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RINGS WITH IDEAL-SYMMETRIC IDEALS

Juncheol Han, Yang Lee, and Sangwon Park

Abstract. Let R be a ring with identity. An ideal N of R is called

ideal-symmetric (resp., ideal-reversible) if ABC ⊆ N implies ACB ⊆ N

(resp., AB ⊆ N implies BA ⊆ N) for any ideals A,B,C in R. A ring
R is called ideal-symmetric if zero ideal of R is ideal-symmetric. Let

S(R) (called the ideal-symmetric radical of R) be the intersection of all
ideal-symmetric ideals of R. In this paper, the following are investigated:

(1) Some equivalent conditions on an ideal-symmetric ideal of a ring are

obtained; (2) Ideal-symmetric property is Morita invariant; (3) For any
ring R, we have S(Mn(R)) = Mn(S(R)) where Mn(R) is the ring of all

n by n matrices over R; (4) For a quasi-Baer ring R, R is semiprime if

and only if R is ideal-symmetric if and only if R is ideal-reversible.

1. Introduction and basic definitions

Throughout this paper, all rings are associative with identity unless oth-
erwise specified. Let R be a ring. Let J(R) and P (R) denote the Jacobson
radical and the prime radical of R respectively. Denote the n by n full (resp.,
upper triangular) matrix ring over R by Mn(R) (resp., Un(R)). Z (Zn) de-
notes the ring of integers (modulo n). R[x] denotes the polynomial ring with
an indeterminate x over R.

Lambek introduced the concept of a symmetric right ideal, unifying the sheaf
representation of commutative rings and reduced rings in [10]. Lambek called a
right ideal I of a ring R symmetric if rst ∈ I implies rts ∈ I for all r, s, t ∈ R. If
zero ideal of R is symmetric, then R is called a symmetric ring; while Anderson
and Camillo [1] used the term ZC3 for this concept. It is proved by Lambek
that an ideal I of a ring R is symmetric if and only if r1r2 · · · rn ∈ I implies
rσ(1)rσ(2) · · · rσ(n) ∈ I for any permutation σ of the set {1, 2, . . . , n}, where
n ≥ 1 and ri ∈ R for all i (see [10], Proposition 1).

As a generalizaton of symmetric rings, Kwak, at el. [3] extended the concept
of symmetric rings to ideal-symmetric rings. A ring R is called ideal-symmetric

Received May 9, 2016; Accepted September 21, 2016.
2010 Mathematics Subject Classification. 16D25, 16S50.
Key words and phrases. symmetric ideal, ideal-symmetric ideal, ideal-reversible ideal,

ideal-symmetric ring, ideal-reversible ring, Morita invariant, ideal-symmetric radical, Baer
ring, quasi-Baer ring.

This work was supported by 2-year Research Grant of Pusan National University.

c©2017 Korean Mathematical Society

1913



1914 J. HAN, Y. LEE, AND S. PARK

if ABC = 0 implies ACB = 0 for all ideals A,B,C of R. It is evident that
symmetric rings are ideal-symmetric, but the converse need not hold by [3,
Example 1.2].

In this note, we will extend the concepts of symmetric ideals of a ring to
ideal-symmetric ideals. We will call an ideal N of a ring R ideal-symmetric if
ABC ⊆ N implies ACB ⊆ N for any ideals A,B,C in R. Note that if the zero
ideal of a ring R is ideal-symmetric, then R is ideal-symmetric ([3]).

It is obvious that every prime ideal of a ring R is ideal-symmetric. Moreover,
observe that any semiprime ideal of a ring R is also ideal-symmetric. Indeed,
let N be a semiprime ideal of R such that ABC ⊆ N for any ideals A,B,C of
R. Since N is semiprime and (ACB)2 = A(CBA)(CB) ⊆ ABC ⊆ N , we have
ACB ⊆ N , yielding that N is ideal-symmetric. However, the converse need
not be true by the following examples:

Example 1.1. Let n, k ≥ 2 and consider the ideal I = nkZ of Z. Then I is
clearly an ideal-symmetric ideal of Z, but I is not a semiprime ideal of Z since
Z/nkZ is isomorphic to Znk .

Example 1.2. Let H be the Hamilton quaternions over the real numbers.
Consider the subring

R =


a b c

0 a b
0 0 a

 | a, b, c ∈ H


of U3(H). Then R is a noncommutative local ring with J2 6= 0 = J3, where

J = J(R) =
{(

0 b c
0 0 b
0 0 0

)
| b, c ∈ H

}
. Note that {R, J, J2, 0} is the set of all ideals

of R, and so all ideals of R are ideal-symmetric. But 0 and J2 are not semiprime
ideals of R.

