RINGS WITH IDEAL-SYMMETRIC IDEALS

Juncheol Han, Yang Lee, and Sangwon Park

Abstract

Let R be a ring with identity. An ideal N of R is called ideal-symmetric (resp., ideal-reversible) if $A B C \subseteq N$ implies $A C B \subseteq N$ (resp., $A B \subseteq N$ implies $B A \subseteq N$) for any ideals A, B, C in R. A ring R is called ideal-symmetric if zero ideal of R is ideal-symmetric. Let $S(R)$ (called the ideal-symmetric radical of R) be the intersection of all ideal-symmetric ideals of R. In this paper, the following are investigated: (1) Some equivalent conditions on an ideal-symmetric ideal of a ring are obtained; (2) Ideal-symmetric property is Morita invariant; (3) For any ring R, we have $S\left(M_{n}(R)\right)=M_{n}(S(R))$ where $M_{n}(R)$ is the ring of all n by n matrices over R; (4) For a quasi-Baer ring R, R is semiprime if and only if R is ideal-symmetric if and only if R is ideal-reversible.

1. Introduction and basic definitions

Throughout this paper, all rings are associative with identity unless otherwise specified. Let R be a ring. Let $J(R)$ and $P(R)$ denote the Jacobson radical and the prime radical of R respectively. Denote the n by n full (resp., upper triangular) matrix ring over R by $M_{n}(R)$ (resp., $U_{n}(R)$). $\mathbb{Z}\left(\mathbb{Z}_{n}\right)$ denotes the ring of integers (modulo n). $R[x]$ denotes the polynomial ring with an indeterminate x over R.

Lambek introduced the concept of a symmetric right ideal, unifying the sheaf representation of commutative rings and reduced rings in [10]. Lambek called a right ideal I of a ring R symmetric if $r s t \in I$ implies $r t s \in I$ for all $r, s, t \in R$. If zero ideal of R is symmetric, then R is called a symmetric ring; while Anderson and Camillo [1] used the term $Z C_{3}$ for this concept. It is proved by Lambek that an ideal I of a ring R is symmetric if and only if $r_{1} r_{2} \cdots r_{n} \in I$ implies $r_{\sigma(1)} r_{\sigma(2)} \cdots r_{\sigma(n)} \in I$ for any permutation σ of the set $\{1,2, \ldots, n\}$, where $n \geq 1$ and $r_{i} \in R$ for all i (see [10], Proposition 1).

As a generalizaton of symmetric rings, Kwak, at el. [3] extended the concept of symmetric rings to ideal-symmetric rings. A ring R is called ideal-symmetric

[^0]if $A B C=0$ implies $A C B=0$ for all ideals A, B, C of R. It is evident that symmetric rings are ideal-symmetric, but the converse need not hold by [3, Example 1.2].

In this note, we will extend the concepts of symmetric ideals of a ring to ideal-symmetric ideals. We will call an ideal N of a ring R ideal-symmetric if $A B C \subseteq N$ implies $A C B \subseteq N$ for any ideals A, B, C in R. Note that if the zero ideal of a ring R is ideal-symmetric, then R is ideal-symmetric ([3]).

It is obvious that every prime ideal of a ring R is ideal-symmetric. Moreover, observe that any semiprime ideal of a ring R is also ideal-symmetric. Indeed, let N be a semiprime ideal of R such that $A B C \subseteq N$ for any ideals A, B, C of R. Since N is semiprime and $(A C B)^{2}=A(C B A)(C B) \subseteq A B C \subseteq N$, we have $A C B \subseteq N$, yielding that N is ideal-symmetric. However, the converse need not be true by the following examples:

Example 1.1. Let $n, k \geq 2$ and consider the ideal $I=n^{k} \mathbb{Z}$ of \mathbb{Z}. Then I is clearly an ideal-symmetric ideal of \mathbb{Z}, but I is not a semiprime ideal of \mathbb{Z} since $\mathbb{Z} / n^{k} \mathbb{Z}$ is isomorphic to $\mathbb{Z}_{n^{k}}$.

Example 1.2. Let \mathbb{H} be the Hamilton quaternions over the real numbers. Consider the subring

$$
R=\left\{\left.\left(\begin{array}{ccc}
a & b & c \\
0 & a & b \\
0 & 0 & a
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{H}\right\}
$$

of $U_{3}(\mathbb{H})$. Then R is a noncommutative local ring with $J^{2} \neq 0=J^{3}$, where $J=J(R)=\left\{\left.\left(\begin{array}{lll}0 & b & c \\ 0 & 0 & b \\ 0 & 0 & 0\end{array}\right) \right\rvert\, b, c \in \mathbb{H}\right\}$. Note that $\left\{R, J, J^{2}, 0\right\}$ is the set of all ideals of R, and so all ideals of R are ideal-symmetric. But 0 and J^{2} are not semiprime ideals of R.

According to Cohen [5], a ring R is called reversible if $a b=0$ implies $b a=0$ for all $a, b \in R$. Anderson and Camillo [1] used the term $Z C_{2}$ for the reversible condition. It is evident that a symmetric ring is reversible. But the converse could not hold by [1, Example 1.5] or [11, Examples 5 and 7]. An ideal N of a ring R is called reversible if $a b \in N$ implies $b a \in N$ for all $a, b \in R$. In [12], this ideal N is called completely reflexive. We will also extend the concepts of reversible ideals to ideal-reversible ideals. We will call an ideal N of a ring R ideal-reversible if $A B \subseteq N$ implies $B A \subseteq N$ for any ideals A, B in R. In particular, if the zero ideal of a ring R is ideal-reversible, then R is usually called ideal-reversible. Anderson and Camillo demonstrated that there exists a reversible ring but not ideal-symmetric in [1, Example 1.5]. On the other hand, it is clear that any ideal-symmetric ideal of a ring is ideal-reversible. The following example tells us that there exists an ideal-reversible ideal in some ring but not ideal-symmetric:

Example 1.3. By [1, Example 1.5], there exists a reversible ring but not ideal-symmetric. Hence we can take a reversible ring R_{1} which is not idealsymmetric. Consider $R=R_{1} \times R_{2}$ for some ring R_{2}, and let $N=\{0\} \times R_{2}$ be an ideal of R. Note that R / N is isomorphic to R_{1}. Since R_{1} is reversible, R_{1} is clearly ideal-reversible. Thus R / N is ideal-reversible, and so N is idealreversible by the below Theorem 2.8. On the other hand, since R_{1} is not ideal-symmetric, R / N is not also ideal-symmetric, and then N is not idealsymmetric by the below Theorem 2.8.

