynomial rings over left (right) N-reversible rings

Recall that a ring R is called an Armendariz ring if whenever two polynomi-
als f(x) =

∑m
i=0 aix

i, g(x) =
∑n

j=0 bjx
j ∈ R[x] satisfy f(x)g(x) = 0, we have

aibj = 0 for all i, j. This name is connected with the work of Armendariz [5]
and studied by many authors [2, 4, 27].

Theorem 5.1 (See [23, Theorem 3.3]). If R is a nil-semicommutative ring,
then nil(R[x]) = nil(R)[x].

By Theorem 3.3(1), we have the following result.

Corollary 5.2. If R is a left (right) N-reversible ring, then

nil(R[x]) = nil(R)[x].

In [19], Liu and Zhao introduce weak Armendariz rings as a generalization
of Armendariz rings. A ring R is said to be weak Armendariz if whenever two
polynomials f(x) =

∑m
i=0 aix

i, g(x) =
∑n

j=0 bjx
j ∈ R[x] satisfy f(x)g(x) = 0,

then aibj ∈ nil(R) for each i, j. In [4], Antoine introduced the notion of
a nil-Armendariz ring. A ring R is called nil-Armendariz if whenever two
polynomials f(x) =

∑m
i=0 aix

i, g(x) =
∑n

j=0 bjx
j ∈ R[x] satisfy f(x)g(x) ∈

nil(R)[x], then aibj ∈ nil(R) for all i, j. Clearly, both Armendariz and nil-
Armendariz rings are weak Armendariz.

Question 1: Is there any ring which weak Armendariz but not left (right)
N-reversible?

In [19], Liu and Zhao proved that a ring R is weak Armendariz if and only if for
any n, the upper triangular matrix ring Un(R) is weak Armendariz. However
Un(R) is not left N-reversible for a reduced ring R.

Corollary 5.3 (See [4, Corollary 5.2]). If R is an Armendariz ring, then
nil(R)[x] = nil(R[x]).

Example 5.4. There are left (right) N-reversible rings but not Armendariz.

Proof. The ring D2(Z4) is commutative so is left (right) N-reversible. Let
f(x) = [ 2 0

0 2 ] + [ 2 1
0 2 ]x ∈ D2(Z4)[x]. Then f(x)f(x) = 0 but [ 2 0

0 2 ] [ 2 1
0 2 ] 6= 0. �

Theorem 5.5. If a ring R is left (right) N-reversible, then R is nil-Armendariz.

Proof. Let f(x) =
∑m

i=0 aix
i, g(x) =

∑n
j=0 bjx

j ∈ R[x] with f(x)g(x) ∈
nil(R)[x]. Then we have the following system of equations:

(0) a0b0 ∈ nil(R)
(1) a0b1 + a1b0 ∈ nil(R)
(2) a0b2 + a1b1 + a2b0 ∈ nil(R)

...
(n) a0bn + a1bn−1 + . . .+ anb0 ∈ nil(R).
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Since R is left N-reversible, nil(R) is an ideal of R by Corollary 3.18. Observing
that Equation (0) yields that b0a0, a0b0 are in nil(R). If we multiply Equation
(1) from the left by b0, then b0a1b0 ∈ nil(R), so b0a1, a1b0 ∈ nil(R). Similarly,
a0b1 and b1a0 are nilpotent. If we multiply Equation (2) from the right by a0,
then a0b2a0 ∈ nil(R), so a0b2 and b2a0 are in nil(R). Then a1b1 + a2b0 is in
nil(R). If we multiply from the right by a1 in this statement, we have a1b1a1 is
in nil(R) and then a1b1 and b1a1 are in nil(R). So we get a2b0 is in nil(R). To
complete the proof for an arbitrary integer n, we proceed by induction on the
sum of indices i, j. For i + j = 0, both a0b0, b0a0 are in nil(R). Assume that
it holds for i + j < n. Multiplying Equation (n) by b0 from the left gives an
expression from nil(R). Then all b0a0bn, b0a1bn−1, . . . , b0an−1b1 are in nil(R)
by the induction step and the subtraction yields b0anb0 ∈ nil(R), so b0an and
anb0 are nilpotent as well. For bna0, resp. a0bn, one proceeds analogically by
multiplying Equation (n) by a0 from the right. The induction terminates and
thus R is nil-Armendariz. �

The converse statement of Theorem 5.5 need not hold in general by the
following example.

Example 5.6. Consider the ring in [4, Example 4.12]. Let F be a field and
R = F 〈a | a2 = 0〉. Then the ring T = [ R aR

aR R ] is nil-Armendariz by the
argument in [4, Example 4.12]. We note that the set of all nilpotent elements
of T is [ aR aR

aR aR ]. For A = [ 0 a
0 0 ] ∈ nil(T ) and B = [ 1 0

0 0 ] ∈ T , we have AB = 0
but BA 6= 0. Thus T is not left N-reversible.

Theorem 5.7. Let R be a ring. If R is a left N-reversible and Armendariz
ring, then R[x] is left N-reversible.

Proof. By Corollary 5.2, we note that nil(R[x]) = nil(R)[x] since R is left N-
reversible. Let f(x) =

∑m
i=0 aix

i ∈ nil(R[x]), g(x) =
∑n

j=0 bjx
j ∈ R[x] with

f(x)g(x) = 0. Then we have aibj = 0 since R is Armendariz and ai ∈ nil(R)
for all i, j. Thus by the left N-reversibility of R, we get bjai = 0 for all i, j
which implies that g(x)f(x) = 0. Hence R[x] is left N-reversible. �
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