According to Cohen [5], a ring R is called reversible if ab = 0 implies ba = 0
for all a, b ∈ R. Anderson and Camillo [1] used the term ZC2 for the reversible
condition. It is evident that a symmetric ring is reversible. But the converse
could not hold by [1, Example 1.5] or [11, Examples 5 and 7]. An ideal N of
a ring R is called reversible if ab ∈ N implies ba ∈ N for all a, b ∈ R. In [12],
this ideal N is called completely reflexive. We will also extend the concepts
of reversible ideals to ideal-reversible ideals. We will call an ideal N of a ring
R ideal-reversible if AB ⊆ N implies BA ⊆ N for any ideals A,B in R. In
particular, if the zero ideal of a ring R is ideal-reversible, then R is usually
called ideal-reversible. Anderson and Camillo demonstrated that there exists
a reversible ring but not ideal-symmetric in [1, Example 1.5]. On the other
hand, it is clear that any ideal-symmetric ideal of a ring is ideal-reversible.
The following example tells us that there exists an ideal-reversible ideal in
some ring but not ideal-symmetric:
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Example 1.3. By [1, Example 1.5], there exists a reversible ring but not
ideal-symmetric. Hence we can take a reversible ring R1 which is not ideal-
symmetric. Consider R = R1 × R2 for some ring R2, and let N = {0} × R2

be an ideal of R. Note that R/N is isomorphic to R1. Since R1 is reversible,
R1 is clearly ideal-reversible. Thus R/N is ideal-reversible, and so N is ideal-
reversible by the below Theorem 2.8. On the other hand, since R1 is not
ideal-symmetric, R/N is not also ideal-symmetric, and then N is not ideal-
symmetric by the below Theorem 2.8.

In Section 2, we will show that every symmetric ideal of a ring R is ideal-
symmetric, but the converse does not hold. Some equivalent conditions that an
ideal N of R is ideal-symmetric are investigated, for example, an ideal N of R
is ideal-symmetric if and only if I1I2 · · · In ⊆ N implies Iσ(1)Iσ(2) · · · Iσ(n) ⊆ N
for any permutation σ of the set {1, 2, . . . , n} where n ≥ 3 and Ii is an (right,
left) ideal of R for all i. It is shown that an ideal N of R is ideal-symmetric if
and only if R/N is an ideal-symmetric ring.

We call the intersection of all ideal-symmetric ideals of a ring R the ideal-
symmetric radical of R and denote it by S(R). It is evident that S(R) is the
smallest ideal-symmetric ideal of R. If R has no proper ideal-symmetric ideals,
then S(R) = R. It is clear that S(R) ⊆ P (R) ⊆ J(R) since every prime ideal
of R is ideal-symmetric and every maximal ideal is prime. In Section 2, we will
also show that the ideal-symmetric property is Morita invariant, and for any
ring R, S(Mn(R)) = Mn(S(R)) and S(R)[x] ⊆ S(R[x]).

In [12], a right ideal I of a ring R is called reflexive if aRb ⊆ I implies that
bRa ⊆ I for any a, b ∈ R. R is called reflexive if the zero ideal of R is a reflexive
ideal (i.e., aRb = 0 implies that bRa = 0 for a, b ∈ R. It was shown in [9] that
a ring R is ideal-reversible if and only if R is reflexive. In Section 3, we will
show that any ideal N is ideal-reversible if and only if N is reflexive if and only
if IJ ⊆ N implies JI ⊆ N for any right (or left) ideals I, J of R.

Kaplansky [8] introduced the concept of Baer rings as rings in which the
right (left) annihilator of every nonempty subset is generated by an idempo-
tent. Clark [4] extended the concept of Baer rings to quasi-Baer rings. A ring
R is called quasi-Baer if the right (left) annihilator of every nonzero ideal is
generated by an idempotent (See [2], [7]). Note that the definition of Baer
rings and quasi-Baer rings are left-right symmetric by [4] and [8]. Also note
that in a reduced ring R (i.e., R has no nonzero nilpotent), R is Baer if and
only if R is quasi-Baer. In Section 3, it was shown that for any ideal B of an
ideal-reversible ring R, if R is quasi-Baer, then ann(B) = Re for some central
idempotent e ∈ R. In [3, Proposition 1.9], it was proved that for a Baer ring
R, R is semiprime if and only if R is ideal-symmetric if and only if R is re-
flexive (equivalently, ideal-reversible). In this note, it was shown that for an
ideal N of a ring R such that R/N is Baer, N is semiprime if and only if N is
ideal-symmetric if and only if N is ideal-reversible.
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2. Ideal-symmetric ideals of rings

In this section we study the structure of ideal-symmetric ideals.

Proposition 2.1. Every symmetric (resp., reversible) ideal of a ring R is
ideal-symmetric (resp., ideal-reversible).

