Bull. Korean Math. Soc. **54** (2017), No. 6, pp. 1913–1925 https://doi.org/10.4134/BKMS.b160401 pISSN: 1015-8634 / eISSN: 2234-3016

RINGS WITH IDEAL-SYMMETRIC IDEALS

JUNCHEOL HAN, YANG LEE, AND SANGWON PARK

ABSTRACT. Let R be a ring with identity. An ideal N of R is called *ideal-symmetric* (resp., *ideal-reversible*) if $ABC \subseteq N$ implies $ACB \subseteq N$ (resp., $AB \subseteq N$ implies $BA \subseteq N$) for any ideals A, B, C in R. A ring R is called *ideal-symmetric* if zero ideal of R is ideal-symmetric. Let S(R) (called the *ideal-symmetric radical* of R) be the intersection of all ideal-symmetric ideals of R. In this paper, the following are investigated: (1) Some equivalent conditions on an ideal-symmetric ideal of a ring are obtained; (2) Ideal-symmetric property is Morita invariant; (3) For any ring R, we have $S(M_n(R)) = M_n(S(R))$ where $M_n(R)$ is the ring of all n by n matrices over R; (4) For a quasi-Baer ring R, R is semiprime if and only if R is ideal-symmetric ideal.

1. Introduction and basic definitions

Throughout this paper, all rings are associative with identity unless otherwise specified. Let R be a ring. Let J(R) and P(R) denote the Jacobson radical and the prime radical of R respectively. Denote the n by n full (resp., upper triangular) matrix ring over R by $M_n(R)$ (resp., $U_n(R)$). $\mathbb{Z}(\mathbb{Z}_n)$ denotes the ring of integers (modulo n). R[x] denotes the polynomial ring with an indeterminate x over R.

Lambek introduced the concept of a symmetric right ideal, unifying the sheaf representation of commutative rings and reduced rings in [10]. Lambek called a right ideal I of a ring R symmetric if $rst \in I$ implies $rts \in I$ for all $r, s, t \in R$. If zero ideal of R is symmetric, then R is called a symmetric ring; while Anderson and Camillo [1] used the term ZC_3 for this concept. It is proved by Lambek that an ideal I of a ring R is symmetric if and only if $r_1r_2 \cdots r_n \in I$ implies $r_{\sigma(1)}r_{\sigma(2)} \cdots r_{\sigma(n)} \in I$ for any permutation σ of the set $\{1, 2, \ldots, n\}$, where $n \geq 1$ and $r_i \in R$ for all i (see [10], Proposition 1).

As a generalizaton of symmetric rings, Kwak, at el. [3] extended the concept of symmetric rings to ideal-symmetric rings. A ring R is called *ideal-symmetric*

 $\bigodot 2017$ Korean Mathematical Society

Received May 9, 2016; Accepted September 21, 2016.

²⁰¹⁰ Mathematics Subject Classification. 16D25, 16S50.

Key words and phrases. symmetric ideal, ideal-symmetric ideal, ideal-reversible ideal, ideal-symmetric ring, ideal-reversible ring, Morita invariant, ideal-symmetric radical, Baer ring, quasi-Baer ring.

This work was supported by 2-year Research Grant of Pusan National University.

if ABC = 0 implies ACB = 0 for all ideals A, B, C of R. It is evident that symmetric rings are ideal-symmetric, but the converse need not hold by [3, Example 1.2].

In this note, we will extend the concepts of symmetric ideals of a ring to ideal-symmetric ideals. We will call an ideal N of a ring R *ideal-symmetric* if $ABC \subseteq N$ implies $ACB \subseteq N$ for any ideals A, B, C in R. Note that if the zero ideal of a ring R is ideal-symmetric, then R is ideal-symmetric ([3]).

It is obvious that every prime ideal of a ring R is ideal-symmetric. Moreover, observe that any semiprime ideal of a ring R is also ideal-symmetric. Indeed, let N be a semiprime ideal of R such that $ABC \subseteq N$ for any ideals A, B, C of R. Since N is semiprime and $(ACB)^2 = A(CBA)(CB) \subseteq ABC \subseteq N$, we have $ACB \subseteq N$, yielding that N is ideal-symmetric. However, the converse need not be true by the following examples:

Example 1.1. Let $n, k \geq 2$ and consider the ideal $I = n^k \mathbb{Z}$ of \mathbb{Z} . Then I is clearly an ideal-symmetric ideal of \mathbb{Z} , but I is not a semiprime ideal of \mathbb{Z} since $\mathbb{Z}/n^k \mathbb{Z}$ is isomorphic to \mathbb{Z}_{n^k} .

Example 1.2. Let \mathbb{H} be the Hamilton quaternions over the real numbers. Consider the subring

$$R = \left\{ \begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix} \mid a, b, c \in \mathbb{H} \right\}$$

of $U_3(\mathbb{H})$. Then R is a noncommutative local ring with $J^2 \neq 0 = J^3$, where $J = J(R) = \left\{ \begin{pmatrix} 0 & b & c \\ 0 & 0 & b \\ 0 & 0 & 0 \end{pmatrix} \mid b, c \in \mathbb{H} \right\}$. Note that $\{R, J, J^2, 0\}$ is the set of all ideals of R, and so all ideals of R are ideal-symmetric. But 0 and J^2 are not semiprime ideals of R.