In Section 2, we will show that every symmetric ideal of a ring R is idealsymmetric, but the converse does not hold. Some equivalent conditions that an ideal N of R is ideal-symmetric are investigated, for example, an ideal N of R is ideal-symmetric if and only if $I_{1} I_{2} \cdots I_{n} \subseteq N$ implies $I_{\sigma(1)} I_{\sigma(2)} \cdots I_{\sigma(n)} \subseteq N$ for any permutation σ of the set $\{1,2, \ldots, n\}$ where $n \geq 3$ and I_{i} is an (right, left) ideal of R for all i. It is shown that an ideal N of R is ideal-symmetric if and only if R / N is an ideal-symmetric ring.

We call the intersection of all ideal-symmetric ideals of a ring R the idealsymmetric radical of R and denote it by $S(R)$. It is evident that $S(R)$ is the smallest ideal-symmetric ideal of R. If R has no proper ideal-symmetric ideals, then $S(R)=R$. It is clear that $S(R) \subseteq P(R) \subseteq J(R)$ since every prime ideal of R is ideal-symmetric and every maximal ideal is prime. In Section 2, we will also show that the ideal-symmetric property is Morita invariant, and for any ring $R, S\left(M_{n}(R)\right)=M_{n}(S(R))$ and $S(R)[x] \subseteq S(R[x])$.

In [12], a right ideal I of a ring R is called reflexive if $a R b \subseteq I$ implies that $b R a \subseteq I$ for any $a, b \in R . R$ is called reflexive if the zero ideal of R is a reflexive ideal (i.e., $a R b=0$ implies that $b R a=0$ for $a, b \in R$. It was shown in [9] that a ring R is ideal-reversible if and only if R is reflexive. In Section 3, we will show that any ideal N is ideal-reversible if and only if N is reflexive if and only if $I J \subseteq N$ implies $J I \subseteq N$ for any right (or left) ideals I, J of R.

Kaplansky [8] introduced the concept of Baer rings as rings in which the right (left) annihilator of every nonempty subset is generated by an idempotent. Clark [4] extended the concept of Baer rings to quasi-Baer rings. A ring R is called quasi-Baer if the right (left) annihilator of every nonzero ideal is generated by an idempotent (See [2], [7]). Note that the definition of Baer rings and quasi-Baer rings are left-right symmetric by [4] and [8]. Also note that in a reduced ring R (i.e., R has no nonzero nilpotent), R is Baer if and only if R is quasi-Baer. In Section 3, it was shown that for any ideal B of an ideal-reversible ring R, if R is quasi-Baer, then $\operatorname{ann}(B)=R e$ for some central idempotent $e \in R$. In [3, Proposition 1.9], it was proved that for a Baer ring R, R is semiprime if and only if R is ideal-symmetric if and only if R is reflexive (equivalently, ideal-reversible). In this note, it was shown that for an ideal N of a ring R such that R / N is Baer, N is semiprime if and only if N is ideal-symmetric if and only if N is ideal-reversible.

2. Ideal-symmetric ideals of rings

In this section we study the structure of ideal-symmetric ideals.
Proposition 2.1. Every symmetric (resp., reversible) ideal of a ring R is ideal-symmetric (resp., ideal-reversible).

Proof. Let N be a symmetric ideal of a ring R. Suppose that $A B C \subseteq N$ for any ideals A, B, C in R, and let $\alpha \in A C B$ be arbitrary. Then $\alpha=\sum_{i=1}^{n} a_{i} q_{i}$ where $a_{i} \in A, q_{i}=\sum_{j=1}^{\ell_{i}} c_{i j} b_{i j} \in C B\left(c_{i j} \in C, b_{i j} \in B\right)$ for each $i=1, \ldots, n$. So $\alpha=\sum_{i=1}^{n} \sum_{j=1}^{\ell_{i}} a_{i} c_{i j} b_{i j}$. Note that each $a_{i} b_{i j} c_{i j} \in A B C \subseteq N$. Since N is symmetric, $a_{i} c_{i j} b_{i j} \in N$, and so $\alpha \in N$, yielding that N is ideal-symmetric. Similarly, we also show that every reversible ideal of a ring R is ideal-reversible.

The converse of above Proposition 2.1 could not be true by the following example:

Example 2.2. Let \mathbb{Z}_{4} be the rings of integers modulo 4 and $R=\operatorname{Mat}_{2}\left(\mathbb{Z}_{4}\right)$. Then $\left\{R, N=\operatorname{Mat}_{2}\left(2 \mathbb{Z}_{4}\right), 0\right\}$ is the set of all ideals of R. Note that R is not reversible (hence R is not symmetric) because $a b=0 \neq b a$ for some $a, b \in R$ where $a=\left(\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right), b=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$. Note that the ideal N of R is not reversible (hence N is not symmetric) because $p q \in N, q p \notin N$ for some $p, q \in R$ where $p=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right), q=\left(\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right)$. On the other hand, we observe that all ideals of R are ideal-symmetric. Indeed, let A, B, C be ideals of R. First, suppose that $A B C=0$. If one of A, B, C is zero, then clearly, $A C B=0$. Let $A, B, C \neq 0$. Since $A B C=0, A B C$ is one of $N N R, N R N, R N N$, and so $A C B=0$, yielding that 0 is ideal-symmetric. Next, suppose that $A B C \subseteq N$. If one of A, B, C is zero, then clearly, $A B C=A C B=0 \subseteq N$. Let $A, B, C \neq 0$. Since $A B C \subseteq N$, $A B C=0$ or $A B C=N$. If $A B C=0$, then $A C B=0$ as above argument. If $A B C=N$, then $A B C$ is one of $N R R, R R N, R N R$, and so $A C B=N$, yielding that N is ideal-symmetric (hence N is ideal-reversible).
Proposition 2.3. Let N be any ideal of a ring R. Then N is ideal-symmetric if and only if $(a)(b)(c) \subseteq N$ implies $(a)(c)(b) \subseteq N$ for all $a, b, c \in R$.

