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RINGS WITH IDEAL-SYMMETRIC IDEALS

JUNCHEOL HAN, YANG LEE, AND SANGWON PARK

ABSTRACT. Let R be a ring with identity. An ideal N of R is called
ideal-symmetric (resp., ideal-reversible) if ABC C N implies ACB C N
(resp., AB C N implies BA C N) for any ideals A, B,C in R. A ring
R is called ideal-symmetric if zero ideal of R is ideal-symmetric. Let
S(R) (called the ideal-symmetric radical of R) be the intersection of all
ideal-symmetric ideals of R. In this paper, the following are investigated:
(1) Some equivalent conditions on an ideal-symmetric ideal of a ring are
obtained; (2) Ideal-symmetric property is Morita invariant; (3) For any
ring R, we have S(Mn(R)) = Mn(S(R)) where M, (R) is the ring of all
n by n matrices over R; (4) For a quasi-Baer ring R, R is semiprime if
and only if R is ideal-symmetric if and only if R is ideal-reversible.

1. Introduction and basic definitions

Throughout this paper, all rings are associative with identity unless oth-
erwise specified. Let R be a ring. Let J(R) and P(R) denote the Jacobson
radical and the prime radical of R respectively. Denote the n by n full (resp.,
upper triangular) matrix ring over R by M, (R) (resp., U,(R)). Z (Z,,) de-
notes the ring of integers (modulo n). R[z] denotes the polynomial ring with
an indeterminate = over R.

Lambek introduced the concept of a symmetric right ideal, unifying the sheaf
representation of commutative rings and reduced rings in [10]. Lambek called a
right ideal I of a ring R symmetric if rst € I implies rts € I for all v, s,t € R. If
zero ideal of R is symmetric, then R is called a symmetric ring; while Anderson
and Camillo [1] used the term ZC3 for this concept. It is proved by Lambek
that an ideal I of a ring R is symmetric if and only if riry---r, € I implies
To()Te(2) " Tom) € I for any permutation o of the set {1,2,...,n}, where
n > 1 and r; € R for all i (see [10], Proposition 1).

As a generalizaton of symmetric rings, Kwak, at el. [3] extended the concept
of symmetric rings to ideal-symmetric rings. A ring R is called ideal-symmetric
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if ABC = 0 implies ACB = 0 for all ideals A, B,C of R. It is evident that
symmetric rings are ideal-symmetric, but the converse need not hold by [3,
Example 1.2].

In this note, we will extend the concepts of symmetric ideals of a ring to
ideal-symmetric ideals. We will call an ideal N of a ring R ideal-symmetric if
ABC C N implies ACB C N for any ideals A, B,C in R. Note that if the zero
ideal of a ring R is ideal-symmetric, then R is ideal-symmetric ([3]).

It is obvious that every prime ideal of a ring R is ideal-symmetric. Moreover,
observe that any semiprime ideal of a ring R is also ideal-symmetric. Indeed,
let N be a semiprime ideal of R such that ABC' C N for any ideals A, B,C of
R. Since N is semiprime and (ACB)? = A(CBA)(CB) C ABC C N, we have
ACB C N, yielding that NV is ideal-symmetric. However, the converse need
not be true by the following examples:

Example 1.1. Let n,k > 2 and consider the ideal I = n*Z of Z. Then I is
clearly an ideal-symmetric ideal of Z, but I is not a semiprime ideal of Z since
7,/n*7Z is isomorphic to Z,x.

Example 1.2. Let H be the Hamilton quaternions over the real numbers.
Consider the subring

b
R= a | a,b,c € H
0

o oo
[SEEES o

of U3(H). Then R is a noncommutative local ring with J2 # 0 = J3, where

J=J(R) = {(§ 0 8) |b,ce H}. Note that {R, J,J2,0} is the set of all ideals

of R, and so all ideals of R are ideal-symmetric. But 0 and J? are not semiprime
ideals of R.