According to Cohen [5], a ring R is called reversible if ab = 0 implies ba = 0for all $a, b \in R$. Anderson and Camillo [1] used the term ZC_2 for the reversible condition. It is evident that a symmetric ring is reversible. But the converse could not hold by [1, Example 1.5] or [11, Examples 5 and 7]. An ideal N of a ring R is called reversible if $ab \in N$ implies $ba \in N$ for all $a, b \in R$. In [12], this ideal N is called completely reflexive. We will also extend the concepts of reversible ideals to ideal-reversible ideals. We will call an ideal N of a ring R ideal-reversible if $AB \subseteq N$ implies $BA \subseteq N$ for any ideals A, B in R. In particular, if the zero ideal of a ring R is ideal-reversible, then R is usually called *ideal-reversible*. Anderson and Camillo demonstrated that there exists a reversible ring but not ideal-symmetric in [1, Example 1.5]. On the other hand, it is clear that any ideal-symmetric ideal of a ring is ideal-reversible. The following example tells us that there exists an ideal-reversible ideal in some ring but not ideal-symmetric:

Example 1.3. By [1, Example 1.5], there exists a reversible ring but not ideal-symmetric. Hence we can take a reversible ring R_1 which is not ideal-symmetric. Consider $R = R_1 \times R_2$ for some ring R_2 , and let $N = \{0\} \times R_2$ be an ideal of R. Note that R/N is isomorphic to R_1 . Since R_1 is reversible, R_1 is clearly ideal-reversible. Thus R/N is ideal-reversible, and so N is ideal-reversible by the below Theorem 2.8. On the other hand, since R_1 is not ideal-symmetric by the below Theorem 2.8.

In Section 2, we will show that every symmetric ideal of a ring R is ideal-symmetric, but the converse does not hold. Some equivalent conditions that an ideal N of R is ideal-symmetric are investigated, for example, an ideal N of R is ideal-symmetric if and only if $I_1I_2\cdots I_n \subseteq N$ implies $I_{\sigma(1)}I_{\sigma(2)}\cdots I_{\sigma(n)} \subseteq N$ for any permutation σ of the set $\{1, 2, \ldots, n\}$ where $n \geq 3$ and I_i is an (right, left) ideal of R for all i. It is shown that an ideal N of R is ideal-symmetric if and only if R/N is an ideal-symmetric ring.

We call the intersection of all ideal-symmetric ideals of a ring R the *ideal-symmetric radical* of R and denote it by S(R). It is evident that S(R) is the smallest ideal-symmetric ideal of R. If R has no proper ideal-symmetric ideals, then S(R) = R. It is clear that $S(R) \subseteq P(R) \subseteq J(R)$ since every prime ideal of R is ideal-symmetric and every maximal ideal is prime. In Section 2, we will also show that the ideal-symmetric property is Morita invariant, and for any ring R, $S(M_n(R)) = M_n(S(R))$ and $S(R)[x] \subseteq S(R[x])$.

In [12], a right ideal I of a ring R is called *reflexive* if $aRb \subseteq I$ implies that $bRa \subseteq I$ for any $a, b \in R$. R is called *reflexive* if the zero ideal of R is a reflexive ideal (i.e., aRb = 0 implies that bRa = 0 for $a, b \in R$. It was shown in [9] that a ring R is ideal-reversible if and only if R is reflexive. In Section 3, we will show that any ideal N is ideal-reversible if and only if N is reflexive if and only if $IJ \subseteq N$ implies $JI \subseteq N$ for any right (or left) ideals I, J of R.

Kaplansky [8] introduced the concept of *Baer* rings as rings in which the right (left) annihilator of every nonempty subset is generated by an idempotent. Clark [4] extended the concept of Baer rings to quasi-Baer rings. A ring R is called *quasi-Baer* if the right (left) annihilator of every nonzero ideal is generated by an idempotent (See [2], [7]). Note that the definition of Baer rings and quasi-Baer rings are left-right symmetric by [4] and [8]. Also note that in a reduced ring R (i.e., R has no nonzero nilpotent), R is Baer if and only if R is quasi-Baer. In Section 3, it was shown that for any ideal B of an ideal-reversible ring R, if R is quasi-Baer, then ann(B) = Re for some central idempotent $e \in R$. In [3, Proposition 1.9], it was proved that for a Baer ring R, R is semiprime if and only if R is ideal-symmetric if and only if R is reflexive (equivalently, ideal-reversible). In this note, it was shown that for an ideal N of a ring R such that R/N is Baer, N is semiprime if and only if N is ideal-reversible.

J. HAN, Y. LEE, AND S. PARK

2. Ideal-symmetric ideals of rings

In this section we study the structure of ideal-symmetric ideals.

Proposition 2.1. Every symmetric (resp., reversible) ideal of a ring R is ideal-symmetric (resp., ideal-reversible).

Proof. Let N be a symmetric ideal of a ring R. Suppose that $ABC \subseteq N$ for any ideals A, B, C in R, and let $\alpha \in ACB$ be arbitrary. Then $\alpha = \sum_{i=1}^{n} a_i q_i$ where $a_i \in A, q_i = \sum_{j=1}^{\ell_i} c_{ij} b_{ij} \in CB$ $(c_{ij} \in C, b_{ij} \in B)$ for each $i = 1, \ldots, n$. So $\alpha = \sum_{i=1}^{n} \sum_{j=1}^{\ell_i} a_i c_{ij} b_{ij}$. Note that each $a_i b_{ij} c_{ij} \in ABC \subseteq N$. Since N is symmetric, $a_i c_{ij} b_{ij} \in N$, and so $\alpha \in N$, yielding that N is ideal-symmetric. Similarly, we also show that every reversible ideal of a ring R is ideal-reversible.

