Browse > Article
http://dx.doi.org/10.4134/JKMS.2010.47.3.455

WEAK α-SKEW ARMENDARIZ RINGS  

Zhang, Cuiping (DEPARTMENT OF MATHEMATICS NORTHWEST NORMAL UNIVERSITY, DEPARTMENT OF MATHEMATICS SOUTHEAST UNIVERSITY)
Chen, Jianlong (DEPARTMENT OF MATHEMATICS SOUTHEAST UNIVERSITY)
Publication Information
Journal of the Korean Mathematical Society / v.47, no.3, 2010 , pp. 455-466 More about this Journal
Abstract
For an endomorphism $\alpha$ of a ring R, we introduce the weak $\alpha$-skew Armendariz rings which are a generalization of the $\alpha$-skew Armendariz rings and the weak Armendariz rings, and investigate their properties. Moreover, we prove that a ring R is weak $\alpha$-skew Armendariz if and only if for any n, the $n\;{\times}\;n$ upper triangular matrix ring $T_n(R)$ is weak $\bar{\alpha}$-skew Armendariz, where $\bar{\alpha}\;:\;T_n(R)\;{\rightarrow}\;T_n(R)$ is an extension of $\alpha$ If R is reversible and $\alpha$ satisfies the condition that ab = 0 implies $a{\alpha}(b)=0$ for any a, b $\in$ R, then the ring R[x]/($x^n$) is weak $\bar{\alpha}$-skew Armendariz, where ($x^n$) is an ideal generated by $x^n$, n is a positive integer and $\bar{\alpha}\;:\;R[x]/(x^n)\;{\rightarrow}\;R[x]/(x^n)$ is an extension of $\alpha$. If $\alpha$ also satisfies the condition that ${\alpha}^t\;=\;1$ for some positive integer t, the ring R[x] (resp, R[x; $\alpha$) is weak $\bar{\alpha}$-skew (resp, weak) Armendariz, where $\bar{\alpha}\;:\;R[x]\;{\rightarrow}\;R[x]$ is an extension of $\alpha$.
Keywords
reversible rings; $\alpha$-skew Armendariz rings; weak Armendariz rings; weak $\alpha$-skew Armendariz rings;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 C. Y. Hong, N. K. Kim, and T. K. Kwak, On skew Armendariz rings, Comm. Algebra 31 (2003), no. 1, 103-122.   DOI   ScienceOn
2 D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272.
3 E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470-473.   DOI
4 J. L. Chen and Y. Q. Zhou, Extensions of injectivity and coherent rings, Comm. Algebra 34 (2006), no. 1, 275-288.   DOI   ScienceOn
5 C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761.   DOI   ScienceOn
6 N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477-488.   DOI   ScienceOn
7 N. K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), no. 1-3, 207-223.   DOI   ScienceOn
8 Z. K. Liu and R. Y. Zhao, On weak Armendariz rings, Comm. Algebra 34 (2006), no. 7, 2607-2616.   DOI   ScienceOn
9 M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17.   DOI