According to Cohen [5], a ring R is called reversible if ab = 0 implies ba = 0
for all a,b € R. Anderson and Camillo [1] used the term ZC4 for the reversible
condition. It is evident that a symmetric ring is reversible. But the converse
could not hold by [1, Example 1.5] or [11, Examples 5 and 7]. An ideal N of
a ring R is called reversible if ab € N implies ba € N for all a,b € R. In [12],
this ideal NV is called completely refiexive. We will also extend the concepts
of reversible ideals to ideal-reversible ideals. We will call an ideal N of a ring
R ideal-reversible if AB C N implies BA C N for any ideals A, B in R. In
particular, if the zero ideal of a ring R is ideal-reversible, then R is usually
called ideal-reversible. Anderson and Camillo demonstrated that there exists
a reversible ring but not ideal-symmetric in [1, Example 1.5]. On the other
hand, it is clear that any ideal-symmetric ideal of a ring is ideal-reversible.
The following example tells us that there exists an ideal-reversible ideal in
some ring but not ideal-symmetric:
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Example 1.3. By [1, Example 1.5], there exists a reversible ring but not
ideal-symmetric. Hence we can take a reversible ring R; which is not ideal-
symmetric. Consider R = Ry X Ry for some ring Rs, and let N = {0} x Rq
be an ideal of R. Note that R/N is isomorphic to R;. Since R; is reversible,
R, is clearly ideal-reversible. Thus R/N is ideal-reversible, and so N is ideal-
reversible by the below Theorem 2.8. On the other hand, since R; is not
ideal-symmetric, R/N is not also ideal-symmetric, and then N is not ideal-
symmetric by the below Theorem 2.8.

In Section 2, we will show that every symmetric ideal of a ring R is ideal-
symmetric, but the converse does not hold. Some equivalent conditions that an
ideal N of R is ideal-symmetric are investigated, for example, an ideal N of R
is ideal-symmetric if and only if I1 I3 --- I,, € N implies I51)I5(2)  + Ly(n) S N
for any permutation o of the set {1,2,...,n} where n > 3 and I; is an (right,
left) ideal of R for all 4. It is shown that an ideal NV of R is ideal-symmetric if
and only if R/N is an ideal-symmetric ring.

We call the intersection of all ideal-symmetric ideals of a ring R the ideal-
symmetric radical of R and denote it by S(R). It is evident that S(R) is the
smallest ideal-symmetric ideal of R. If R has no proper ideal-symmetric ideals,
then S(R) = R. It is clear that S(R) C P(R) C J(R) since every prime ideal
of R is ideal-symmetric and every maximal ideal is prime. In Section 2, we will
also show that the ideal-symmetric property is Morita invariant, and for any
ving R, S(My(R)) = My(S(R)) and S(R)[z] C S(R[z]).

In [12], a right ideal I of a ring R is called reflexive if aRb C I implies that
bRa C I for any a,b € R. R is called reflezive if the zero ideal of R is a reflexive
ideal (i.e., aRb = 0 implies that bRa = 0 for a,b € R. It was shown in [9] that
a ring R is ideal-reversible if and only if R is reflexive. In Section 3, we will
show that any ideal N is ideal-reversible if and only if IV is reflexive if and only
if IJ C N implies JI C N for any right (or left) ideals I, J of R.

Kaplansky [8] introduced the concept of Baer rings as rings in which the
right (left) annihilator of every nonempty subset is generated by an idempo-
tent. Clark [4] extended the concept of Baer rings to quasi-Baer rings. A ring
R is called quasi-Baer if the right (left) annihilator of every nonzero ideal is
generated by an idempotent (See [2], [7]). Note that the definition of Baer
rings and quasi-Baer rings are left-right symmetric by [4] and [8]. Also note
that in a reduced ring R (i.e., R has no nonzero nilpotent), R is Baer if and
only if R is quasi-Baer. In Section 3, it was shown that for any ideal B of an
ideal-reversible ring R, if R is quasi-Baer, then ann(B) = Re for some central
idempotent e € R. In [3, Proposition 1.9], it was proved that for a Baer ring
R, R is semiprime if and only if R is ideal-symmetric if and only if R is re-
flexive (equivalently, ideal-reversible). In this note, it was shown that for an
ideal N of a ring R such that R/N is Baer, N is semiprime if and only if N is
ideal-symmetric if and only if N is ideal-reversible.
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2. Ideal-symmetric ideals of rings
In this section we study the structure of ideal-symmetric ideals.