The converse of above Proposition 2.1 could not be true by the following example:

Example 2.2. Let \mathbb{Z}_4 be the rings of integers modulo 4 and $R = \operatorname{Mat}_2(\mathbb{Z}_4)$. Then $\{R, N = \operatorname{Mat}_2(2\mathbb{Z}_4), 0\}$ is the set of all ideals of R. Note that R is not reversible (hence R is not symmetric) because $ab = 0 \neq ba$ for some $a, b \in R$ where $a = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}, b = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$. Note that the ideal N of R is not reversible (hence N is not symmetric) because $pq \in N, qp \notin N$ for some $p, q \in R$ where $p = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, q = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$. On the other hand, we observe that all ideals of R are ideal-symmetric. Indeed, let A, B, C be ideals of R. First, suppose that ABC = 0. If one of A, B, C is zero, then clearly, ACB = 0. Let $A, B, C \neq 0$. Since ABC = 0, ABC is one of NNR, NRN, RNN, and so ACB = 0, yielding that 0 is ideal-symmetric. Next, suppose that $ABC \subseteq N$. If one of A, B, C is zero, then clearly, $ABC = ACB = 0 \subseteq N$. Let $A, B, C \neq 0$. Since $ABC \subseteq N$, ABC = 0 or ABC = N. If ABC = 0, then ACB = 0 as above argument. If ABC = N, then ABC is one of NRR, RRN, RNR, and so ACB = N, yielding that N is ideal-symmetric (hence N is ideal-reversible).

Proposition 2.3. Let N be any ideal of a ring R. Then N is ideal-symmetric if and only if $(a)(b)(c) \subseteq N$ implies $(a)(c)(b) \subseteq N$ for all $a, b, c \in R$.

Proof. Suppose that $(a)(b)(c) \subseteq N$ implies $(a)(c)(b) \subseteq N$ for all $a, b, c \in R$. Let $ABC \subseteq N$ for any ideals A, B, C in R, and let $\alpha \in ACB$ be arbitrary. Then $\alpha = \sum_{i=1}^{n} a_i q_i$ where $a_i \in A, q_i = \sum_{j=1}^{\ell_i} c_{ij} b_{ij} \in CB$ $(c_{ij} \in C, b_{ij} \in B)$ for each $i = 1, \ldots, n$. So $\alpha = \sum_{i=1}^{n} \sum_{j=1}^{\ell_i} a_i c_{ij} b_{ij}$. Since each $a_i b_{ij} c_{ij} \in (a_i)(b_{ij})(c_{ij}) \subseteq ABC \subseteq N$, we have $a_i c_{ij} b_{ij} \in (a_i)(c_{ij})(b_{ij}) \subseteq N$ by assumption, and so $\alpha \in N$. Thus $ACB \subseteq N$, yielding that N is an ideal-symmetric ideal of a ring R. The converse is clear. □

Lemma 2.4. Let N be an ideal-symmetric ideal of a ring R and I_1, I_2, I_3 be ideals of R. Then $I_1I_2I_3 \subseteq N$ if and only if $I_{\sigma(1)}I_{\sigma(2)}I_{\sigma(3)} \subseteq N$ for any permutation σ of the set of $\{1, 2, 3\}$.

Proof. Suppose that N is ideal-symmetric such that $I_1I_2I_3 \subseteq N$. Since N is ideal-symmetric, $I_1I_3I_2 \subseteq N$. Since N is ideal-symmetric and $RI_1(I_2I_3) \subseteq N$, we have $R(I_2I_3)I_1 \subseteq N$, and so $I_2I_3I_1 \subseteq N$, also $I_2I_1I_3 \subseteq N$. By applying the similar argument to $RI_1(I_3I_2) \subseteq N$, we also have that $I_3I_1I_2, I_3I_2I_1 \subseteq N$. The converse is clear.

Let S_n be the symmetric group on n letters for any positive integer.

Proposition 2.5. For any ideal N of a ring R, the following conditions are equivalent:

(1) N is ideal-symmetric;

(2) $aRbRc \subseteq N$ implies $aRcRb \subseteq N$ for all $a, b, c \in R$;

(3) $I_1I_2 \cdots I_n \subseteq N$ implies $I_{\sigma(1)}I_{\sigma(2)} \cdots I_{\sigma(n)} \subseteq N$ for any $\sigma \in S_n$ where I_i is an ideal of R for i = 1, 2, ..., n and $n \geq 3$ is any positive integer;

(4) $a_1Ra_2 \cdots Ra_n \subseteq N$ implies $a_{\sigma(1)}Ra_{\sigma(2)} \cdots Ra_{\sigma(n)} \subseteq N$ for any $\sigma \in S_n$ where I_i is an ideal of R for i = 1, 2, ..., n and $n \geq 3$ is any positive integer;

(5) $I_1I_2 \cdots I_n \subseteq N$ implies $I_{\sigma(1)}I_{\sigma(2)} \cdots I_{\sigma(n)} \subseteq N$ for any $\sigma \in S_n$ where I_i is a right (left) ideal of R for i = 1, 2, ..., n and $n \geq 3$ is any positive integer;

(6) $ABC \subseteq N$ implies $BAC \subseteq N$ for all ideals A, B, C of R;

(7) $aRbRc \subseteq N$ implies $bRaRc \subseteq N$ for all $a, b, c \in R$.

Proof. (1) \Rightarrow (2). Suppose that N is ideal-symmetric and $aRbRc \subseteq N$ for all $a, b, c \in R$. Since N is an ideal of R, we have that $(RaR)(RbR)(RcR) \subseteq N$. Since N is ideal-symmetric and RaR, RbR, RcR are ideals of R,

$(RaR)(RcR)(RbR) \subseteq N$

by assumption. Clearly, $aRcRb \subseteq (RaR)(RcR)(RbR) \subseteq N$ as desired.