Proof. Let N be a symmetric ideal of a ring R. Suppose that ABC ⊆ N for
any ideals A,B,C in R, and let α ∈ ACB be arbitrary. Then α =

∑n
i=1 aiqi

where ai ∈ A, qi =
∑`i
j=1 cijbij ∈ CB (cij ∈ C, bij ∈ B) for each i = 1, . . . , n.

So α =
∑n
i=1

∑`i
j=1 aicijbij . Note that each aibijcij ∈ ABC ⊆ N . Since N is

symmetric, aicijbij ∈ N , and so α ∈ N , yielding that N is ideal-symmetric.
Similarly, we also show that every reversible ideal of a ring R is ideal-reversible.

�

The converse of above Proposition 2.1 could not be true by the following
example:

Example 2.2. Let Z4 be the rings of integers modulo 4 and R = Mat2(Z4).
Then {R,N = Mat2(2Z4), 0} is the set of all ideals of R. Note that R is not
reversible (hence R is not symmetric) because ab = 0 6= ba for some a, b ∈ R
where a = ( 0 2

0 0 ) , b = ( 1 1
0 0 ). Note that the ideal N of R is not reversible

(hence N is not symmetric) because pq ∈ N, qp /∈ N for some p, q ∈ R where
p = ( 1 1

0 0 ) , q = ( 1 0
1 2 ). On the other hand, we observe that all ideals of R

are ideal-symmetric. Indeed, let A,B,C be ideals of R. First, suppose that
ABC = 0. If one of A,B,C is zero, then clearly, ACB = 0. Let A,B,C 6= 0.
Since ABC = 0, ABC is one of NNR, NRN , RNN , and so ACB = 0, yielding
that 0 is ideal-symmetric. Next, suppose that ABC ⊆ N . If one of A,B,C is
zero, then clearly, ABC = ACB = 0 ⊆ N . Let A,B,C 6= 0. Since ABC ⊆ N ,
ABC = 0 or ABC = N . If ABC = 0, then ACB = 0 as above argument.
If ABC = N , then ABC is one of NRR, RRN , RNR, and so ACB = N ,
yielding that N is ideal-symmetric (hence N is ideal-reversible).

Proposition 2.3. Let N be any ideal of a ring R. Then N is ideal-symmetric
if and only if (a)(b)(c) ⊆ N implies (a)(c)(b) ⊆ N for all a, b, c ∈ R.

Proof. Suppose that (a)(b)(c) ⊆ N implies (a)(c)(b) ⊆ N for all a, b, c ∈ R. Let
ABC ⊆ N for any ideals A,B,C in R, and let α ∈ ACB be arbitrary. Then

α =
∑n
i=1 aiqi where ai ∈ A, qi =

∑`i
j=1 cijbij ∈ CB (cij ∈ C, bij ∈ B) for each

i = 1, . . . , n. So α =
∑n
i=1

∑`i
j=1 aicijbij . Since each aibijcij ∈ (ai)(bij)(cij) ⊆

ABC ⊆ N , we have aicijbij ∈ (ai)(cij)(bij) ⊆ N by assumption, and so α ∈ N .
Thus ACB ⊆ N , yielding that N is an ideal-symmetric ideal of a ring R. The
converse is clear. �

Lemma 2.4. Let N be an ideal-symmetric ideal of a ring R and I1, I2, I3
be ideals of R. Then I1I2I3 ⊆ N if and only if Iσ(1)Iσ(2)Iσ(3) ⊆ N for any
permutation σ of the set of {1, 2, 3}.
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Proof. Suppose that N is ideal-symmetric such that I1I2I3 ⊆ N . Since N is
ideal-symmetric, I1I3I2 ⊆ N . Since N is ideal-symmetric and RI1(I2I3) ⊆ N ,
we have R(I2I3)I1 ⊆ N , and so I2I3I1 ⊆ N , also I2I1I3 ⊆ N . By applying the
similar argument to RI1(I3I2) ⊆ N , we also have that I3I1I2, I3I2I1 ⊆ N . The
converse is clear. �

Let Sn be the symmetric group on n letters for any positive integer.

Proposition 2.5. For any ideal N of a ring R, the following conditions are
equivalent:

(1) N is ideal-symmetric;
(2) aRbRc ⊆ N implies aRcRb ⊆ N for all a, b, c ∈ R;
(3) I1I2 · · · In ⊆ N implies Iσ(1)Iσ(2) · · · Iσ(n) ⊆ N for any σ ∈ Sn where Ii

is an ideal of R for i = 1, 2, . . . , n and n ≥ 3 is any positive integer;
(4) a1Ra2 · · ·Ran ⊆ N implies aσ(1)Raσ(2) · · ·Raσ(n) ⊆ N for any σ ∈ Sn

where Ii is an ideal of R for i = 1, 2, . . . , n and n ≥ 3 is any positive integer;
(5) I1I2 · · · In ⊆ N implies Iσ(1)Iσ(2) · · · Iσ(n) ⊆ N for any σ ∈ Sn where Ii

is a right (left) ideal of R for i = 1, 2, . . . , n and n ≥ 3 is any positive integer;
(6) ABC ⊆ N implies BAC ⊆ N for all ideals A,B,C of R;
(7) aRbRc ⊆ N implies bRaRc ⊆ N for all a, b, c ∈ R.