Proposition 2.1. Every symmetric (resp., reversible) ideal of a ring R is
ideal-symmetric (resp., ideal-reversible).

Proof. Let N be a symmetric ideal of a ring R. Suppose that ABC C N for
any ideals A, B,C in R, and let & € ACB be arbitrary. Then v = Y. | a;q;
where a; € A,qi = Zj;l Cijbij € CB (Cij e C, bij S B) foreachi=1,...,n.
Soa=>", Zﬁzl a;cijb;;. Note that each a;b;jc;; € ABC C N. Since N is
symmetric, a;c;jb;; € N, and so o € N, yielding that N is ideal-symmetric.
Similarly, we also show that every reversible ideal of a ring R is ideal-reversible.

O

The converse of above Proposition 2.1 could not be true by the following
example:

Example 2.2. Let Z4 be the rings of integers modulo 4 and R = Mat(Zy).
Then {R, N = Mats(2Z4),0} is the set of all ideals of R. Note that R is not
reversible (hence R is not symmetric) because ab = 0 # ba for some a,b € R
where a = ($3),b = (). Note that the ideal N of R is not reversible
(hence N is not symmetric) because pg € N,qp ¢ N for some p,q € R where
p=(34),g = (19). On the other hand, we observe that all ideals of R
are ideal-symmetric. Indeed, let A, B,C be ideals of R. First, suppose that
ABC = 0. If one of A, B,C is zero, then clearly, ACB = 0. Let A, B,C # 0.
Since ABC =0, ABC isoneof NNR, NRN, RNN, and so ACB = 0, yielding
that 0 is ideal-symmetric. Next, suppose that ABC' C N. If one of A, B,C' is
zero, then clearly, ABC = ACB =0C N. Let A, B,C # 0. Since ABC C N,
ABC =0or ABC = N. If ABC = 0, then ACB = 0 as above argument.
If ABC = N, then ABC is one of NRR, RRN, RNR, and so ACB = N,
yielding that N is ideal-symmetric (hence N is ideal-reversible).

Proposition 2.3. Let N be any ideal of a ring R. Then N is ideal-symmetric
if and only if (a)(b)(c) C N implies (a)(c)(b) C N for all a,b,c € R.

Proof. Suppose that (a)(b)(c) € N implies (a)(c)(b) C N for all a,b,c € R. Let
ABC C N for any ideals A, B,C in R, and let « € ACB be arbitrary. Then
a=>"aq wherea; € A,q; = Z§:1 ¢ijbij € CB (¢;5 € C,b;j € B) for each
i=1,...,n. Soa=> ", 2?:1 a;c;jb;j. Since each a;b;;ci; € (a;)(bij)(cij) C
ABC C N, we have a;c;jb;j € (a;)(cij)(bi;) € N by assumption, and so o € N.
Thus ACB C N, yielding that N is an ideal-symmetric ideal of a ring R. The
converse is clear. O

Lemma 2.4. Let N be an ideal-symmetric ideal of a ring R and Iy, 15,13
be ideals of R. Then I1I2I3 C N if and only if I,(1)I,2)ls3) S N for any
permutation o of the set of {1,2,3}.
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Proof. Suppose that N is ideal-symmetric such that I [sbI3 C N. Since N is
ideal-symmetric, I1IsIs C N. Since N is ideal-symmetric and RI;(I213) C N,
we have R(I2I3)I; C N, and so IxI3l; C N, also 1113 C N. By applying the
similar argument to RI1(I3lz) C N, we also have that IsI1 I, I3Io]; € N. The
converse is clear. [l

Let S, be the symmetric group on n letters for any positive integer.

Proposition 2.5. For any ideal N of a ring R, the following conditions are
equivalent:

(1) N is ideal-symmetric;

(2) aRbRc C N implies aRcRb C N for all a,b,c € R;

(3) Iily--- I, € N implies I51y1y2) - Loy © N for any o € S, where I;

is an ideal of R fori=1,2,...,n and n > 3 is any positive integer;
(4) a1Ray --- Ray, € N implies ay(1)Ray(2) - Ragmny € N for any o € S,
where I; is an ideal of R fori=1,2,...,n and n > 3 is any positive integer;

(5) I1ly--- I, € N implies I,(1)l52) ++ Io(ny S N for any o € S, where I;
is a right (left) ideal of R fori=1,2,...,n and n > 3 is any positive integer;

(6) ABC C N implies BAC C N for all ideals A, B,C of R;

(7) aRbRc C N implies bRaRc C N for all a,b,c € R.