Proof. Suppose that $(a)(b)(c) \subseteq N$ implies $(a)(c)(b) \subseteq N$ for all $a, b, c \in R$. Let $A B C \subseteq N$ for any ideals A, B, C in R, and let $\alpha \in A C B$ be arbitrary. Then $\alpha=\sum_{i=1}^{n} a_{i} q_{i}$ where $a_{i} \in A, q_{i}=\sum_{j=1}^{\ell_{i}} c_{i j} b_{i j} \in C B\left(c_{i j} \in C, b_{i j} \in B\right)$ for each $i=1, \ldots, n$. So $\alpha=\sum_{i=1}^{n} \sum_{j=1}^{\ell_{i}} a_{i} c_{i j} b_{i j}$. Since each $a_{i} b_{i j} c_{i j} \in\left(a_{i}\right)\left(b_{i j}\right)\left(c_{i j}\right) \subseteq$ $A B C \subseteq N$, we have $a_{i} c_{i j} b_{i j} \in\left(a_{i}\right)\left(c_{i j}\right)\left(b_{i j}\right) \subseteq N$ by assumption, and so $\alpha \in N$. Thus $A C B \subseteq N$, yielding that N is an ideal-symmetric ideal of a ring R. The converse is clear.
Lemma 2.4. Let N be an ideal-symmetric ideal of a ring R and I_{1}, I_{2}, I_{3} be ideals of R. Then $I_{1} I_{2} I_{3} \subseteq N$ if and only if $I_{\sigma(1)} I_{\sigma(2)} I_{\sigma(3)} \subseteq N$ for any permutation σ of the set of $\{1,2,3\}$.

Proof. Suppose that N is ideal-symmetric such that $I_{1} I_{2} I_{3} \subseteq N$. Since N is ideal-symmetric, $I_{1} I_{3} I_{2} \subseteq N$. Since N is ideal-symmetric and $R I_{1}\left(I_{2} I_{3}\right) \subseteq N$, we have $R\left(I_{2} I_{3}\right) I_{1} \subseteq N$, and so $I_{2} I_{3} I_{1} \subseteq N$, also $I_{2} I_{1} I_{3} \subseteq N$. By applying the similar argument to $R I_{1}\left(I_{3} I_{2}\right) \subseteq N$, we also have that $I_{3} I_{1} I_{2}, I_{3} I_{2} I_{1} \subseteq N$. The converse is clear.

Let S_{n} be the symmetric group on n letters for any positive integer.
Proposition 2.5. For any ideal N of a ring R, the following conditions are equivalent:
(1) N is ideal-symmetric;
(2) $a R b R c \subseteq N$ implies $a R c R b \subseteq N$ for all $a, b, c \in R$;
(3) $I_{1} I_{2} \cdots I_{n} \subseteq N$ implies $I_{\sigma(1)} I_{\sigma(2)} \cdots I_{\sigma(n)} \subseteq N$ for any $\sigma \in S_{n}$ where I_{i} is an ideal of R for $i=1,2, \ldots, n$ and $n \geq 3$ is any positive integer;
(4) $a_{1} R a_{2} \cdots R a_{n} \subseteq N$ implies $a_{\sigma(1)} R a_{\sigma(2)} \cdots R a_{\sigma(n)} \subseteq N$ for any $\sigma \in S_{n}$ where I_{i} is an ideal of R for $i=1,2, \ldots, n$ and $n \geq 3$ is any positive integer;
(5) $I_{1} I_{2} \cdots I_{n} \subseteq N$ implies $I_{\sigma(1)} I_{\sigma(2)} \cdots I_{\sigma(n)} \subseteq N$ for any $\sigma \in S_{n}$ where I_{i} is a right (left) ideal of R for $i=1,2, \ldots, n$ and $n \geq 3$ is any positive integer;
(6) $A B C \subseteq N$ implies $B A C \subseteq N$ for all ideals A, B, C of R;
(7) $a R b R c \subseteq N$ implies $b R a R c \subseteq N$ for all $a, b, c \in R$.

Proof. (1) \Rightarrow (2). Suppose that N is ideal-symmetric and $a R b R c \subseteq N$ for all $a, b, c \in R$. Since N is an ideal of R, we have that $(R a R)(R b R)(R c R) \subseteq N$. Since N is ideal-symmetric and $R a R, R b R, R c R$ are ideals of R,

$$
(R a R)(R c R)(R b R) \subseteq N
$$

by assumption. Clearly, $a R c R b \subseteq(R a R)(R c R)(R b R) \subseteq N$ as desired.
$(2) \Rightarrow(1)$. Suppose that $a R b R c \subseteq N$ implies $a R c R b \subseteq N$ for all $a, b, c \in R$. Let $A B C \subseteq N$ for any ideals A, B, C in R, and let $\alpha \in A C B$ be arbitrary. Then $\alpha=\sum_{i=1}^{m} a_{i} c_{i} b_{i}$ where $a_{i} \in A, c_{i} \in C, b_{i} \in B$ for some positive integer m. Since each $a_{i} b_{i} c_{i} \in a_{i} R b_{i} R c_{i} \subseteq A B C \subseteq N$, we have $a_{i} c_{i} b_{i} \in a_{i} R c_{i} R b_{i} \subseteq N$ by assumption, and so $\alpha \in N$. Thus $A C B \subseteq N$, yielding that N is idealsymmetric.
$(1) \Rightarrow(3)$. Suppose that N is ideal-symmetric and $I_{1} I_{2} \cdots I_{n} \subseteq N(n \geq 3)$. Since S_{n} is generated by the transpositions $\tau_{0}=(1,2), \tau_{1}=(2,3), \ldots, \tau_{n-2}=$ $(n-1, n), \tau_{n-1}=(n, 1) \in S_{n}$, it is enough to show that $I_{\tau_{k}(1)} I_{\tau_{k}(2)} \cdots I_{\tau_{k}(n)} \subseteq$ N for all $k=0,1, \ldots, n-1$. Note that $I_{2} I_{3} \cdots I_{1} \subseteq N$, and so $I_{3} I_{4} \cdots I_{2} \subseteq N$, $\ldots, I_{n} I_{1} \cdots I_{n-1} \subseteq N$, i.e.,