 $(2) \Rightarrow (1)$. Suppose that $aRbRc \subseteq N$ implies $aRcRb \subseteq N$ for all $a, b, c \in R$. Let $ABC \subseteq N$ for any ideals A, B, C in R, and let $\alpha \in ACB$ be arbitrary. Then $\alpha = \sum_{i=1}^{m} a_i c_i b_i$ where $a_i \in A, c_i \in C, b_i \in B$ for some positive integer m. Since each $a_i b_i c_i \in a_i Rb_i Rc_i \subseteq ABC \subseteq N$, we have $a_i c_i b_i \in a_i Rc_i Rb_i \subseteq N$ by assumption, and so $\alpha \in N$. Thus $ACB \subseteq N$, yielding that N is ideal-symmetric.

(1) \Rightarrow (3). Suppose that N is ideal-symmetric and $I_1I_2 \cdots I_n \subseteq N$ $(n \geq 3)$. Since S_n is generated by the transpositions $\tau_0 = (1, 2), \tau_1 = (2, 3), \ldots, \tau_{n-2} = (n-1, n), \tau_{n-1} = (n, 1) \in S_n$, it is enough to show that $I_{\tau_k(1)}I_{\tau_k(2)} \cdots I_{\tau_k(n)} \subseteq N$ for all $k = 0, 1, \ldots, n-1$. Note that $I_2I_3 \cdots I_1 \subseteq N$, and so $I_3I_4 \cdots I_2 \subseteq N$, $\ldots, I_nI_1 \cdots I_{n-1} \subseteq N$, i.e.,

(*)
$$I_{\mu_k}(1)I_{\mu_k}(2)\cdots I_{\mu_k}(n) \subseteq N,$$

where $\mu = (1, 2, ..., n) \in S_n$ and $\mu_k = \mu^k (= \mu \cdot \mu \cdots \mu)$ for any k = 0, 1, ..., n-1. By Lemma 2.4, we have $I_2 I_1 I_3 \cdots I_n \subseteq N$, i.e.,

(**)
$$I_{\tau_0(1)}I_{\tau_0(2)}\cdots I_{\tau_0(n)} \subseteq N.$$

By (*) and (**), we have that

$$I_{\tau_k(1)}I_{\tau_k(2)}\cdots I_{\tau_k(n)} = I_{\mu_k\tau_0\mu_{n-k}(1)}I_{\mu_k\tau_0\mu_{n-k}(2)}\cdots I_{\mu_r\tau_0\mu_{n-r}(n)} \subseteq N$$

by observing that $\mu_k \tau_0 \mu_{n-k} = \tau_k$ for all $k = 0, 1, \dots, n-1$.

 $(3) \Rightarrow (1)$. Clear.

(1) \Leftrightarrow (6). It follows from Lemma 2.4.

 $(1) \Leftrightarrow (7)$. It follows from $(1) \Leftrightarrow (6)$ and the similar arguments given in the proof of $(1) \Leftrightarrow (2)$.

 $(3) \Rightarrow (4)$ and $(5) \Rightarrow (3)$ are obvious.

 $(4) \Rightarrow (3)$. Suppose that $a_1 R a_2 \cdots R a_n \subseteq N$ implies $a_{\sigma(1)} R a_{\sigma(2)} \cdots R a_{\sigma(n)} \subseteq N$ for any $\sigma \in S_n$. Let $I_1 I_2 \cdots I_n \subseteq N$ where I_i $(1 \leq i \leq n)$ is an ideal of R. Let $\beta \in I_{\sigma(1)} I_{\sigma(2)} \cdots I_{\sigma(n)}$ be arbitrary for any $\sigma \in S_n$. Then

$$\beta = \sum_{j=1}^{\ell} a_{\sigma(1)_j} a_{\sigma(2)_j} \cdots a_{\sigma(n)_j},$$

where $a_{\sigma(i)_j} \in I_{\sigma(i)}$ $(1 \leq i \leq n, 1 \leq j \leq \ell)$. Since each $a_{1_j}a_{2_j}\cdots a_{n_j} \in a_1Ra_2\cdots Ra_n \subseteq N$, $a_{\sigma(1)_j}a_{\sigma(2)_j}\cdots a_{\sigma(n)_j} \in a_{\sigma(1)}Ra_{\sigma(2)}\cdots Ra_{\sigma(n)} \subseteq N$ by assumption, and so $\beta \in N$, yielding that $I_{\sigma(1)}I_{\sigma(2)}\cdots I_{\sigma(n)} \subseteq N$ for any $\sigma \in S_n$.

(3) \Rightarrow (5). Suppose that $I_1I_2 \cdots I_n \subseteq N$ implies $I_{\sigma(1)}I_{\sigma(2)} \cdots I_{\sigma(n)} \subseteq N$ for any $\sigma \in S_n$ where I_i $(1 \leq i \leq n)$ is an ideal of R and n is any positive integer. Let $J_1J_2 \cdots J_n \subseteq N$ where J_i $(1 \leq i \leq n)$ is a right ideal of R. Note that $(RJ_1R)(RJ_2R) \cdots (RJ_nR) \subseteq N$ where RJ_iR $(1 \leq i \leq n)$ is an ideal of R. Let $K_i = RJ_iR$ for each $i = 1, 2, \ldots, n$. By assumption, we have that $(RJ_{\sigma(1)}R)(RJ_{\sigma(2)}R) \cdots (RJ_{\sigma(n)}R) \subseteq N$ for any $\sigma \in S_n$, and so $J_{\sigma(1)}J_{\sigma(2)} \cdots J_{\sigma(n)} \subseteq (RJ_{\sigma(1)}R)(RJ_{\sigma(2)}R) \cdots (RJ_{\sigma(n)}R) \subseteq N$, as desired. The proof for the left ideal case is shown by the similar argument given in the right ideal case. \Box