Proof. (1) ⇒ (2). Suppose that N is ideal-symmetric and aRbRc ⊆ N for all
a, b, c ∈ R. Since N is an ideal of R, we have that (RaR)(RbR)(RcR) ⊆ N .
Since N is ideal-symmetric and RaR,RbR,RcR are ideals of R,

(RaR)(RcR)(RbR) ⊆ N
by assumption. Clearly, aRcRb ⊆ (RaR)(RcR)(RbR) ⊆ N as desired.

(2)⇒ (1). Suppose that aRbRc ⊆ N implies aRcRb ⊆ N for all a, b, c ∈ R.
Let ABC ⊆ N for any ideals A,B,C in R, and let α ∈ ACB be arbitrary.
Then α =

∑m
i=1 aicibi where ai ∈ A, ci ∈ C, bi ∈ B for some positive integer

m. Since each aibici ∈ aiRbiRci ⊆ ABC ⊆ N , we have aicibi ∈ aiRciRbi ⊆ N
by assumption, and so α ∈ N . Thus ACB ⊆ N , yielding that N is ideal-
symmetric.

(1)⇒ (3). Suppose that N is ideal-symmetric and I1I2 · · · In ⊆ N (n ≥ 3).
Since Sn is generated by the transpositions τ0 = (1, 2), τ1 = (2, 3), . . . , τn−2 =
(n− 1, n), τn−1 = (n, 1) ∈ Sn, it is enough to show that Iτk(1)Iτk(2) · · · Iτk(n) ⊆
N for all k = 0, 1, . . . , n− 1. Note that I2I3 · · · I1 ⊆ N , and so I3I4 · · · I2 ⊆ N ,
. . . , InI1 · · · In−1 ⊆ N , i.e.,

(∗) Iµk
(1)Iµk

(2) · · · Iµk
(n) ⊆ N,

where µ = (1, 2, . . . , n) ∈ Sn and µk = µk(= µ · µ · · ·µ) for any k = 0, 1, . . . ,
n− 1. By Lemma 2.4, we have I2I1I3 · · · In ⊆ N , i.e.,

(∗∗) Iτ0(1)Iτ0(2) · · · Iτ0(n) ⊆ N.
By (∗) and (∗∗), we have that

Iτk(1)Iτk(2) · · · Iτk(n) = Iµkτ0µn−k(1)Iµkτ0µn−k(2) · · · Iµrτ0µn−r(n) ⊆ N
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by observing that µkτ0µn−k = τk for all k = 0, 1, . . . , n− 1.
(3)⇒ (1). Clear.
(1)⇔ (6). It follows from Lemma 2.4.
(1)⇔ (7). It follows from (1)⇔ (6) and the similar arguments given in the

proof of (1)⇔ (2).
(3)⇒ (4) and (5)⇒ (3) are obvious.
(4)⇒ (3). Suppose that a1Ra2 · · ·Ran ⊆ N implies aσ(1)Raσ(2) · · ·Raσ(n) ⊆

N for any σ ∈ Sn. Let I1I2 · · · In ⊆ N where Ii (1 ≤ i ≤ n) is an ideal of R.
Let β ∈ Iσ(1)Iσ(2) · · · Iσ(n) be arbitrary for any σ ∈ Sn. Then

β =
∑̀
j=1

aσ(1)jaσ(2)j · · · aσ(n)j ,

where aσ(i)j ∈ Iσ(i) (1 ≤ i ≤ n, 1 ≤ j ≤ `). Since each a1ja2j · · · anj ∈
a1Ra2 · · ·Ran ⊆ N , aσ(1)jaσ(2)j · · · aσ(n)j ∈ aσ(1)Raσ(2) · · ·Raσ(n) ⊆ N by
assumption, and so β ∈ N , yielding that Iσ(1)Iσ(2) · · · Iσ(n) ⊆ N for any σ ∈ Sn.