$$
\begin{equation*}
I_{\mu_{k}}(1) I_{\mu_{k}}(2) \cdots I_{\mu_{k}}(n) \subseteq N, \tag{*}
\end{equation*}
$$

where $\mu=(1,2, \ldots, n) \in S_{n}$ and $\mu_{k}=\mu^{k}(=\mu \cdot \mu \cdots \mu)$ for any $k=0,1, \ldots$, $n-1$. By Lemma 2.4, we have $I_{2} I_{1} I_{3} \cdots I_{n} \subseteq N$, i.e.,

$$
\begin{equation*}
I_{\tau_{0}(1)} I_{\tau_{0}(2)} \cdots I_{\tau_{0}(n)} \subseteq N \tag{**}
\end{equation*}
$$

By $(*)$ and $(* *)$, we have that

$$
I_{\tau_{k}(1)} I_{\tau_{k}(2)} \cdots I_{\tau_{k}(n)}=I_{\mu_{k} \tau_{0} \mu_{n-k}(1)} I_{\mu_{k} \tau_{0} \mu_{n-k}(2)} \cdots I_{\mu_{r} \tau_{0} \mu_{n-r}(n)} \subseteq N
$$

by observing that $\mu_{k} \tau_{0} \mu_{n-k}=\tau_{k}$ for all $k=0,1, \ldots, n-1$.
$(3) \Rightarrow(1)$. Clear.
(1) $\Leftrightarrow(6)$. It follows from Lemma 2.4.
(1) $\Leftrightarrow(7)$. It follows from (1) $\Leftrightarrow(6)$ and the similar arguments given in the proof of $(1) \Leftrightarrow(2)$.
$(3) \Rightarrow(4)$ and $(5) \Rightarrow(3)$ are obvious.
(4) \Rightarrow (3). Suppose that $a_{1} R a_{2} \cdots R a_{n} \subseteq N$ implies $a_{\sigma(1)} R a_{\sigma(2)} \cdots R a_{\sigma(n)} \subseteq$ N for any $\sigma \in S_{n}$. Let $I_{1} I_{2} \cdots I_{n} \subseteq N$ where $I_{i}(1 \leq i \leq n)$ is an ideal of R. Let $\beta \in I_{\sigma(1)} I_{\sigma(2)} \cdots I_{\sigma(n)}$ be arbitrary for any $\sigma \in S_{n}$. Then

$$
\beta=\sum_{j=1}^{\ell} a_{\sigma(1)_{j}} a_{\sigma(2)_{j}} \cdots a_{\sigma(n)_{j}}
$$

where $a_{\sigma(i)_{j}} \in I_{\sigma(i)}(1 \leq i \leq n, 1 \leq j \leq \ell)$. Since each $a_{1_{j}} a_{2_{j}} \cdots a_{n_{j}} \in$ $a_{1} R a_{2} \cdots R a_{n} \subseteq N, a_{\sigma(1)_{j}} a_{\sigma(2)_{j}} \cdots a_{\sigma(n)_{j}} \in a_{\sigma(1)} R a_{\sigma(2)} \cdots R a_{\sigma(n)} \subseteq N$ by assumption, and so $\beta \in N$, yielding that $I_{\sigma(1)} I_{\sigma(2)} \cdots I_{\sigma(n)} \subseteq N$ for any $\sigma \in S_{n}$.
$(3) \Rightarrow(5)$. Suppose that $I_{1} I_{2} \cdots I_{n} \subseteq N$ implies $I_{\sigma(1)} I_{\sigma(2)} \cdots I_{\sigma(n)} \subseteq N$ for any $\sigma \in S_{n}$ where $I_{i}(1 \leq i \leq n)$ is an ideal of R and n is any positive integer. Let $J_{1} J_{2} \cdots J_{n} \subseteq N$ where $J_{i}(1 \leq i \leq n)$ is a right ideal of R. Note that $\left(R J_{1} R\right)\left(R J_{2} R\right) \cdots\left(R J_{n} R\right) \subseteq N$ where $R J_{i} R(1 \leq i \leq n)$ is an ideal of R. Let $K_{i}=R J_{i} R$ for each $i=1,2, \ldots, n$. By assumption, we have that $\left(R J_{\sigma(1)} R\right)\left(R J_{\sigma(2)} R\right) \cdots\left(R J_{\sigma(n)} R\right) \subseteq N$ for any $\sigma \in S_{n}$, and so $J_{\sigma(1)} J_{\sigma(2)} \cdots J_{\sigma(n)} \subseteq\left(R J_{\sigma(1)} R\right)\left(R J_{\sigma(2)} R\right) \cdots\left(R J_{\sigma(n)} R\right) \subseteq N$, as desired. The proof for the left ideal case is shown by the similar argument given in the right ideal case.