Corollary 2.6. For a ring R, the following conditions are equivalent:

(1) R is ideal-symmetric;

(2) aRbRc = 0 implies aRcRb = 0 for all $a, b, c \in R$;

(3) $I_1I_2 \cdots I_n = 0$ implies $I_{\sigma(1)}I_{\sigma(2)} \cdots I_{\sigma(n)} = 0$ for any $\sigma \in S_n$ where I_i is an ideal of R for i = 1, 2, ..., n and $n \ge 3$ is any positive integer;

(4) $a_1Ra_2 \cdots Ra_n = 0$ implies $a_{\sigma(1)}Ra_{\sigma(2)} \cdots Ra_{\sigma(n)} = 0$ for any $\sigma \in S_n$ where I_i is an ideal of R for i = 1, 2, ..., n and $n \ge 3$ is any positive integer;

(5) $I_1I_2 \cdots I_n = 0$ implies $I_{\sigma(1)}I_{\sigma(2)} \cdots I_{\sigma(n)} = 0$ for any $\sigma \in S_n$ where I_i is a right (left) ideal of R for i = 1, 2, ..., n and $n \ge 3$ is any positive integer;

(6) ABC = 0 implies BAC = 0 for all ideals A, B, C of R;

(7) aRbRc = 0 implies bRaRc = 0 for all $a, b, c \in R$.

Proof. It follows from Proposition 2.5.

The following theorem implies that the ideal-symmetric property of any ideal of a ring is Morita invariant.

Theorem 2.7. Let R be a ring and N be an ideal of R. Then we have the following:

(1) If N is ideal-symmetric, then eNe is an ideal-symmetric ideal of eRe for each $e^2 = e \in R$.

(2) N is ideal-symmetric in R if and only if $M_n(N)$ is ideal-symmetric in $M_n(R)$ for all $n \ge 1$.

Proof. (1) Suppose that N is ideal-symmetric. Let $a, b, c \in eRe$ such that $a(eRe)b(eRe)c \subseteq eNe$. Since $a(eRe)b(eRe)c = aeRebRec \subseteq eNe \subseteq N$ and N is ideal-symmetric, $aeRecReb \subseteq N$, and so $a(eRe)c(eRe)b = aeRecReb = e(aeRecReb)e \subseteq eNe$, yielding that the ideal eNe is ideal-symmetric.

(2) Suppose that N is ideal-symmetric. Let A, B, C be ideals of $M_n(R)$ such that $ABC \subseteq M_n(N)$. Note that there exist ideals I, J, K such that $A = M_n(I), B = M_n(J), C = M_n(K)$. Note that $ABC = M_n(I)M_n(J)M_n(K) = M_n(IJK)$ and then $IJK \subseteq N$. Since N is ideal-symmetric, $IKJ \subseteq N$, and so $ACB = M_n(IJK) \subseteq M_n(N)$. Thus $M_n(N)$ is ideal-symmetric.

Conversely, if $\operatorname{Mat}_n(N)$ is ideal-symmetric, then $N \cong e_{11}\operatorname{Mat}_n(N)e_{11}$ is ideal-symmetric by (1) where e_{11} is the matrix in $\operatorname{Mat}_n(N)$ with (1, 1)-entry 1 and elsewhere 0.

We already knew that for an ideal N of a ring R, N is a prime (resp., semiprime) ideal if and only if R/N is prime (resp., semiprime). Here we also have the following:

Theorem 2.8. For an ideal N of a ring R, N is ideal-symmetric (resp., ideal-reversible) if and only if R/N is an ideal-symmetric (resp., ideal-reversible) ring.

Proof. Suppose that N is ideal-symmetric. Let A, B, C be ideals of R/N such that ABC = N, zero of R/N. Then there exist ideals $A_0, B_0, C_0 \supseteq N$ of R such that $A = A_0/N, B = B_0/N, C = C_0/N$. Since $ABC = (A_0/N)(B_0/N)(C_0/N) = (A_0B_0C_0)/N = N, A_0B_0C_0 = N$. Since N is ideal-symmetric, $A_0C_0B_0 \subseteq N$. Thus $ACB = (A_0C_0B_0)/N = N$, which yields that R/N is ideal-symmetric ring.

Suppose that R/N is an ideal-symmetric ring. Let A, B, C be ideals of N such that $ABC \subseteq N$. Then ABC+N = N. Note that $(A+N)(B+N)(C+N) \subseteq ABC+N = N$, and so (A+N)(B+N)(C+N) = N. Since R/N is an ideal-symmetric ring, ((A+N)/N)(C+N)/N)(B+N)/N) = N, yielding that $(A+N)(C+N)(B+N) \subseteq N$, and so $ACB \subseteq (A+N)(C+N)(B+N) \subseteq N$, which means that N is ideal-symmetric.

Similarly, ideal-reversible case is also shown.

Corollary 2.9. Let I be an ideal-symmetric ideal of a ring R. If I is semiprime (as a ring without identity), then R is ideal-symmetric.

Proof. Since I is ideal-symmetric, R/I is ideal-symmetric by Theorem 2.8. Since I is semiprime (as a ring without identity), R is ideal-symmetric ring by [3, Proposition 2.11].

Note that a subring of ideal-symmetric ring could not be ideal-symmetric by the following example:

Example 2.10. Let R be an ideal-symmetric ring and consider $U_2(R)$. By Theorem 2.8, $Mat_2(R)$ is an ideal-symmetric ring. Let $A = \begin{pmatrix} R & R \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & R \\ 0 & R \end{pmatrix}$ be two ideals of $U_2(R)$. Since ABA = 0 and $AAB \neq 0$, $U_2(R)$ is not idealsymmetric. On the other hand, we note that A (or B) is an ideal-symmetric ideal of $U_2(R)$ and it is also ideal-symmetric as a subring of $U_2(R)$ because there is the unique nonzero proper ideal $\begin{pmatrix} 0 & R \\ 0 & 0 \end{pmatrix}$ in A (or B) even though $U_2(R)$ is not an ideal-symmetric ring.