(3) ⇒ (5). Suppose that I1I2 · · · In ⊆ N implies Iσ(1)Iσ(2) · · · Iσ(n) ⊆ N
for any σ ∈ Sn where Ii (1 ≤ i ≤ n) is an ideal of R and n is any pos-
itive integer. Let J1J2 · · · Jn ⊆ N where Ji (1 ≤ i ≤ n) is a right ideal
of R. Note that (RJ1R)(RJ2R) · · · (RJnR) ⊆ N where RJiR (1 ≤ i ≤ n)
is an ideal of R. Let Ki = RJiR for each i = 1, 2, . . . , n. By assumption,
we have that (RJσ(1)R)(RJσ(2)R) · · · (RJσ(n)R) ⊆ N for any σ ∈ Sn, and so
Jσ(1)Jσ(2) · · · Jσ(n) ⊆ (RJσ(1)R)(RJσ(2)R) · · · (RJσ(n)R) ⊆ N , as desired. The
proof for the left ideal case is shown by the similar argument given in the right
ideal case. �

Corollary 2.6. For a ring R, the following conditions are equivalent:
(1) R is ideal-symmetric;
(2) aRbRc = 0 implies aRcRb = 0 for all a, b, c ∈ R;
(3) I1I2 · · · In = 0 implies Iσ(1)Iσ(2) · · · Iσ(n) = 0 for any σ ∈ Sn where Ii is

an ideal of R for i = 1, 2, . . . , n and n ≥ 3 is any positive integer;
(4) a1Ra2 · · ·Ran = 0 implies aσ(1)Raσ(2) · · ·Raσ(n) = 0 for any σ ∈ Sn

where Ii is an ideal of R for i = 1, 2, . . . , n and n ≥ 3 is any positive integer;
(5) I1I2 · · · In = 0 implies Iσ(1)Iσ(2) · · · Iσ(n) = 0 for any σ ∈ Sn where Ii is

a right (left) ideal of R for i = 1, 2, . . . , n and n ≥ 3 is any positive integer;
(6) ABC = 0 implies BAC = 0 for all ideals A,B,C of R;
(7) aRbRc = 0 implies bRaRc = 0 for all a, b, c ∈ R.

Proof. It follows from Proposition 2.5. �

The following theorem implies that the ideal-symmetric property of any ideal
of a ring is Morita invariant.

Theorem 2.7. Let R be a ring and N be an ideal of R. Then we have the
following:
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(1) If N is ideal-symmetric, then eNe is an ideal-symmetric ideal of eRe for
each e2 = e ∈ R.

(2) N is ideal-symmetric in R if and only if Mn(N) is ideal-symmetric in
Mn(R) for all n ≥ 1.

Proof. (1) Suppose that N is ideal-symmetric. Let a, b, c ∈ eRe such that
a(eRe)b(eRe)c ⊆ eNe. Since a(eRe)b(eRe)c = aeRebRec ⊆ eNe ⊆ N and
N is ideal-symmetric, aeRecReb ⊆ N , and so a(eRe)c(eRe)b = aeRecReb =
e(aeRecReb)e ⊆ eNe, yielding that the ideal eNe is ideal-symmetric.

(2) Suppose that N is ideal-symmetric. Let A,B,C be ideals of Mn(R)
such that ABC ⊆ Mn(N). Note that there exist ideals I, J,K such that A =
Mn(I), B = Mn(J), C = Mn(K). Note that ABC = Mn(I)Mn(J)Mn(K) =
Mn(IJK) and then IJK ⊆ N . Since N is ideal-symmetric, IKJ ⊆ N , and so
ACB = Mn(IJK) ⊆Mn(N). Thus Mn(N) is ideal-symmetric.

Conversely, if Matn(N) is ideal-symmetric, then N ∼= e11Matn(N)e11 is
ideal-symmetric by (1) where e11 is the matrix in Matn(N) with (1, 1)-entry 1
and elsewhere 0. �

We already knew that for an ideal N of a ring R, N is a prime (resp.,
semiprime) ideal if and only if R/N is prime (resp., semiprime). Here we also
have the following:

Theorem 2.8. For an ideal N of a ring R, N is ideal-symmetric (resp., ideal-
reversible) if and only if R/N is an ideal-symmetric (resp., ideal-reversible)
ring.

Proof. Suppose that N is ideal-symmetric. Let A,B,C be ideals of R/N such
that ABC = N , zero of R/N . Then there exist ideals A0, B0, C0 ⊇ N of R such
that A = A0/N,B = B0/N,C = C0/N . Since ABC = (A0/N)(B0/N)(C0/N)
= (A0B0C0)/N = N , A0B0C0 = N . SinceN is ideal-symmetric, A0C0B0 ⊆ N .
Thus ACB = (A0C0B0)/N = N , which yields that R/N is ideal-symmetric
ring.

Suppose that R/N is an ideal-symmetric ring. Let A,B,C be ideals of N
such thatABC ⊆ N . ThenABC+N = N . Note that (A+N)(B+N)(C+N) ⊆
ABC +N = N , and so (A+N)(B +N)(C +N) = N . Since R/N is an ideal-
symmetric ring, ((A + N)/N)(C + N)/N)(B + N)/N) = N , yielding that
(A+N)(C +N)(B +N) ⊆ N , and so ACB ⊆ (A+N)(C +N)(B +N) ⊆ N ,
which means that N is ideal-symmetric.