Corollary 2.6. For a ring R, the following conditions are equivalent:
(1) R is ideal-symmetric;
(2) $a R b R c=0$ implies $a R c R b=0$ for all $a, b, c \in R$;
(3) $I_{1} I_{2} \cdots I_{n}=0$ implies $I_{\sigma(1)} I_{\sigma(2)} \cdots I_{\sigma(n)}=0$ for any $\sigma \in S_{n}$ where I_{i} is an ideal of R for $i=1,2, \ldots, n$ and $n \geq 3$ is any positive integer;
(4) $a_{1} R a_{2} \cdots R a_{n}=0$ implies $a_{\sigma(1)} R a_{\sigma(2)} \cdots R a_{\sigma(n)}=0$ for any $\sigma \in S_{n}$ where I_{i} is an ideal of R for $i=1,2, \ldots, n$ and $n \geq 3$ is any positive integer;
(5) $I_{1} I_{2} \cdots I_{n}=0$ implies $I_{\sigma(1)} I_{\sigma(2)} \cdots I_{\sigma(n)}=0$ for any $\sigma \in S_{n}$ where I_{i} is a right (left) ideal of R for $i=1,2, \ldots, n$ and $n \geq 3$ is any positive integer;
(6) $A B C=0$ implies $B A C=0$ for all ideals A, B, C of R;
(7) $a R b R c=0$ implies $b R a R c=0$ for all $a, b, c \in R$.

Proof. It follows from Proposition 2.5.
The following theorem implies that the ideal-symmetric property of any ideal of a ring is Morita invariant.

Theorem 2.7. Let R be a ring and N be an ideal of R. Then we have the following:
(1) If N is ideal-symmetric, then $e N e$ is an ideal-symmetric ideal of eRe for each $e^{2}=e \in R$.
(2) N is ideal-symmetric in R if and only if $M_{n}(N)$ is ideal-symmetric in $M_{n}(R)$ for all $n \geq 1$.

Proof. (1) Suppose that N is ideal-symmetric. Let $a, b, c \in e R e$ such that $a(e R e) b(e R e) c \subseteq e N e$. Since $a(e R e) b(e R e) c=a e R e b R e c \subseteq e N e \subseteq N$ and N is ideal-symmetric, aeRecReb $\subseteq N$, and so $a(e R e) c(e R e) b=a e R e c R e b=$ $e(a e R e c R e b) e \subseteq e N e$, yielding that the ideal $e N e$ is ideal-symmetric.
(2) Suppose that N is ideal-symmetric. Let A, B, C be ideals of $M_{n}(R)$ such that $A B C \subseteq M_{n}(N)$. Note that there exist ideals I, J, K such that $A=$ $M_{n}(I), B=M_{n}(J), C=M_{n}(K)$. Note that $A B C=M_{n}(I) M_{n}(J) M_{n}(K)=$ $M_{n}(I J K)$ and then $I J K \subseteq N$. Since N is ideal-symmetric, $I K J \subseteq N$, and so $A C B=M_{n}(I J K) \subseteq M_{n}(N)$. Thus $M_{n}(N)$ is ideal-symmetric.

Conversely, if $\operatorname{Mat}_{n}(N)$ is ideal-symmetric, then $N \cong e_{11} \operatorname{Mat}_{n}(N) e_{11}$ is ideal-symmetric by (1) where e_{11} is the matrix in $\operatorname{Mat}_{n}(N)$ with $(1,1)$-entry 1 and elsewhere 0 .

We already knew that for an ideal N of a ring R, N is a prime (resp., semiprime) ideal if and only if R / N is prime (resp., semiprime). Here we also have the following:

Theorem 2.8. For an ideal N of a ring R, N is ideal-symmetric (resp., idealreversible) if and only if R / N is an ideal-symmetric (resp., ideal-reversible) ring.

Proof. Suppose that N is ideal-symmetric. Let A, B, C be ideals of R / N such that $A B C=N$, zero of R / N. Then there exist ideals $A_{0}, B_{0}, C_{0} \supseteq N$ of R such that $A=A_{0} / N, B=B_{0} / N, C=C_{0} / N$. Since $A B C=\left(A_{0} / N\right)\left(B_{0} / N\right)\left(C_{0} / N\right)$ $=\left(A_{0} B_{0} C_{0}\right) / N=N, A_{0} B_{0} C_{0}=N$. Since N is ideal-symmetric, $A_{0} C_{0} B_{0} \subseteq N$. Thus $A C B=\left(A_{0} C_{0} B_{0}\right) / N=N$, which yields that R / N is ideal-symmetric ring.

Suppose that R / N is an ideal-symmetric ring. Let A, B, C be ideals of N such that $A B C \subseteq N$. Then $A B C+N=N$. Note that $(A+N)(B+N)(C+N) \subseteq$ $A B C+N=N$, and so $(A+N)(B+N)(C+N)=N$. Since R / N is an idealsymmetric ring, $((A+N) / N)(C+N) / N)(B+N) / N)=N$, yielding that $(A+N)(C+N)(B+N) \subseteq N$, and so $A C B \subseteq(A+N)(C+N)(B+N) \subseteq N$, which means that N is ideal-symmetric.

Similarly, ideal-reversible case is also shown.
Corollary 2.9. Let I be an ideal-symmetric ideal of a ring R. If I is semiprime (as a ring without identity), then R is ideal-symmetric.

Proof. Since I is ideal-symmetric, R / I is ideal-symmetric by Theorem 2.8. Since I is semiprime (as a ring without identity), R is ideal-symmetric ring by [3, Proposition 2.11].

Note that a subring of ideal-symmetric ring could not be ideal-symmetric by the following example:
Example 2.10. Let R be an ideal-symmetric ring and consider $U_{2}(R)$. By Theorem 2.8, $\operatorname{Mat}_{2}(R)$ is an ideal-symmetric ring. Let $A=\left(\begin{array}{cc}R & R \\ 0 & 0\end{array}\right), B=\left(\begin{array}{ll}0 & R \\ 0 & R\end{array}\right)$ be two ideals of $U_{2}(R)$. Since $A B A=0$ and $A A B \neq 0, U_{2}(R)$ is not idealsymmetric. On the other hand, we note that A (or B) is an ideal-symmetric ideal of $U_{2}(R)$ and it is also ideal-symmetric as a subring of $U_{2}(R)$ because there is the unique nonzero proper ideal $\left(\begin{array}{cc}0 & R \\ 0 & 0\end{array}\right)$ in A (or B) even though $U_{2}(R)$ is not an ideal-symmetric ring.

