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WEAK α-SKEW ARMENDARIZ RINGS

Cuiping Zhang and Jianlong Chen

Abstract. For an endomorphism α of a ring R, we introduce the weak
α-skew Armendariz rings which are a generalization of the α-skew Armen-
dariz rings and the weak Armendariz rings, and investigate their prop-
erties. Moreover, we prove that a ring R is weak α-skew Armendariz if
and only if for any n, the n × n upper triangular matrix ring Tn(R) is
weak ᾱ-skew Armendariz, where ᾱ : Tn(R) → Tn(R) is an extension of
α. If R is reversible and α satisfies the condition that ab = 0 implies
aα(b)=0 for any a, b ∈ R, then the ring R[x]/(xn) is weak ᾱ-skew Ar-
mendariz, where (xn) is an ideal generated by xn, n is a positive integer
and ᾱ : R[x]/(xn) → R[x]/(xn) is an extension of α. If α also satisfies
the condition that αt = 1 for some positive integer t, the ring R[x] (resp,
R[x; α]) is weak ᾱ-skew (resp, weak) Armendariz, where ᾱ : R[x] → R[x]
is an extension of α.

1. Introduction

Throughout this paper R denotes an associative ring with identity, nil(R)
denotes the set of all the nilpotent elements of R and α always means the
endomorphism of R. Rege and Chhawchharia [9] introduced the notion of an
Armendariz ring. They defined a ring R to be an Armendariz ring if whenever
polynomials f(x) = a0 +a1x+ · · ·+amxm, g(x) = b0 + b1x+ · · ·+ bnxn ∈ R[x]
satisfy f(x)g(x) = 0, then aibj = 0 for each i and j. The name “Armendariz
ring” was chosen because Armendariz [2] had noted that every reduced ring
satisfies this condition. Some properties of the Armendariz rings were studied in
Rege and Chhawchharia [9], Armendariz [2], Anderson and Camillo [1], Huh et
al. [5], and Kim and Lee [6]. For an endomorphism α of a ring R, Hong, Kim,
and Kwak [4] called R an α-skew Armendariz ring if whenever polynomials
f(x) = a0 + a1x + · · · + amxm, g(x) = b0 + b1x + · · · + bnxn ∈ R[x;α] satisfy
f(x)g(x) = 0, then aiα

i(bj) = 0 for each i and j, which is a generalization
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of the Armendariz rings. They showed that if a ring R is α-rigid (That is,
aα(a) = 0 implies a = 0 for a ∈ R), then R[x]/(x2) is ᾱ-skew Armendariz.
They also showed that if αt = 0 for some positive integer t, then R is α-skew
Armendariz if and only if R[x] is ᾱ-skew Armendariz. Liu and Zhao [8] called a
ring R weak Armendariz if whenever polynomials f(x) = a0+a1x+· · ·+amxm,
g(x) = b0+b1x+ · · ·+bnxn ∈ R[x] satisfy f(x)g(x) = 0, then aibj is a nilpotent
element of R for each i and j. They showed that the semicommutative rings
are weak Armendariz, and R is weak Armendariz if and only if the n×n upper
triangular matrix ring over R is weak Armendariz. Moreover, they also showed
that for a semicommutative ring R, R[x]/(xn) is weak Armendariz.

Motivated by the above results, for an endomorphism α of a ring R, we
investigate a generalization of the α-skew Armendariz rings and the weak Ar-
mendariz rings which we call a weak α-skew Armendariz ring and discuss the
relationship between reversible rings and weak α-skew Armendariz rings.

2. Weak α-skew Armendariz rings

Definition 2.1. Let R be a ring and α be an endomorphism of R. R is said
to be weak α-skew Armendariz if whenever polynomials f(x) = a0 + a1x +
· · ·+ amxm, g(x) = b0 + b1x + · · ·+ bnxn ∈ R[x; α] satisfy f(x)g(x) = 0, then
aiα

i(bj) ∈ nil(R) for each i and j.

Let α be an endomorphism of a ring R and Mn(R) be the n× n full matrix
ring over R, and ᾱ: Mn(R) −→ Mn(R) defined by ᾱ((aij)) = (α(aij)). Then ᾱ
is an endomorphism of Mn(R). Clearly, ᾱ|Tn(R), the restriction of ᾱ to Tn(R),
is an endomorphism of Tn(R), where Tn(R) is the n×n upper triangular matrix
ring over R. We also denote ᾱ|Tn(R) by ᾱ.

For an α-skew Armendariz ring R, the Tn(R) (n ≥ 2) need not be ᾱ-skew
Armendariz by [3, Example 14]. However, we have the following result.

Proposition 2.2. Let α be an endomorphism of a ring R. Then R is a weak
α-skew Armendariz ring if and only if, for any n, Tn(R) is a weak ᾱ-skew
Armendariz ring.

Proof. Note that any invariant subring of weak α-skew Armendariz rings is a
weak α-skew Armendariz ring. Thus if Tn(R) is a weak ᾱ-skew Armendariz
ring, then R is a weak α-skew Armendariz ring.

Conversely, let f(x) = A0+A1x+· · ·+Apx
p, and g(x) = B0+B1x+· · ·+Bqx

q

be elements of Tn(R)[x; ᾱ] satisfying f(x)g(x) = 0, where

Ai =




a
(i)
11 a

(i)
12 a

(i)
13 · · · a

(i)
1n

0 a
(i)
22 a

(i)
23 · · · a

(i)
2n

0 0 a
(i)
33 · · · a

(i)
3n

...
...