Lemma 2.11. (1) The intersection of two ideal-symmetric ideals of a ring R is ideal-symmetric.

(2) The intersection of all ideal-symmetric ideals of a ring R is ideal-symmetric.

Proof. Clear.

Recall that the intersection of all ideal-symmetric ideals of a ring R introduced in Lemma 2.11 is called the *ideal-symmetric radical* of R and denoted S(R). It is evident that S(R) is the smallest ideal-symmetric ideal of R, and R is a ring such that S(R) = 0 if and only if R is ideal-symmetric.

Corollary 2.12. For any ring R, we have S(R/S(R)) = 0.

Proof. Since S(R) is ideal-symmetric ideal of R by Lemma 2.11, R/S(R) is an ideal-symmetric ring by Theorem 2.8, and so S(R/S(R)) = 0.

Now we raise a question:

Question 1. For an ideal I of a ring R that is considered as ring, $S(I) = I \cap S(R)$?

The answer is negative by the following examples:

Example 2.13. Let $R = U_2(F)$ over a field F, and consider the ideal $I = \begin{pmatrix} 0 & F \\ 0 & 0 \end{pmatrix}$ of R. By Example 2.8, $U_2(F)$ is not ideal-symmetric (i.e., the zero ideal of R is not ideal-symmetric). Since $R/I \cong F \times F$, which is ideal-symmetric, I is ideal-symmetric by Theorem 2.8, i.e., S(I) = 0. On the other hand, observe that all nonzero ideals of R are I, $I_1 = \begin{pmatrix} 0 & F \\ 0 & F \end{pmatrix}$ and $I_2 = \begin{pmatrix} F & F \\ 0 & 0 \end{pmatrix}$ which are clearly ideal-symmetric. Hence $S(R) = I \cap I_1 \cap I_2 = I$, and so $I \cap S(R) = I \neq 0 = S(I)$. Note that even though all nonzero ideals of $U_2(F)$ are ideal-symmetric, $U_2(F)$ is not ideal-symmetric.

Example 2.14. Let R be not any ideal-symmetric ring with $I = J(R) \neq 0$. Then S(I) = 0 because I is a semiprime ideal of R (hence I is ideal-symmetric). Thus $I \cap S(R) = J(R) \cap S(R) = S(R) \neq 0$ because R is not ideal-symmetric, yielding that $S(I) = 0 \neq I \cap S(R)$.

Corollary 2.15. If S(R) is semiprime (as a ring without identity) for a ring R, then R is ideal-symmetric.

Proof. Since S(R) is an ideal-symmetric ideal of R, it follows from Corollary 2.9.

Theorem 2.16. For any ring R, we have $S(M_n(R)) = M_n(S(R))$.

Proof. Let N = S(R). By Lemma 2.11, N is ideal-symmetric ideal of R, and so $M_n(N)$ is ideal-symmetric ideal of $M_n(R)$ by Theorem 2.7. Since $M_n(N)$ is ideal-symmetric ideal of $M_n(R)$, $S(M_n(R)) \subseteq M_n(N)$. Next, we will show that $M_n(N) \subseteq S(M_n(R))$. Let A be any ideal-symmetric ideal of $M_n(R)$. Then there exists an ideal A_0 of R such that $A = M_n(A_0)$. Since A is idealsymmetric, A_0 is ideal-symmetric by Theorem 2.7, and so $N \subseteq A_0$. Thus $M_n(N) \subseteq M_n(A_0) = A$, yielding that $M_n(N) \subseteq S(M_n(R))$. Therefore, we have $S(M_n(R)) = M_n(S(R))$.

Proposition 2.17. For any ring R, we have the following:

(1) $S(R)[x] \subseteq S(R[x]);$

(2) If R[x] is ideal-symmetric, then R is ideal-symmetric.

Proof. (1) Let N = S(R). It is enough to show that $N[x] \subseteq A$ for any ideal-symmetric ideal A of R[x]. We note that $A \cap R$ is an ideal-symmetric ideal of R. Indeed, if $aRbRc \subseteq A \cap R$ for all $a, b, c \in R$, then $aR[x]bR[x]c = (aRbRc)[x] \subseteq A$, and then $aR[x]cR[x]b = (aRcRb)[x] \subseteq A$ by Proposition 2.5 because A is ideal-symmetric, and so $aRcRb \subseteq A \cap R$, yielding that $A \cap R$ is ideal symmetric. Since $A \cap R$ is ideal-symmetric, $N \subseteq A \cap R \subseteq A$. Therefore, $N[x] \subseteq A$, as desired.

(2) It follows from (1).

Note that the converse of (2) of Proposition 2.17 could not be true by [3, Example 2.4]. A ring R is quasi-Armendariz [6] provided that $a_iRb_j = 0$ for all i, j whenever $f = \sum_{i=0}^{m} a_i x^i, g = \sum_{j=0}^{n} b_j x^j \in R[x]$ satisfy fR[x]g = 0. In [3], V. Camilo et al. have shown that for a quasi-Armendariz ring R, R is ideal-symmetric if and only if R[x] is ideal-symmetric.

Theorem 2.18. Let R be a ring R. If R/S(R) is quasi-Armendariz, then S(R)[x] = S(R[x]).

