Browse > Article
http://dx.doi.org/10.4134/CKMS.c200209

SYMMETRICITY AND REVERSIBILITY FROM THE PERSPECTIVE OF NILPOTENTS  

Harmanci, Abdullah (Department of Mathematics Hacettepe University)
Kose, Handan (Department of Mathematics Kirsehir Ahi Evran University)
Ungor, Burcu (Department of Mathematics Ankara University)
Publication Information
Communications of the Korean Mathematical Society / v.36, no.2, 2021 , pp. 209-227 More about this Journal
Abstract
In this paper, we deal with the question that what kind of properties does a ring gain when it satisfies symmetricity or reversibility by the way of nilpotent elements? By the motivation of this question, we approach to symmetric and reversible property of rings via nilpotents. For symmetricity, we call a ring R middle right-(resp. left-)nil symmetric (mr-nil (resp. ml-nil) symmetric, for short) if abc = 0 implies acb = 0 (resp. bac = 0) for a, c ∈ R and b ∈ nil(R) where nil(R) is the set of all nilpotent elements of R. It is proved that mr-nil symmetric rings are abelian and so directly finite. We show that the class of mr-nil symmetric rings strictly lies between the classes of symmetric rings and weak right nil-symmetric rings. For reversibility, we introduce left (resp. right) N-reversible ideal I of a ring R if for any a ∈ nil(R), b ∈ R, being ab ∈ I implies ba ∈ I (resp. b ∈ nil(R), a ∈ R, being ab ∈ I implies ba ∈ I). A ring R is called left (resp. right) N-reversible if the zero ideal is left (resp. right) N-reversible. Left N-reversibility is a generalization of mr-nil symmetricity. We exactly determine the place of the class of left N-reversible rings which is placed between the classes of reversible rings and CNZ rings. We also obtain that every left N-reversible ring is nil-Armendariz. It is observed that the polynomial ring over a left N-reversible Armendariz ring is also left N-reversible.
Keywords
Symmetric ring; middle right-nil symmetric ring; nil-symmetric ring; reversible ring; left N-reversible ring;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Meng and J. Wei, e-symmetric rings, Commun. Contemp. Math. 20 (2018), no. 3, 1750039, 8 pp. https://doi.org/10.1142/S0219199717500390   DOI
2 R. Mohammadi, A. Moussavi, and M. Zahiri, On nil-semicommutative rings, Int. Electron. J. Algebra 11 (2012), 20-37.
3 L. Ouyang and H. Chen, On weak symmetric rings, Comm. Algebra 38 (2010), no. 2, 697-713. https://doi.org/10.1080/00927870902828702   DOI
4 M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. http://projecteuclid.org/euclid.pja/1195510144   DOI
5 A. A. Tuganbaev, Semidistributive modules and rings, Mathematics and its Applications, 449, Kluwer Academic Publishers, Dordrecht, 1998. https://doi.org/10.1007/978-94-011-5086-6
6 J. Wei, Generalized weakly symmetric rings, J. Pure Appl. Algebra 218 (2014), no. 9, 1594-1603. https://doi.org/10.1016/j.jpaa.2013.12.011   DOI
7 M. Nagata, Local Rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers a division of John Wiley & Sons New York, 1962.
8 B. Ungor, S. Halicioglu, H. Kose, and A. Harmanci, Rings in which every nilpotent is central, Algebras Groups Geom. 30 (2013), no. 1, 1-18.
9 A. Harmanci, H. Kose, and B. Ungor, On weak symmetric property of rings, Southeast Asian Bull. Math. 42 (2018), no. 1, 31-40.
10 W. Chen, On nil-semicommutative rings, Thai J. Math. 9 (2011), no. 1, 39-47.
11 P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641-648. https://doi.org/10.1112/S0024609399006116   DOI
12 J. M. Habeb, A note on zero commutative and duo rings, Math. J. Okayama Univ. 32 (1990), 73-76.
13 A. Harmanci, H. Kose, Y. Kurtulmaz, and B. Ungor, Reflexivity of rings via nilpotent elements, accepted in Rev. Un. Mat. Argentina, also arXiv:1807.02333 [math.RA].
14 D. D. Anderson and V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), no. 6, 2847-2852. https://doi.org/10.1080/00927879908826596   DOI
15 I. Kaplansky, Rings of Operators, W. A. Benjamin, Inc., New York, 1968.
16 G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002), no. 3, 311-318. https://doi.org/10.1016/S0022-4049(02)00070-1   DOI
17 H. Kose and A. Harmanci, Central CNZ rings, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 38 (2018), no. 1, Mathematics, 95-104.
18 H. Kose, B. Ungor, S. Halicioglu, and A. Harmanci, A generalization of reversible rings, Iran. J. Sci. Technol. Trans. A Sci. 38 (2014), no. 1, 43-48.
19 J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359-368. https://doi.org/10.4153/CMB-1971-065-1   DOI
20 Z. Liu and R. Zhao, On weak Armendariz rings, Comm. Algebra 34 (2006), no. 7, 2607-2616. https://doi.org/10.1080/00927870600651398   DOI
21 G. Mason, Reflexive ideals, Comm. Algebra 9 (1981), no. 17, 1709-1724. https://doi.org/10.1080/00927878108822678   DOI
22 M. Kheradmand, H. Khabazian, T. K. Kwak, and Y. Lee, Reflexive property restricted to nilpotents, J. Algebra Appl. 16 (2017), no. 3, 1750044, 20 pp. https://doi.org/10.1142/S021949881750044X   DOI
23 H. K. Kim, T. K. Kwak, S. I. Lee, Y. Lee, S. J. Ryu, H. J. Sung, and S. J. Yun, A generalization of symmetric ring property, Bull. Korean Math. Soc. 53 (2016), no. 5, 1309-1325. https://doi.org/10.4134/BKMS.b150589   DOI
24 U. S. Chakraborty and K. Das, On nil-symmetric rings, J. Math. 2014 (2014), Art. ID 483784, 7 pp. https://doi.org/10.1155/2014/483784   DOI
25 R. Mohammadi, A. Moussavi, and M. Zahiri, On annihilations of ideals in skew monoid rings, J. Korean Math. Soc. 53 (2016), no. 2, 381-401. https://doi.org/10.4134/JKMS.2016.53.2.381   DOI
26 A. M. Abdul-Jabbar, C. A. K. Ahmed, T. K. Kwak, and Y. Lee, On commutativity of nilpotent elements at zero, Commun. Korean Math. Soc. 32 (2017), no. 4, 811-826. https://doi.org/10.4134/CKMS.c170003   DOI
27 D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272. https://doi.org/10.1080/00927879808826274   DOI
28 R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), no. 8, 3128-3140. https://doi.org/10.1016/j.jalgebra.2008.01.019   DOI
29 E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470-473.   DOI
30 H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368. https://doi.org/10.1017/S0004972700042052   DOI