Proof. (1) = (2). Suppose that N is ideal-symmetric and aRbRc C N for all
a,b,c € R. Since N is an ideal of R, we have that (RaR)(RbR)(RcR) C N.
Since N is ideal-symmetric and RaR, RbR, RcR are ideals of R,

(RaR)(RcR)(RbR) C N

by assumption. Clearly, aRcRb C (RaR)(RcR)(RbR) C N as desired.

(2) = (1). Suppose that aRbRc C N implies aRcRb C N for all a,b,c € R.
Let ABC C N for any ideals A, B,C in R, and let a« € ACB be arbitrary.
Then a = Z?il a;cib; where a; € A,c; € C,b; € B for some positive integer
m. Since each a;b;c; € a;Rb;Rc; C ABC C N, we have a;c;b; € a;Re;Rb; C N
by assumption, and so « € N. Thus ACB C N, yielding that N is ideal-
symmetric.

(1) = (3). Suppose that N is ideal-symmetric and I1Iy---I, C N (n > 3).
Since S, is generated by the transpositions 7o = (1,2),71 = (2,3),...,Th—2 =
(n—1,n),7—1 = (n,1) € Sy, it is enough to show that I, (1)I7,(2) - Ir,(n) €
N for all k=0,1,...,n—1. Note that I2I3---1I; C N, and so I3ly---I C N,
~-->Injl"'In—1 Q N, i.e.,

(*) IMk(l)INk (2) T IHk: (n) c N7

where p = (1,2,...,n) € S, and pp = pF(= p-p---p) for any k = 0,1,...,
n — 1. By Lemma 2.4, we have IoI1I5---I, C N, i.e.,

() Loy Iro(2) - Irg(n) © N-
By (%) and (*x), we have that

ITk(l)I"'k(Q) e I‘fk(") = IﬂkTO#n—k(l)IﬂkTOHn—k(z) e Iﬂr‘m#n—r(") CN
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by observing that prmoptn—r = 7 for all k =0,1,...,n—1.

(3) = (1). Clear.

(1) < (6). It follows from Lemma 2.4.

(1) & (7). It follows from (1) < (6) and the similar arguments given in the
proof of (1) & (2).

(3) = (4) and (5) = (3) are obvious.

(4) = (3). Suppose that ay Ray - - - Ra, € N implies a,(1)Rag(2) - - - Rag(n)
N for any o € S,,. Let I1I5--- I, C N where I; (1 <4 < n) is an ideal of R.
Let 8 € I51)l5(2) - - I5(n) be arbitrary for any o € S,,. Then

l
B= ao1),00(2), " Ao(n),
j=1

where ag(i); € I (1 <i<mnl<j <. Since each ai;az; - ap; €
a1Ras--- Ra, C N, A5(1),;00(2); " Oo(n); € ag(l)RaU(g) s Raa(n) C N by
assumption, and so § € N, yielding that I;(1)I5(2) - I5(n) © N forany o € S,.

(3) = (5) Suppose that I1Is---I, C N implies 10(1)10(2) . -Ia(n) C N
for any o € S, where I; (1 < i < n) is an ideal of R and n is any pos-
itive integer. Let JiJo---J, € N where J; (1 < ¢ < n) is a right ideal
of R. Note that (RJ1R)(RJ2R)--- (RJ,R) C N where RJ;R (1 < i < n)
is an ideal of R. Let K; = RJ;R for each i = 1,2,...,n. By assumption,
we have that (RJ,1)R)(RJs@2)R) - (RJymn)R) € N for any o € S, and so
J[,(l)JU(g) s Jg(n) - (RJJ(DR) (RJO—(Q)R) S (RJG(n)R) C N, as desired. The
proof for the left ideal case is shown by the similar argument given in the right
ideal case. (Il

Corollary 2.6. For a ring R, the following conditions are equivalent:

(1) R is ideal-symmetric;

(2) aRbRc = 0 implies aRcRb =0 for all a,b,c € R;