Lemma 2.11. (1) The intersection of two ideal-symmetric ideals of a ring R is ideal-symmetric.
(2) The intersection of all ideal-symmetric ideals of a ring R is ideal-symmetric.

Proof. Clear.
Recall that the intersection of all ideal-symmetric ideals of a ring R introduced in Lemma 2.11 is called the ideal-symmetric radical of R and denoted $S(R)$. It is evident that $S(R)$ is the smallest ideal-symmetric ideal of R, and R is a ring such that $S(R)=0$ if and only if R is ideal-symmetric.
Corollary 2.12. For any ring R, we have $S(R / S(R))=0$.
Proof. Since $S(R)$ is ideal-symmetric ideal of R by Lemma 2.11, $R / S(R)$ is an ideal-symmetric ring by Theorem 2.8, and so $S(R / S(R))=0$.

Now we raise a question:
Question 1. For an ideal I of a ring R that is considered as ring, $S(I)=$ $I \cap S(R)$?

The answer is negative by the following examples:
Example 2.13. Let $R=U_{2}(F)$ over a field F, and consider the ideal $I=\left(\begin{array}{cc}0 & F \\ 0 & 0\end{array}\right)$ of R. By Example 2.8, $U_{2}(F)$ is not ideal-symmetric (i.e., the zero ideal of R is not ideal-symmetric). Since $R / I \cong F \times F$, which is ideal-symmetric, I is ideal-symmetric by Theorem 2.8, i.e., $S(I)=0$. On the other hand, observe that all nonzero ideals of R are $I, I_{1}=\left(\begin{array}{cc}0 & F \\ 0 & F\end{array}\right)$ and $I_{2}=\left(\begin{array}{cc}F & F \\ 0 & 0\end{array}\right)$ which are clearly ideal-symmetric. Hence $S(R)=I \cap I_{1} \cap I_{2}=I$, and so $I \cap S(R)=I \neq 0=S(I)$. Note that even though all nonzero ideals of $U_{2}(F)$ are ideal-symmetric, $U_{2}(F)$ is not ideal-symmetric.
Example 2.14. Let R be not any ideal-symmetric ring with $I=J(R) \neq 0$. Then $S(I)=0$ because I is a semiprime ideal of R (hence I is ideal-symmetric). Thus $I \cap S(R)=J(R) \cap S(R)=S(R) \neq 0$ because R is not ideal-symmetric, yielding that $S(I)=0 \neq I \cap S(R)$.
Corollary 2.15. If $S(R)$ is semiprime (as a ring without identity) for a ring R, then R is ideal-symmetric.

Proof. Since $S(R)$ is an ideal-symmetric ideal of R, it follows from Corollary 2.9.

Theorem 2.16. For any ring R, we have $S\left(M_{n}(R)\right)=M_{n}(S(R))$.
Proof. Let $N=S(R)$. By Lemma 2.11, N is ideal-symmetric ideal of R, and so $M_{n}(N)$ is ideal-symmetric ideal of $M_{n}(R)$ by Theorem 2.7. Since $M_{n}(N)$ is ideal-symmetric ideal of $M_{n}(R), S\left(M_{n}(R)\right) \subseteq M_{n}(N)$. Next, we will show that $M_{n}(N) \subseteq S\left(M_{n}(R)\right)$. Let A be any ideal-symmetric ideal of $M_{n}(R)$. Then there exists an ideal A_{0} of R such that $A=M_{n}\left(A_{0}\right)$. Since A is idealsymmetric, A_{0} is ideal-symmetric by Theorem 2.7 , and so $N \subseteq A_{0}$. Thus $M_{n}(N) \subseteq M_{n}\left(A_{0}\right)=A$, yielding that $M_{n}(N) \subseteq S\left(M_{n}(R)\right)$. Therefore, we have $S\left(M_{n}(R)\right)=M_{n}(S(R))$.

Proposition 2.17. For any ring R, we have the following:
(1) $S(R)[x] \subseteq S(R[x])$;
(2) If $R[x]$ is ideal-symmetric, then R is ideal-symmetric.

Proof. (1) Let $N=S(R)$. It is enough to show that $N[x] \subseteq A$ for any idealsymmetric ideal A of $R[x]$. We note that $A \cap R$ is an ideal-symmetric ideal of R. Indeed, if $a R b R c \subseteq A \cap R$ for all $a, b, c \in R$, then $a R[x] b R[x] c=(a R b R c)[x] \subseteq$ A, and then $a R[x] c R[x] b=(a R c R b)[x] \subseteq A$ by Proposition 2.5 because A is ideal-symmetric, and so $a R c R b \subseteq A \cap R$, yielding that $A \cap R$ is ideal symmetric. Since $A \cap R$ is ideal-symmetric, $N \subseteq A \cap R \subseteq A$. Therefore, $N[x] \subseteq A$, as desired.
(2) It follows from (1).

Note that the converse of (2) of Proposition 2.17 could not be true by [3, Example 2.4]. A ring R is quasi-Armendariz [6] provided that $a_{i} R b_{j}=0$ for all i, j whenever $f=\sum_{i=0}^{m} a_{i} x^{i}, g=\sum_{j=0}^{n} b_{j} x^{j} \in R[x]$ satisfy $f R[x] g=0$. In [3], V. Camilo et al. have shown that for a quasi-Armendariz ring R, R is ideal-symmetric if and only if $R[x]$ is ideal-symmetric.

Theorem 2.18. Let R be a ring R. If $R / S(R)$ is quasi-Armendariz, then $S(R)[x]=S(R[x])$.

Proof. By Proposition 2.17, we have $S(R)[x] \subseteq S(R[x])$. To show the reverse inclusion, let $N=S(R)$. Since N is ideal-symmetric, R / N is an idealsymmetric ring by Theorem 2.8. Since R / N is quasi-Armendariz, $(R / N)[x]$ is ideal-symmetric by $[3$, Remark 2.5]. Since $(R / N)[x] \cong R[x] / N[x]$ is idealsymmetric, $N[x]$ is an ideal-symmetric ideal of $R[x]$ by Theorem 2.8 , and so $N[x] \supseteq S(R[x])$ as desired.