Proof. By Proposition 2.17, we have $S(R)[x] \subseteq S(R[x])$. To show the reverse inclusion, let N = S(R). Since N is ideal-symmetric, R/N is an ideal-symmetric ring by Theorem 2.8. Since R/N is quasi-Armendariz, (R/N)[x] is ideal-symmetric by [3, Remark 2.5]. Since $(R/N)[x] \cong R[x]/N[x]$ is ideal-symmetric, N[x] is an ideal-symmetric ideal of R[x] by Theorem 2.8, and so $N[x] \supseteq S(R[x])$ as desired.

Now we raise the following open questions:

Question 2. (1) Is S(R)[x] = S(R[x]) for a quasi-Armendariz ring R? (2) For a ring R, what is S(S(R))?

3. Ideal-reversible ideals of rings

Let B be a subset of a ring R and N be an ideal of R. The set $\{a \in R \mid aB \subseteq N\}$ is a left ideal of R, which is actually an ideal if B is a left ideal. The set $\{a \in R \mid aB \subseteq N\}$ is called the *left annihilator* of B in N and is denoted $ann_{\ell}(B; N)$. Similarly, the set

$$ann_r(B;N) = \{a \in R \mid Ba \subseteq N\}$$

is an ideal of R if B is a right ideal. The set $ann_r(B; N)$ is called the *right annihilator* of B in N. When $ann_\ell(B; N) = ann_r(B; N)$, it is denoted ann(B; N), and called *annihilator* of B in N. In particular, if N = 0, then $ann_\ell(B; 0)$ (resp., $ann_r(B; 0)$) is called *left annihilator* of B (resp., *right annihilator* of B), and is simply denoted $ann_\ell(B)$ (resp., $ann_r(B)$). When $ann_\ell(B) = ann_r(B)$, it is denoted ann(B).

Proposition 3.1. For an ideal N of a ring R, the following are equivalent:

- (1) N is ideal-reversible;
- (2) N is reflexive;
- (3) For each $a \in R$, $ann_{\ell}(Ra; N) = ann_r(aR; N)$;
- (4) $ARB \subseteq N$ implies $BRA \subseteq N$ for any nonempty subsets A, B of R;
- (5) For each ideal B of R, $ann_{\ell}(B; N) = ann_{r}(B; N);$
- (6) $IJ \subseteq N$ implies $JI \subseteq N$ for any right (or left) ideals I, J of R.

Proof. (1) \Rightarrow (2) Suppose that N is ideal-reversible. Let $aRb \subseteq N$ for $a, b \in R$. Then $(RaR)(RbR) \subseteq N$. Since N is ideal-reversible, we have that $bRa \subseteq (RbR)(RaR) \subseteq N$, and so N is reflexive.

 $(2) \Rightarrow (1)$ Suppose that N is reflexive. Let $IJ \subseteq N$ for any ideals $I, J \in R$. Let $\alpha \in JI$ be arbitrary. Then $\alpha = \sum_{i=1}^{n} b_i a_i$ where $a_i \in I, b_i \in J$ for some positive integer n. Since each $a_i b_i \in a_i R b_i \subseteq IJ \subseteq N$, we have $b_i a_i \in b_i R a_i \subseteq N$ by assumption, yielding $JI \subseteq N$. Hence N is ideal-reversible.

 $(2) \Rightarrow (3)$ Suppose that N is reflexive. Let $b \in ann_r(aR; N)$ for each $a \in R$ be arbitrary. Then $aRb \subseteq N$. Since N is reflexive, we have that $bRa \subseteq N$, yielding that $b \in ann_\ell(Ra; N)$, and so $ann_r(aR; N) \subseteq ann_\ell(Ra; N)$. Similarly, we also have that $ann_\ell(Ra; N) \subseteq ann_r(aR; N)$.

 $(3) \Rightarrow (2)$ Suppose that For each $a \in R$, $ann_{\ell}(Ra; N) = ann_{r}(aR; N)$. Let $aRb \subseteq N$ for $a, b \in R$. Then $b \in ann_{r}(aR; N) = ann_{\ell}(Ra; N)$ by assumption, yielding that $bRa \subseteq N$, and so N is reflexive.

 $(1) \Rightarrow (5)$ Suppose that N is ideal-reversible. Let $A = ann_{\ell}(B; N)$ and $A_0 = ann_r(B; N)$. Then A and A_0 are ideals of R. Since $AB \subseteq N$ and N is ideal-reversible, we have that $BA \subseteq N$, yielding $A \subseteq A_0$. Similarly, we also have that $A_0 \subseteq A$. Hence $ann_{\ell}(B; N) = ann_r(B; N)$ as desired.

 $(5) \Rightarrow (1)$ Suppose that (5) holds. Let $AB \subseteq N$ for any ideals I, J of R. Then $A \subseteq ann_{\ell}(B; N) = ann_{r}(B; N)$ by assumption, yielding that $BA \subseteq N$, and so N is ideal-reversible.

 $(6) \Rightarrow (1)$ and $(4) \Rightarrow (2)$ are clear.

 $(4) \Rightarrow (6)$ is clear.

 $(2) \Rightarrow (4)$ Suppose that N is reflexive. Let A, B be two nonempty subsets of R with $ARB \subseteq N$. Then $aRb \subseteq N$ for any $a \in A$ and $b \in B$, and so $bRa \subseteq N$ by assumption. Thus $BRA = \sum_{a \in A, b \in B} bRa \subseteq N$.

Corollary 3.2. For a ring R, the following are equivalent:

- (1) R is ideal-reversible;
- (2) R is reflexive;
- (3) For each $a \in R$, $ann_{\ell}(Ra) = ann_{r}(aR)$;
- (4) ARB = 0 implies BRA = 0 for any nonempty subsets A, B of R;
- (5) For each ideal B of R, $ann_{\ell}(B) = ann_{r}(B)$;
- (6) IJ = 0 implies JI = 0 for any right (or left) ideals I, J of R.