(3) Iily -+ I, = 0 implies I51yl5(2) - Iy(n)y = 0 for any o € S, where I; is
an ideal of R fori=1,2,...,n and n > 3 is any positive integer;

(4) a1Ras--- Rap, = 0 implies ay1yRag(2) -+ Ragmy = 0 for any o € Sy,
where I; is an ideal of R fori=1,2,...,n and n > 3 is any positive integer;

(5) Iy -+~ I, = 0 dmplies Io1yly(2) - Iy(n) = 0 for any o € S,, where I; is
a right (left) ideal of R for i =1,2,...,n and n > 3 is any positive integer;

(6) ABC = 0 implies BAC =0 for all ideals A, B,C of R;

(7) aRbRc = 0 implies bRaRc = 0 for all a,b,c € R.

Proof. 1t follows from Proposition 2.5. (]

The following theorem implies that the ideal-symmetric property of any ideal
of a ring is Morita invariant.

Theorem 2.7. Let R be a ring and N be an ideal of R. Then we have the
following:
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(1) If N is ideal-symmetric, then eNe is an ideal-symmetric ideal of eRe for
each € =e € R.

(2) N is ideal-symmetric in R if and only if M, (N) is ideal-symmetric in
M, (R) for alln > 1.

Proof. (1) Suppose that N is ideal-symmetric. Let a,b,c € eRe such that
a(eRe)b(eRe)c C eNe. Since a(eRe)b(eRe)c = aeRebRec C eNe C N and
N is ideal-symmetric, aeRecReb C N, and so a(eRe)c(eRe)b = aeRecReb =
e(aeRecReb)e C eNe, yielding that the ideal eNe is ideal-symmetric.

(2) Suppose that N is ideal-symmetric. Let A, B,C be ideals of M, (R)
such that ABC C M, (N). Note that there exist ideals I, J, K such that A =
M,(I), B = M,(J),C = M,(K). Note that ABC = M, (I)M,(J)M,(K) =
M, (IJK) and then IJK C N. Since N is ideal-symmetric, ITKJ C N, and so
ACB = M,(IJK) C M,(N). Thus M, (N) is ideal-symmetric.

Conversely, if Mat, (N) is ideal-symmetric, then N 2 e;;Mat,(N)ey; is
ideal-symmetric by (1) where e;; is the matrix in Mat,, (N) with (1, 1)-entry 1
and elsewhere 0. O

We already knew that for an ideal N of a ring R, N is a prime (resp.,
semiprime) ideal if and only if R/N is prime (resp., semiprime). Here we also
have the following;:

Theorem 2.8. For an ideal N of a ring R, N is ideal-symmetric (resp., ideal-
reversible) if and only if R/N is an ideal-symmetric (resp., ideal-reversible)
ring.

Proof. Suppose that N is ideal-symmetric. Let A, B, C be ideals of R/N such
that ABC = N, zero of R/N. Then there exist ideals Ay, By, Co 2 N of R such
that A = Ag/N,B = By/N,C = Cy/N. Since ABC = (Ay/N)(By/N)(Cy/N)
= (A4pByCy)/N = N, AyByCy = N. Since N is ideal-symmetric, A¢CoBy C N.
Thus ACB = (A9CyBy)/N = N, which yields that R/N is ideal-symmetric
ring.

Suppose that R/N is an ideal-symmetric ring. Let A, B, C be ideals of N
such that ABC C N. Then ABC+N = N. Note that (A+N)(B+N)(C+N) C
ABC+ N = N, and so (A+ N)(B+ N)(C+ N) = N. Since R/N is an ideal-
symmetric ring, ((4A + N)/N)(C + N)/N)(B + N)/N) = N, yielding that
(A+ N)(C+ N)(B4+N)C N,andso ACBC (A+N)(C+N)(B+N)CN,
which means that N is ideal-symmetric.

Similarly, ideal-reversible case is also shown. O

Corollary 2.9. Let I be an ideal-symmetric ideal of a ring R. If I is semiprime
(as a ring without identity), then R is ideal-symmetric.