Similarly, ideal-reversible case is also shown. �

Corollary 2.9. Let I be an ideal-symmetric ideal of a ring R. If I is semiprime
(as a ring without identity), then R is ideal-symmetric.

Proof. Since I is ideal-symmetric, R/I is ideal-symmetric by Theorem 2.8.
Since I is semiprime (as a ring without identity), R is ideal-symmetric ring by
[3, Proposition 2.11]. �
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Note that a subring of ideal-symmetric ring could not be ideal-symmetric
by the following example:

Example 2.10. Let R be an ideal-symmetric ring and consider U2(R). By
Theorem 2.8, Mat2(R) is an ideal-symmetric ring. Let A = (R R

0 0 ) , B = ( 0 R
0 R )

be two ideals of U2(R). Since ABA = 0 and AAB 6= 0, U2(R) is not ideal-
symmetric. On the other hand, we note that A (or B) is an ideal-symmetric
ideal of U2(R) and it is also ideal-symmetric as a subring of U2(R) because
there is the unique nonzero proper ideal ( 0 R

0 0 ) in A (or B) even though U2(R)
is not an ideal-symmetric ring.

Lemma 2.11. (1) The intersection of two ideal-symmetric ideals of a ring R
is ideal-symmetric.

(2) The intersection of all ideal-symmetric ideals of a ring R is ideal-sym-
metric.

Proof. Clear. �

Recall that the intersection of all ideal-symmetric ideals of a ring R intro-
duced in Lemma 2.11 is called the ideal-symmetric radical of R and denoted
S(R). It is evident that S(R) is the smallest ideal-symmetric ideal of R, and
R is a ring such that S(R) = 0 if and only if R is ideal-symmetric.

Corollary 2.12. For any ring R, we have S(R/S(R)) = 0.

Proof. Since S(R) is ideal-symmetric ideal of R by Lemma 2.11, R/S(R) is an
ideal-symmetric ring by Theorem 2.8, and so S(R/S(R)) = 0. �

Now we raise a question:

Question 1. For an ideal I of a ring R that is considered as ring, S(I) =
I ∩ S(R)?

The answer is negative by the following examples:

Example 2.13. Let R = U2(F ) over a field F , and consider the ideal I = ( 0 F
0 0 )

of R. By Example 2.8, U2(F ) is not ideal-symmetric (i.e., the zero ideal of R
is not ideal-symmetric). Since R/I ∼= F × F , which is ideal-symmetric, I is
ideal-symmetric by Theorem 2.8, i.e., S(I) = 0. On the other hand, observe
that all nonzero ideals of R are I, I1 = ( 0 F

0 F ) and I2 = ( F F
0 0 ) which are clearly

ideal-symmetric. Hence S(R) = I∩I1∩I2 = I, and so I∩S(R) = I 6= 0 = S(I).
Note that even though all nonzero ideals of U2(F ) are ideal-symmetric, U2(F )
is not ideal-symmetric.

Example 2.14. Let R be not any ideal-symmetric ring with I = J(R) 6= 0.
Then S(I) = 0 because I is a semiprime ideal of R (hence I is ideal-symmetric).
Thus I ∩ S(R) = J(R) ∩ S(R) = S(R) 6= 0 because R is not ideal-symmetric,
yielding that S(I) = 0 6= I ∩ S(R).

Corollary 2.15. If S(R) is semiprime (as a ring without identity) for a ring
R, then R is ideal-symmetric.
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Proof. Since S(R) is an ideal-symmetric ideal of R, it follows from Corollary
2.9. �

Theorem 2.16. For any ring R, we have S(Mn(R)) = Mn(S(R)).

Proof. Let N = S(R). By Lemma 2.11, N is ideal-symmetric ideal of R, and
so Mn(N) is ideal-symmetric ideal of Mn(R) by Theorem 2.7. Since Mn(N)
is ideal-symmetric ideal of Mn(R), S(Mn(R)) ⊆ Mn(N). Next, we will show
that Mn(N) ⊆ S(Mn(R)). Let A be any ideal-symmetric ideal of Mn(R).
Then there exists an ideal A0 of R such that A = Mn(A0). Since A is ideal-
symmetric, A0 is ideal-symmetric by Theorem 2.7, and so N ⊆ A0. Thus
Mn(N) ⊆ Mn(A0) = A, yielding that Mn(N) ⊆ S(Mn(R)). Therefore, we
have S(Mn(R)) = Mn(S(R)). �

Proposition 2.17. For any ring R, we have the following:
(1) S(R)[x] ⊆ S(R[x]);
(2) If R[x] is ideal-symmetric, then R is ideal-symmetric.