Proof. It follows from Proposition 3.1.

We also have that the ideal-reversible property of any ideal of a ring is Morita invariant.

Proposition 3.3. Let R be a ring and N be an ideal of R. Then we have the following:

(1) If N is ideal-reversible, then eNe is an ideal-symmetric ideal of eRe for each $e^2 = e \in R$.

(2) N is ideal-reversible in R if and only if $M_n(N)$ is ideal-reversible in $M_n(R)$ for all $n \ge 1$.

Proof. (1) Suppose that N is ideal-reversible. Let $a, b \in eRe$ such that $a(eRe)b \subseteq eNe$. Since $(eae)R(ebe) = a(eRe)b \subseteq N$ and N is reflexive by Proposition 3.1, $b(eRe)a \subseteq N$, and then $b(eRe)a = (ebe)R(eae) \subseteq eNe$, yielding that the ideal eNe is ideal-reversible.

(2) It follows from the similar proof given in Theorem 2.7.

Proposition 3.4. Let B be an ideal of an ideal-reversible ring R. If R is quasi-Baer, then ann(B) = Re for some central idempotent $e \in R$.

Proof. Since R is quasi-Baer, $ann_{\ell}(B) = Re$ for some idempotent $e \in R$. Similarly, $ann_r(B) = fR$ for some idempotent $f \in R$. Since R is an idealreversible, $ann_{\ell}(B) = ann_r(B)$ by Corollary 3.2, and so Re = fR. Observe that e = f. Indeed, since Re = fR, e = fa for some $a \in R$, and then fe = fa = e. Also f = be for some $b \in R$, and then fe = be = f. Thus e = f. Let $r \in R$ be arbitrary. Since Re = eR, re = ex for some $x \in R$, and so ere = ex = re. Similarly, er = ye for some $y \in R$, and so ere = ye = er. Thus we have that for all $r \in R$, ere = re = er, yielding that e is central. \Box

Theorem 3.5. (1) Let N be an ideal of a ring R. If R/N is Baer, then the following conditions are equivalent:

- (1) N is semiprime;
- (2) N is ideal-symmetric;
- (3) N is ideal-reversible.

 \Box

Proof. It suffices to show that $(3) \Rightarrow (1)$. Suppose that $aRa \subseteq N$ for $a \in R$. Let $\overline{R} = R/N$ and $\overline{x} = x + \overline{R}$ for all $x \in R$. Then \overline{R} is ideal-reversible by Theorem 2.8. Since \overline{R} is Baer, there exists $\overline{e}^2 = \overline{e} \in \overline{R}$ with $ann_r(\overline{aR}) = \overline{eR}$. Then $\overline{a} = \overline{e} \cdot \overline{a}$ since $\overline{a} \in ann_r(\overline{aR}) = \overline{eR}$, and so $a - ea \in N$. Note that both \overline{eR} and \overline{aR} are right ideals of \overline{R} and $(\overline{aR})(\overline{eR}) = \overline{0}$. Since \overline{R} is ideal-reversible, $(\overline{aR})(\overline{eR}) = \overline{0}$ implies that $(\overline{eR})(\overline{aR}) = \overline{0}$ by Corollary 3.2, entailing $ea \in N$. Hence we have $a = (a - ea) + ea \in N$, which implies that N is semiprime. \Box

Corollary 3.6. (1) Let R be a Baer ring. Then the following conditions are equivalent:

- (1) R is semiprime;
- (2) R is ideal-symmetric;
- (3) R is ideal-reversible.

Proof. It follows from Theorem 3.5.

Acknowledgements. The authors thank the referee for his/her very careful reading of the manuscript and valuable suggestions that improved the paper.

References

- D. Anderson and V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), no. 6, 2847–2852.
- [2] G. Birkenmeier, J. Kim, and J. Park, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra 159 (1999), 25–42.
- [3] V. Camillo, T. Kwak, and Y. Lee, *Ideal-symmetric and semiprime rings*, Comm. Algebra 41 (2013), no. 12, 4504–4519.
- [4] J. Clark, Twisted matrix units semigroup algebras, Duke Math. J. 34 (1967), 417-424.
- [5] P. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641–648.
 [6] Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J.
- Pure Appl. Algebra **168** (2002), no. 1, 45–52.
- [7] C. Hong, N, Kim, and Y. Lee, Ore extensions of quasi-Baer rings, Comm. Algebra 37 (2009), no. 6, 2030–2039.
- [8] I. Kaplansky, *Rings of Operators*, Math. Lecture Note Series. New York: Benjamin, 1965.
- [9] T. Kwak and Y. Lee, *Reflexive property of rings*, Comm. Algebra 40 (2012), no. 4, 1576–1594.
- [10] J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359–368.
- [11] G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002), no. 3, 311–318.
- [12] G. Mason, Reflexive ideals, Comm. Algebra 9 (1981), no. 17, 1709–1724.

JUNCHEOL HAN DEPARTMENT OF MATHEMATICS EDUCATION PUSAN NATIONAL UNIVERSITY PUSAN 46241, KOREA *E-mail address*: jchan@pusan.ac.kr

1924

YANG LEE INSTITUTE OF BASIC SCIENCE DAEJIN UNIVERSITY POCHEEN 11159, KOREA *E-mail address*: iissylee@hanmail.net

SANGWON PARK DEPARTMENT OF MATHEMATICS DONG-A UNIVERSITY PUSAN 49315, KOREA *E-mail address:* swpark@donga.ac.kr