Proof. Since I is ideal-symmetric, R/I is ideal-symmetric by Theorem 2.8.
Since [ is semiprime (as a ring without identity), R is ideal-symmetric ring by
[3, Proposition 2.11]. O
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Note that a subring of ideal-symmetric ring could not be ideal-symmetric
by the following example:

Example 2.10. Let R be an ideal-symmetric ring and consider Us(R). By
Theorem 2.8, Maty(R) is an ideal-symmetric ring. Let A = (5 &), B = (§ &)
be two ideals of Uz(R). Since ABA = 0 and AAB # 0, Uz(R) is not ideal-
symmetric. On the other hand, we note that A (or B) is an ideal-symmetric
ideal of Us(R) and it is also ideal-symmetric as a subring of Us(R) because
there is the unique nonzero proper ideal (§ £) in A (or B) even though Us(R)
is not an ideal-symmetric ring.

Lemma 2.11. (1) The intersection of two ideal-symmetric ideals of a ring R
is ideal-symmetric.

(2) The intersection of all ideal-symmetric ideals of a ring R is ideal-sym-
metric.

Proof. Clear. O

Recall that the intersection of all ideal-symmetric ideals of a ring R intro-
duced in Lemma 2.11 is called the ideal-symmetric radical of R and denoted
S(R). It is evident that S(R) is the smallest ideal-symmetric ideal of R, and
R is a ring such that S(R) = 0 if and only if R is ideal-symmetric.

Corollary 2.12. For any ring R, we have S(R/S(R)) = 0.

Proof. Since S(R) is ideal-symmetric ideal of R by Lemma 2.11, R/S(R) is an
ideal-symmetric ring by Theorem 2.8, and so S(R/S(R)) = 0. O

Now we raise a question:

Question 1. For an ideal I of a ring R that is considered as ring, S(I) =
INnS(R)?

The answer is negative by the following examples:

Example 2.13. Let R = U, (F) over a field F, and consider the ideal I = (J £)
of R. By Example 2.8, U(F) is not ideal-symmetric (i.e., the zero ideal of R
is not ideal-symmetric). Since R/I = F x F, which is ideal-symmetric, I is
ideal-symmetric by Theorem 2.8, i.e., S(I) = 0. On the other hand, observe
that all nonzero ideals of R are I, I; = (3 L) and I, = (£ £') which are clearly
ideal-symmetric. Hence S(R) = INI1NI; =1,andso INS(R) =1 # 0= S(I).
Note that even though all nonzero ideals of Uz (F') are ideal-symmetric, Uz (F)
is not ideal-symmetric.

Example 2.14. Let R be not any ideal-symmetric ring with I = J(R) # 0.
Then S(I) = 0 because I is a semiprime ideal of R (hence I is ideal-symmetric).
Thus I N S(R) = J(R) N S(R) = S(R) # 0 because R is not ideal-symmetric,
yielding that S(I) =0 # I NS(R).

Corollary 2.15. If S(R) is semiprime (as a ring without identity) for a ring
R, then R is ideal-symmetric.
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Proof. Since S(R) is an ideal-symmetric ideal of R, it follows from Corollary
2.9. ([

Theorem 2.16. For any ring R, we have S(M,(R)) = M, (S(R)).

Proof. Let N = S(R). By Lemma 2.11, N is ideal-symmetric ideal of R, and
so M, (N) is ideal-symmetric ideal of M, (R) by Theorem 2.7. Since M, (N)
is ideal-symmetric ideal of M, (R), S(M,(R)) C M,(N). Next, we will show
that M,(N) C S(M,(R)). Let A be any ideal-symmetric ideal of M, (R).
Then there exists an ideal Ag of R such that A = M,,(Ap). Since A is ideal-
symmetric, Ag is ideal-symmetric by Theorem 2.7, and so N C Ag. Thus
M,(N) C M,(Aog) = A, yielding that M,(N) C S(M,(R)). Therefore, we
have S(M,(R)) = M,(S(R)). O

Proposition 2.17. For any ring R, we have the following:
(1) S(R)[z] € S(R[z]);

(2) If R[z] is ideal-symmetric, then R is ideal-symmetric.