Proof. (1) Let N = S(R). It is enough to show that N [x] ⊆ A for any ideal-
symmetric ideal A of R[x]. We note that A∩R is an ideal-symmetric ideal of R.
Indeed, if aRbRc ⊆ A ∩R for all a, b, c ∈ R, then aR[x]bR[x]c = (aRbRc)[x] ⊆
A, and then aR[x]cR[x]b = (aRcRb)[x] ⊆ A by Proposition 2.5 because A is
ideal-symmetric, and so aRcRb ⊆ A∩R, yielding that A∩R is ideal symmetric.
Since A ∩ R is ideal-symmetric, N ⊆ A ∩ R ⊆ A. Therefore, N [x] ⊆ A, as
desired.

(2) It follows from (1). �

Note that the converse of (2) of Proposition 2.17 could not be true by [3,
Example 2.4]. A ring R is quasi-Armendariz [6] provided that aiRbj = 0 for
all i, j whenever f =

∑m
i=0 aix

i, g =
∑n
j=0 bjx

j ∈ R[x] satisfy fR[x]g = 0.

In [3], V. Camilo et al. have shown that for a quasi-Armendariz ring R, R is
ideal-symmetric if and only if R[x] is ideal-symmetric.

Theorem 2.18. Let R be a ring R. If R/S(R) is quasi-Armendariz, then
S(R)[x] = S(R[x]).

Proof. By Proposition 2.17, we have S(R)[x] ⊆ S(R[x]). To show the re-
verse inclusion, let N = S(R). Since N is ideal-symmetric, R/N is an ideal-
symmetric ring by Theorem 2.8. Since R/N is quasi-Armendariz, (R/N)[x]
is ideal-symmetric by [3, Remark 2.5]. Since (R/N)[x] ∼= R[x]/N [x] is ideal-
symmetric, N [x] is an ideal-symmetric ideal of R[x] by Theorem 2.8, and so
N [x] ⊇ S(R[x]) as desired. �

Now we raise the following open questions:

Question 2. (1) Is S(R)[x] = S(R[x]) for a quasi-Armendariz ring R?

(2) For a ring R, what is S(S(R))?
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3. Ideal-reversible ideals of rings

Let B be a subset of a ring R and N be an ideal of R. The set {a ∈ R | aB ⊆
N} is a left ideal of R, which is actually an ideal if B is a left ideal. The set
{a ∈ R | aB ⊆ N} is called the left annihilator of B in N and is denoted
ann`(B;N). Similarly, the set

annr(B;N) = {a ∈ R |Ba ⊆ N}
is an ideal of R if B is a right ideal. The set annr(B;N) is called the right anni-
hilator of B in N . When ann`(B;N) = annr(B;N), it is denoted ann(B;N),
and called annihilator of B in N . In particular, if N = 0, then ann`(B; 0)
(resp., annr(B; 0)) is called left annihilator of B (resp., right annihilator of B),
and is simply denoted ann`(B) (resp., annr(B)). When ann`(B) = annr(B),
it is denoted ann(B).

Proposition 3.1. For an ideal N of a ring R, the following are equivalent:
(1) N is ideal-reversible;
(2) N is reflexive;
(3) For each a ∈ R, ann`(Ra;N) = annr(aR;N);
(4) ARB ⊆ N implies BRA ⊆ N for any nonempty subsets A,B of R;
(5) For each ideal B of R, ann`(B;N) = annr(B;N);
(6) IJ ⊆ N implies JI ⊆ N for any right (or left) ideals I, J of R.

Proof. (1)⇒ (2) Suppose that N is ideal-reversible. Let aRb ⊆ N for a, b ∈ R.
Then (RaR)(RbR) ⊆ N . Since N is ideal-reversible, we have that bRa ⊆
(RbR)(RaR) ⊆ N , and so N is reflexive.

(2) ⇒ (1) Suppose that N is reflexive. Let IJ ⊆ N for any ideals I, J ∈ R.
Let α ∈ JI be arbitrary. Then α =

∑n
i=1 biai where ai ∈ I, bi ∈ J for some

positive integer n. Since each aibi ∈ aiRbi ⊆ IJ ⊆ N , we have biai ∈ biRai ⊆
N by assumption, yielding JI ⊆ N . Hence N is ideal-reversible.

(2) ⇒ (3) Suppose that N is reflexive. Let b ∈ annr(aR;N) for each a ∈ R
be arbitrary. Then aRb ⊆ N . Since N is reflexive, we have that bRa ⊆ N ,
yielding that b ∈ ann`(Ra;N), and so annr(aR;N) ⊆ ann`(Ra;N). Similarly,
we also have that ann`(Ra;N) ⊆ annr(aR;N).