Now we raise the following open questions:
Question 2. (1) Is $S(R)[x]=S(R[x])$ for a quasi-Armendariz ring R ?
(2) For a ring R, what is $S(S(R))$?

3. Ideal-reversible ideals of rings

Let B be a subset of a ring R and N be an ideal of R. The set $\{a \in R \mid a B \subseteq$ $N\}$ is a left ideal of R, which is actually an ideal if B is a left ideal. The set $\{a \in R \mid a B \subseteq N\}$ is called the left annihilator of B in N and is denoted $a n n_{\ell}(B ; N)$. Similarly, the set

$$
\operatorname{ann}_{r}(B ; N)=\{a \in R \mid B a \subseteq N\}
$$

is an ideal of R if B is a right ideal. The set $\operatorname{ann}_{r}(B ; N)$ is called the right annihilator of B in N. When $\operatorname{ann}_{\ell}(B ; N)=\operatorname{ann}_{r}(B ; N)$, it is denoted $\operatorname{ann}(B ; N)$, and called annihilator of B in N. In particular, if $N=0$, then $a n n_{\ell}(B ; 0)$ (resp., $\operatorname{ann}_{r}(B ; 0)$) is called left annihilator of B (resp., right annihilator of B), and is simply denoted $a n n_{\ell}(B)\left(\right.$ resp., $\left.a n n_{r}(B)\right)$. When $a n n_{\ell}(B)=a n n_{r}(B)$, it is denoted $\operatorname{ann}(B)$.

Proposition 3.1. For an ideal N of a ring R, the following are equivalent:
(1) N is ideal-reversible;
(2) N is reflexive;
(3) For each $a \in R$, $\operatorname{ann}_{\ell}(R a ; N)=a n n_{r}(a R ; N)$;
(4) $A R B \subseteq N$ implies $B R A \subseteq N$ for any nonempty subsets A, B of R;
(5) For each ideal B of R, $\operatorname{ann}_{\ell}(B ; N)=a n n_{r}(B ; N)$;
(6) $I J \subseteq N$ implies $J I \subseteq N$ for any right (or left) ideals I, J of R.

Proof. (1) \Rightarrow (2) Suppose that N is ideal-reversible. Let $a R b \subseteq N$ for $a, b \in R$. Then $(R a R)(R b R) \subseteq N$. Since N is ideal-reversible, we have that $b R a \subseteq$ $(R b R)(R a R) \subseteq N$, and so N is reflexive.
$(2) \Rightarrow(1)$ Suppose that N is reflexive. Let $I J \subseteq N$ for any ideals $I, J \in R$. Let $\alpha \in J I$ be arbitrary. Then $\alpha=\sum_{i=1}^{n} b_{i} a_{i}$ where $a_{i} \in I, b_{i} \in J$ for some positive integer n. Since each $a_{i} b_{i} \in a_{i} R b_{i} \subseteq I J \subseteq N$, we have $b_{i} a_{i} \in b_{i} R a_{i} \subseteq$ N by assumption, yielding $J I \subseteq N$. Hence N is ideal-reversible.
$(2) \Rightarrow(3)$ Suppose that N is reflexive. Let $b \in a n n_{r}(a R ; N)$ for each $a \in R$ be arbitrary. Then $a R b \subseteq N$. Since N is reflexive, we have that $b R a \subseteq N$, yielding that $b \in a n n_{\ell}(R a ; N)$, and so $a n n_{r}(a R ; N) \subseteq a n n_{\ell}(R a ; N)$. Similarly, we also have that $a n n_{\ell}(R a ; N) \subseteq a n n_{r}(a R ; N)$.
$(3) \Rightarrow(2)$ Suppose that For each $a \in R, a n n_{\ell}(R a ; N)=a n n_{r}(a R ; N)$. Let $a R b \subseteq N$ for $a, b \in R$. Then $b \in a n n_{r}(a R ; N)=a n n_{\ell}(R a ; N)$ by assumption, yielding that $b R a \subseteq N$, and so N is reflexive.
$(1) \Rightarrow(5)$ Suppose that N is ideal-reversible. Let $A=a n n_{\ell}(B ; N)$ and $A_{0}=\operatorname{ann}_{r}(B ; N)$. Then A and A_{0} are ideals of R. Since $A B \subseteq N$ and N is ideal-reversible, we have that $B A \subseteq N$, yielding $A \subseteq A_{0}$. Similarly, we also have that $A_{0} \subseteq A$. Hence $\operatorname{ann}_{\ell}(B ; N)=\operatorname{ann}_{r}(B ; N)$ as desired.
(5) \Rightarrow (1) Suppose that (5) holds. Let $A B \subseteq N$ for any ideals I, J of R. Then $A \subseteq a n n_{\ell}(B ; N)=a n n_{r}(B ; N)$ by assumption, yielding that $B A \subseteq N$, and so N is ideal-reversible.
$(6) \Rightarrow(1)$ and $(4) \Rightarrow(2)$ are clear.
$(4) \Rightarrow(6)$ is clear.
$(2) \Rightarrow(4)$ Suppose that N is reflexive. Let A, B be two nonempty subsets of R with $A R B \subseteq N$. Then $a R b \subseteq N$ for any $a \in A$ and $b \in B$, and so $b R a \subseteq N$ by assumption. Thus $B R A=\sum_{a \in A, b \in B} b R a \subseteq N$.
Corollary 3.2. For a ring R, the following are equivalent:
(1) R is ideal-reversible;
(2) R is reflexive;
(3) For each $a \in R$, ann $n_{\ell}(R a)=\operatorname{ann}_{r}(a R)$;
(4) $A R B=0$ implies $B R A=0$ for any nonempty subsets A, B of R;
(5) For each ideal B of R, $\operatorname{ann}_{\ell}(B)=a n n_{r}(B)$;
(6) $I J=0$ implies $J I=0$ for any right (or left) ideals I, J of R.