Proof. (1) Let N = S(R). It is enough to show that N[z] C A for any ideal-
symmetric ideal A of R[x]. We note that ANR is an ideal-symmetric ideal of R.
Indeed, if aRbRec C AN R for all a,b,c € R, then aR[z]bR[z]c = (aRbRc)[z] C
A, and then aR[z]cR[z]b = (aRcRb)[z] C A by Proposition 2.5 because A is
ideal-symmetric, and so aRcRb C ANR, yielding that AN R is ideal symmetric.
Since A N R is ideal-symmetric, N € AN R C A. Therefore, N[z] C A, as
desired.

(2) It follows from (1). O

Note that the converse of (2) of Proposition 2.17 could not be true by [3,
Example 2.4]. A ring R is quasi-Armendariz [6] provided that a;Rb; = 0 for
all i,j whenever f = Y1 a;a’,g = > im0 bjz? € R[x] satisfy fR[z]g = 0.
In [3], V. Camilo et al. have shown that for a quasi-Armendariz ring R, R is
ideal-symmetric if and only if R[z] is ideal-symmetric.

Theorem 2.18. Let R be a ring R. If R/S(R) is quasi-Armendariz, then
S(R)[x] = S(R[z]).

Proof. By Proposition 2.17, we have S(R)[z] C S(R[z]). To show the re-
verse inclusion, let N = S(R). Since N is ideal-symmetric, R/N is an ideal-
symmetric ring by Theorem 2.8. Since R/N is quasi-Armendariz, (R/N)|x]
is ideal-symmetric by [3, Remark 2.5]. Since (R/N)[zx] & R[z]/N]z] is ideal-
symmetric, N[x] is an ideal-symmetric ideal of R[z] by Theorem 2.8, and so
N[z] 2 S(R]z]) as desired. O

Now we raise the following open questions:

Question 2. (1) Is S(R)[z] = S(R[z]) for a quasi-Armendariz ring R?
(2) For a ring R, what is S(S(R))?
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3. Ideal-reversible ideals of rings

Let B be a subset of a ring R and N be an ideal of R. The set {a € R|aB C
N} is a left ideal of R, which is actually an ideal if B is a left ideal. The set
{a € R|aB C N} is called the left annihilator of B in N and is denoted
anng(B; N). Similarly, the set

ann,(B;N)={a € R|Ba C N}

is an ideal of R if B is a right ideal. The set ann,.(B; N) is called the right anni-
hilator of B in N. When anny(B; N) = ann,(B; N), it is denoted ann(B; N),
and called annihilator of B in N. In particular, if N = 0, then ann.(B;0)
(resp., ann,.(B;0)) is called left annihilator of B (resp., right annihilator of B),
and is simply denoted anng(B) (resp., ann,(B)). When anny(B) = ann,(B),
it is denoted ann(B).

Proposition 3.1. For an ideal N of a ring R, the following are equivalent:
(1) N is ideal-reversible;
(2) N is reflexive;
(3) For each a € R, anng(Ra; N) = ann,(aR; N);
(4) ARB C N implies BRA C N for any nonempty subsets A, B of R;
(5) For each ideal B of R, anny(B; N) = ann,(B; N);
(6) IJ C N implies JI C N for any right (or left) ideals I,J of R.

Proof. (1) = (2) Suppose that N is ideal-reversible. Let aRb C N for a,b € R.
Then (RaR)(RbR) C N. Since N is ideal-reversible, we have that bRa C
(RbR)(RaR) C N, and so N is reflexive.

(2) = (1) Suppose that N is reflexive. Let IJ C N for any ideals I, J € R.
Let a € JI be arbitrary. Then a = Z?:l b;a; where a; € I,b; € J for some
positive integer n. Since each a;b; € a;Rb; C IJ C N, we have b;a; € b;Ra; C
N by assumption, yielding JI C N. Hence N is ideal-reversible.

(2) = (3) Suppose that N is reflexive. Let b € ann,(aR; N) for each a € R
be arbitrary. Then aRb C N. Since N is reflexive, we have that bRa C N,
yielding that b € ann¢(Ra; N), and so ann,(aR; N) C anny(Ra; N). Similarly,
we also have that anng(Ra; N) C ann,(aR; N).

(3) = (2) Suppose that For each a € R, anny(Ra; N) = ann,(aR; N). Let
aRb C N for a,b € R. Then b € ann,(aR; N) = anny(Ra; N) by assumption,
yielding that bRa C N, and so N is reflexive.