(3) ⇒ (2) Suppose that For each a ∈ R, ann`(Ra;N) = annr(aR;N). Let
aRb ⊆ N for a, b ∈ R. Then b ∈ annr(aR;N) = ann`(Ra;N) by assumption,
yielding that bRa ⊆ N , and so N is reflexive.

(1) ⇒ (5) Suppose that N is ideal-reversible. Let A = ann`(B;N) and
A0 = annr(B;N). Then A and A0 are ideals of R. Since AB ⊆ N and N is
ideal-reversible, we have that BA ⊆ N , yielding A ⊆ A0. Similarly, we also
have that A0 ⊆ A. Hence ann`(B;N) = annr(B;N) as desired.

(5) ⇒ (1) Suppose that (5) holds. Let AB ⊆ N for any ideals I, J of R.
Then A ⊆ ann`(B;N) = annr(B;N) by assumption, yielding that BA ⊆ N ,
and so N is ideal-reversible.

(6) ⇒ (1) and (4) ⇒ (2) are clear.
(4) ⇒ (6) is clear.
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(2)⇒ (4) Suppose that N is reflexive. Let A,B be two nonempty subsets of
R with ARB ⊆ N . Then aRb ⊆ N for any a ∈ A and b ∈ B, and so bRa ⊆ N
by assumption. Thus BRA =

∑
a∈A,b∈B bRa ⊆ N . �

Corollary 3.2. For a ring R, the following are equivalent:
(1) R is ideal-reversible;
(2) R is reflexive;
(3) For each a ∈ R, ann`(Ra) = annr(aR);
(4) ARB = 0 implies BRA = 0 for any nonempty subsets A,B of R;
(5) For each ideal B of R, ann`(B) = annr(B);
(6) IJ = 0 implies JI = 0 for any right (or left) ideals I, J of R.

Proof. It follows from Proposition 3.1. �

We also have that the ideal-reversible property of any ideal of a ring is Morita
invariant.

Proposition 3.3. Let R be a ring and N be an ideal of R. Then we have the
following:

(1) If N is ideal-reversible, then eNe is an ideal-symmetric ideal of eRe for
each e2 = e ∈ R.

(2) N is ideal-reversible in R if and only if Mn(N) is ideal-reversible in
Mn(R) for all n ≥ 1.

Proof. (1) Suppose that N is ideal-reversible. Let a, b ∈ eRe such that a(eRe)b
⊆ eNe. Since (eae)R(ebe) = a(eRe)b ⊆ N and N is reflexive by Proposition
3.1, b(eRe)a ⊆ N , and then b(eRe)a = (ebe)R(eae) ⊆ eNe, yielding that the
ideal eNe is ideal-reversible.

(2) It follows from the similar proof given in Theorem 2.7. �

Proposition 3.4. Let B be an ideal of an ideal-reversible ring R. If R is
quasi-Baer, then ann(B) = Re for some central idempotent e ∈ R.

Proof. Since R is quasi-Baer, ann`(B) = Re for some idempotent e ∈ R.
Similarly, annr(B) = fR for some idempotent f ∈ R. Since R is an ideal-
reversible, ann`(B) = annr(B) by Corollary 3.2, and so Re = fR. Observe
that e = f . Indeed, since Re = fR, e = fa for some a ∈ R, and then
fe = fa = e. Also f = be for some b ∈ R, and then fe = be = f . Thus
e = f . Let r ∈ R be arbitrary. Since Re = eR, re = ex for some x ∈ R, and so
ere = ex = re. Similarly, er = ye for some y ∈ R, and so ere = ye = er. Thus
we have that for all r ∈ R, ere = re = er, yielding that e is central. �

Theorem 3.5. (1) Let N be an ideal of a ring R. If R/N is Baer, then the
following conditions are equivalent:

(1) N is semiprime;
(2) N is ideal-symmetric;
(3) N is ideal-reversible.
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Proof. It suffices to show that (3) ⇒ (1). Suppose that aRa ⊆ N for a ∈ R.
Let R = R/N and x = x + R for all x ∈ R. Then R is ideal-reversible by
Theorem 2.8. Since R is Baer, there exists e2 = e ∈ R with annr(aR) = eR.
Then a = e · a since a ∈ annr(aR) = eR, and so a − ea ∈ N . Note that both
eR and aR are right ideals of R and (aR)(eR) = 0. Since R is ideal-reversible,
(aR)(eR) = 0 implies that (eR)(aR) = 0 by Corollary 3.2, entailing ea ∈ N .
Hence we have a = (a− ea) + ea ∈ N , which implies that N is semiprime. �

Corollary 3.6. (1) Let R be a Baer ring. Then the following conditions are
equivalent:

(1) R is semiprime;
(2) R is ideal-symmetric;
(3) R is ideal-reversible.

Proof. It follows from Theorem 3.5. �
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