References
- A. M. Abdul-Jabbar, C. A. K. Ahmed, T. K. Kwak, and Y. Lee, On commutativity of nilpotent elements at zero, Commun. Korean Math. Soc. 32 (2017), no. 4, 811-826. https://doi.org/10.4134/CKMS.c170003
- D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272. https://doi.org/10.1080/00927879808826274
- D. D. Anderson and V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), no. 6, 2847-2852. https://doi.org/10.1080/00927879908826596
- R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), no. 8, 3128-3140. https://doi.org/10.1016/j.jalgebra.2008.01.019
- E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470-473. https://doi.org/10.1017/S1446788700029190
- H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368. https://doi.org/10.1017/S0004972700042052
- U. S. Chakraborty and K. Das, On nil-symmetric rings, J. Math. 2014 (2014), Art. ID 483784, 7 pp. https://doi.org/10.1155/2014/483784
- W. Chen, On nil-semicommutative rings, Thai J. Math. 9 (2011), no. 1, 39-47.
- P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641-648. https://doi.org/10.1112/S0024609399006116
- J. M. Habeb, A note on zero commutative and duo rings, Math. J. Okayama Univ. 32 (1990), 73-76.
- A. Harmanci, H. Kose, Y. Kurtulmaz, and B. Ungor, Reflexivity of rings via nilpotent elements, accepted in Rev. Un. Mat. Argentina, also arXiv:1807.02333 [math.RA].
- A. Harmanci, H. Kose, and B. Ungor, On weak symmetric property of rings, Southeast Asian Bull. Math. 42 (2018), no. 1, 31-40.
- I. Kaplansky, Rings of Operators, W. A. Benjamin, Inc., New York, 1968.
- M. Kheradmand, H. Khabazian, T. K. Kwak, and Y. Lee, Reflexive property restricted to nilpotents, J. Algebra Appl. 16 (2017), no. 3, 1750044, 20 pp. https://doi.org/10.1142/S021949881750044X
- H. K. Kim, T. K. Kwak, S. I. Lee, Y. Lee, S. J. Ryu, H. J. Sung, and S. J. Yun, A generalization of symmetric ring property, Bull. Korean Math. Soc. 53 (2016), no. 5, 1309-1325. https://doi.org/10.4134/BKMS.b150589
- H. Kose and A. Harmanci, Central CNZ rings, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 38 (2018), no. 1, Mathematics, 95-104.
- H. Kose, B. Ungor, S. Halicioglu, and A. Harmanci, A generalization of reversible rings, Iran. J. Sci. Technol. Trans. A Sci. 38 (2014), no. 1, 43-48.
- J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359-368. https://doi.org/10.4153/CMB-1971-065-1
- Z. Liu and R. Zhao, On weak Armendariz rings, Comm. Algebra 34 (2006), no. 7, 2607-2616. https://doi.org/10.1080/00927870600651398
- G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002), no. 3, 311-318. https://doi.org/10.1016/S0022-4049(02)00070-1
- G. Mason, Reflexive ideals, Comm. Algebra 9 (1981), no. 17, 1709-1724. https://doi.org/10.1080/00927878108822678
- F. Meng and J. Wei, e-symmetric rings, Commun. Contemp. Math. 20 (2018), no. 3, 1750039, 8 pp. https://doi.org/10.1142/S0219199717500390
- R. Mohammadi, A. Moussavi, and M. Zahiri, On nil-semicommutative rings, Int. Electron. J. Algebra 11 (2012), 20-37.
- R. Mohammadi, A. Moussavi, and M. Zahiri, On annihilations of ideals in skew monoid rings, J. Korean Math. Soc. 53 (2016), no. 2, 381-401. https://doi.org/10.4134/JKMS.2016.53.2.381
- M. Nagata, Local Rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers a division of John Wiley & Sons New York, 1962.
- L. Ouyang and H. Chen, On weak symmetric rings, Comm. Algebra 38 (2010), no. 2, 697-713. https://doi.org/10.1080/00927870902828702
- M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. http://projecteuclid.org/euclid.pja/1195510144 https://doi.org/10.3792/pjaa.73.14
- A. A. Tuganbaev, Semidistributive modules and rings, Mathematics and its Applications, 449, Kluwer Academic Publishers, Dordrecht, 1998. https://doi.org/10.1007/978-94-011-5086-6
- B. Ungor, S. Halicioglu, H. Kose, and A. Harmanci, Rings in which every nilpotent is central, Algebras Groups Geom. 30 (2013), no. 1, 1-18.
- J. Wei, Generalized weakly symmetric rings, J. Pure Appl. Algebra 218 (2014), no. 9, 1594-1603. https://doi.org/10.1016/j.jpaa.2013.12.011