(1) = (5) Suppose that N is ideal-reversible. Let A = anny(B;N) and
Ao = ann,(B; N). Then A and Ag are ideals of R. Since AB C N and N is
ideal-reversible, we have that BA C N, yielding A C Ay. Similarly, we also
have that Ag C A. Hence anny(B; N) = ann,.(B; N) as desired.

(5) = (1) Suppose that (5) holds. Let AB C N for any ideals I, J of R.
Then A C anny(B; N) = ann,(B; N) by assumption, yielding that BA C N,
and so N is ideal-reversible.

(6) = (1) and (4) = (2) are clear.

(4) = (6) is clear.
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(2) = (4) Suppose that N is reflexive. Let A, B be two nonempty subsets of
R with ARB C N. Then aRb C N for any a € A and b € B, and so bRa C N
by assumption. Thus BRA =}, ,cpbRa C N. O

Corollary 3.2. For a ring R, the following are equivalent:
(1) R is ideal-reversible;
(2) R is reflexive;
(3) For each a € R, anny(Ra) = ann,(aR);
(4) ARB = 0 implies BRA = 0 for any nonempty subsets A, B of R;
(5) For each ideal B of R, anng(B) = ann,(B);
(6) IJ =0 implies JI =0 for any right (or left) ideals I, J of R.

Proof. Tt follows from Proposition 3.1. O

We also have that the ideal-reversible property of any ideal of a ring is Morita
invariant.

Proposition 3.3. Let R be a ring and N be an ideal of R. Then we have the
following:

(1) If N is ideal-reversible, then eNe is an ideal-symmetric ideal of eRe for
each e? =e € R.

(2) N is ideal-reversible in R if and only if M, (N) is ideal-reversible in
M, (R) for alln > 1.

Proof. (1) Suppose that N is ideal-reversible. Let a,b € eRe such that a(eRe)b
C eNe. Since (eae)R(ebe) = a(eRe)b C N and N is reflexive by Proposition
3.1, b(eRe)a C N, and then b(eRe)a = (ebe)R(eae) C eNe, yielding that the
ideal eNe is ideal-reversible.

(2) Tt follows from the similar proof given in Theorem 2.7. O

Proposition 3.4. Let B be an ideal of an ideal-reversible ring R. If R is
quasi-Baer, then ann(B) = Re for some central idempotent e € R.

Proof. Since R is quasi-Baer, anny(B) = Re for some idempotent e € R.
Similarly, ann,(B) = fR for some idempotent f € R. Since R is an ideal-
reversible, anny(B) = ann,(B) by Corollary 3.2, and so Re = fR. Observe
that e = f. Indeed, since Re = fR, e = fa for some a € R, and then
fe = fa =e. Also f = be for some b € R, and then fe = be = f. Thus
e = f. Let r € R be arbitrary. Since Re = eR, re = ex for some x € R, and so
ere = ex = re. Similarly, er = ye for some y € R, and so ere = ye = er. Thus
we have that for all » € R, ere = re = er, yielding that e is central. ([

Theorem 3.5. (1) Let N be an ideal of a ring R. If R/N is Baer, then the
following conditions are equivalent:

(1) N is semiprime;

(2) N is ideal-symmetric;

(3) N s ideal-reversible.
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Proof. Tt suffices to show that (3) = (1). Suppose that aRa C N for a € R.
Let R = R/N and T = x + R for all z € R. Then R is ideal-reversible by
Theorem 2.8. Since R is Baer, there exists € = € € R with ann,.(aR) = eR.
Then @ = € - @ since @ € ann,.(@R) = eR, and so a — ea € N. Note that both
eR and @R are right ideals of R and (aR)(eR) = 0. Since R is ideal-reversible,
(@R)(eR) = 0 implies that (eR)(aR) = 0 by Corollary 3.2, entailing ea € N.
Hence we have a = (a — ea) + ea € N, which implies that N is semiprime. [

Corollary 3.6. (1) Let R be a Baer ring. Then the following conditions are
equivalent:

(1) R is semiprime;

(2) R is ideal-symmetric;

(3) R is ideal-reversible.

Proof. Tt follows from Theorem 3.5. (]
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