Proof. It follows from Proposition 3.1.
We also have that the ideal-reversible property of any ideal of a ring is Morita invariant.

Proposition 3.3. Let R be a ring and N be an ideal of R. Then we have the following:
(1) If N is ideal-reversible, then $e N e$ is an ideal-symmetric ideal of eRe for each $e^{2}=e \in R$.
(2) N is ideal-reversible in R if and only if $M_{n}(N)$ is ideal-reversible in $M_{n}(R)$ for all $n \geq 1$.

Proof. (1) Suppose that N is ideal-reversible. Let $a, b \in e R e$ such that $a(e R e) b$ $\subseteq e N e$. Since $(e a e) R(e b e)=a(e R e) b \subseteq N$ and N is reflexive by Proposition $3.1, b(e R e) a \subseteq N$, and then $b(e R e) a=(e b e) R(e a e) \subseteq e N e$, yielding that the ideal $e N e$ is ideal-reversible.
(2) It follows from the similar proof given in Theorem 2.7.

Proposition 3.4. Let B be an ideal of an ideal-reversible ring R. If R is quasi-Baer, then $\operatorname{ann}(B)=$ Re for some central idempotent $e \in R$.

Proof. Since R is quasi-Baer, $\operatorname{ann}_{\ell}(B)=R e$ for some idempotent $e \in R$. Similarly, $\operatorname{ann}_{r}(B)=f R$ for some idempotent $f \in R$. Since R is an idealreversible, $a n n_{\ell}(B)=a n n_{r}(B)$ by Corollary 3.2, and so $R e=f R$. Observe that $e=f$. Indeed, since $R e=f R$, $e=f a$ for some $a \in R$, and then $f e=f a=e$. Also $f=b e$ for some $b \in R$, and then $f e=b e=f$. Thus $e=f$. Let $r \in R$ be arbitrary. Since $R e=e R$, re $=e x$ for some $x \in R$, and so $e r e=e x=r e$. Similarly, $e r=y e$ for some $y \in R$, and so $e r e=y e=e r$. Thus we have that for all $r \in R$, ere $=r e=e r$, yielding that e is central.

Theorem 3.5. (1) Let N be an ideal of a ring R. If R / N is Baer, then the following conditions are equivalent:
(1) N is semiprime;
(2) N is ideal-symmetric;
(3) N is ideal-reversible.

Proof. It suffices to show that (3) \Rightarrow (1). Suppose that $a R a \subseteq N$ for $a \in R$. Let $\bar{R}=R / N$ and $\bar{x}=x+\bar{R}$ for all $x \in R$. Then \bar{R} is ideal-reversible by Theorem 2.8. Since \bar{R} is Baer, there exists $\bar{e}^{2}=\bar{e} \in \bar{R}$ with $\operatorname{ann}_{r}(\bar{a} \bar{R})=\bar{e} \bar{R}$. Then $\bar{a}=\bar{e} \cdot \bar{a}$ since $\bar{a} \in \operatorname{ann}_{r}(\bar{a} \bar{R})=\bar{e} \bar{R}$, and so $a-e a \in N$. Note that both $\bar{e} \bar{R}$ and $\bar{a} \bar{R}$ are right ideals of \bar{R} and $(\bar{a} \bar{R})(\bar{e} \bar{R})=\overline{0}$. Since \bar{R} is ideal-reversible, $(\bar{a} \bar{R})(\bar{e} \bar{R})=\overline{0}$ implies that $(\bar{e} \bar{R})(\bar{a} \bar{R})=\overline{0}$ by Corollary 3.2, entailing ea $\in N$. Hence we have $a=(a-e a)+e a \in N$, which implies that N is semiprime.

Corollary 3.6. (1) Let R be a Baer ring. Then the following conditions are equivalent:
(1) R is semiprime;
(2) R is ideal-symmetric;
(3) R is ideal-reversible.

Proof. It follows from Theorem 3.5.
Acknowledgements. The authors thank the referee for his/her very careful reading of the manuscript and valuable suggestions that improved the paper.

References

[1] D. Anderson and V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), no. 6, 2847-2852.
[2] G. Birkenmeier, J. Kim, and J. Park, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra 159 (1999), 25-42.
[3] V. Camillo, T. Kwak, and Y. Lee, Ideal-symmetric and semiprime rings, Comm. Algebra 41 (2013), no. 12, 4504-4519.
[4] J. Clark, Twisted matrix units semigroup algebras, Duke Math. J. 34 (1967), 417-424.
[5] P. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641-648.
[6] Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168 (2002), no. 1, 45-52.
[7] C. Hong, N, Kim, and Y. Lee, Ore extensions of quasi-Baer rings, Comm. Algebra 37 (2009), no. 6, 2030-2039.
[8] I. Kaplansky, Rings of Operators, Math. Lecture Note Series. New York: Benjamin, 1965.
[9] T. Kwak and Y. Lee, Reflexive property of rings, Comm. Algebra 40 (2012), no. 4, 1576-1594.
[10] J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359-368.
[11] G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002), no. 3, 311-318.
[12] G. Mason, Reflexive ideals, Comm. Algebra 9 (1981), no. 17, 1709-1724.
Juncheol Han
Department of Mathematics Education
Pusan National University
Pusan 46241, Korea
E-mail address: jchan@pusan.ac.kr

Yang Lee
Institute of Basic Science
Daejin University
Pocheen 11159, Korea
E-mail address: iissylee@hanmail.net
Sangwon Park
Department of Mathematics
Dong-A University
Pusan 49315, Korea
E-mail address: swpark@donga.ac.kr

[^0]: Received May 9, 2016; Accepted September 21, 2016.
 2010 Mathematics Subject Classification. 16D25, 16S50.
 Key words and phrases. symmetric ideal, ideal-symmetric ideal, ideal-reversible ideal, ideal-symmetric ring, ideal-reversible ring, Morita invariant, ideal-symmetric radical, Baer ring, quasi-Baer ring.

 This work was supported by 2-year Research Grant of Pusan National University.