...
. . .

...
0 0 0 · · · a

(i)
nn




and Bj =




b
(j)
11 b

(j)
12 b

(j)
13 · · · b

(j)
1n

0 bj
22 bj

23 · · · bj
2n

0 0 b
(j)
33 · · · b

(j)
3n

...
...

...
. . .

...
0 0 0 · · · b

(j)
nn




.
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Then from f(x)g(x) = 0, it follows that

(
p∑

i=0

a(i)
ss xi

)


q∑

j=0

b(j)
ss xj


 = 0

in R[x; α] for each s with 1 ≤ s ≤ n. Since R is weak α-skew Armendariz,
there exists mijs ∈ N such that (a(i)

ss αi(b(j)
ss ))mijs = 0 for any s, i and j. Let

mij = max{mij1,mij2, . . . , mijn}. Then

(Aiᾱ
i(Bj))mij =




a
(i)
11 αi(b(j)

11 ) ∗ ∗ · · · ∗
0 a

(i)
22 αi(b(j)

22 ) ∗ · · · ∗
0 0 a

(i)
33 αi(b(j)

33 ) · · · ∗
...

...
...

. . .
...

0 0 0 · · · a
(i)
nnαi(b(j)

nn)




mij

=




0 ∗ ∗ · · · ∗
0 0 ∗ · · · ∗
0 0 0 · · · ∗
...

...
...

. . .
...

0 0 0 · · · 0




.

Thus ((Aiᾱ
i(Bj))mij )n = 0. This shows that Tn(R) is a weak ᾱ-skew Armen-

dariz ring. ¤

Corollary 2.3 ([8, Proposition 2.2]). A ring R is a weak Armendariz ring if
and only if for any n, Tn(R) is a weak Armendariz ring.

Corollary 2.4. If a ring R is an α-skew Armendariz ring, then for any n,
Tn(R) is a weak ᾱ-skew Armendariz ring.

Liu and Zhao [8, Example 2.5] showed that Mn(R) (n ≥ 2) over a weak
1R-skew Armendariz ring R need not be weak 1̄R-skew Armendariz ring. In
general, for any ring R and any endomorphism α of R, Mn(R) (n ≥ 2) over R
need not be weak ᾱ-skew Armendariz rings.

Example 2.5. Let R be a ring and α be an endomorphism of R. Let S =
M2(R). For f(x) = ( 0 1

0 0 ) + ( 1 0
0 0 )x and g(x) = ( 1 1

0 0 ) +
(

0 0
−1 −1

)
x in S[x; ᾱ], we

have f(x)g(x) = 0. But ( 1 0
0 0 )α(( 1 1

0 0 )) = ( 1 1
0 0 ) is not nilpotent. Thus S is not

weak ᾱ-skew Armendariz.

We note that the α-skew Armendariz ring is weak α-skew Armendariz, but
the converse is not always true by the following example.
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Example 2.6. Let α be an endomorphism of a ring R and R be an α-rigid
ring. Let

S4 =








a a12 a13 a14

0 a a23 a24

0 0 a a34

0 0 0 a


 |a, aij ∈ R





.

Since R is an α-rigid ring, it is α-skew Armendariz by [4, Corollary 4]. Hence
R is weak α-skew Armendariz. Thus S4 is weak ᾱ-skew Armendariz by Propo-
sition 2.2. However, S4 is not ᾱ-skew Armendariz by [4, Example 18].

Given a ring R and a bimodule RMR, the trivial extension of R by M
is the T (R, M) = R

⊕
M with the usual addition and the multiplication:

(r1,m1)(r2,m2) = (r1r2, r1m2 + m1r2). This is isomorphic to the ring of all
matrices ( r m

0 r ), where r ∈ R and m ∈ M and the usual matrix operations are
used.

Proposition 2.7. Let α be an endomorphism of a ring R. Then R is a weak
α-skew Armendariz ring if and only if the trivial extension T (R, R) is a weak
ᾱ-skew Armendariz ring.

Proof. It follows from Proposition 2.2. ¤

There exist an abelian ring R and an endomorphism α such that α(e) 6= e
for some e2 = e ∈ R by Example 3.7. In the following, we provide a character-
ization of an abelian ring R.

Proposition 2.8. Let R be an abelian ring and α be an endomorphism with
α(e) = e for every e2 = e ∈ R. Then R is weak α-skew Armendariz if and only
if eR and (1− e)R are weak α-skew Armendariz for some e2 = e ∈ R

Proof. If R is weak α-skew Armendariz, eR and (1 − e)R are weak α-skew
Armendariz since they are the invariant subrings of R. Conversely, let f(x) =
a0+a1x+ · · ·+amxm, g(x) = b0+b1x+ · · ·+bnxn in R[x; α] with f(x)g(x) = 0.
Let f1(x) = ef(x), f2(x) = (1 − e)f(x), g1(x) = eg(x) and g2(x) = (1 −
e)g(x). Then f1(x)g1(x) = 0 and f2(x)g2(x) = 0. Since eR and (1 − e)R are
weak α-skew Armendariz, there exist mij and nij such that e(aiα

i(bj))mij =
((eai)αi(ebj))mij = 0 and (1−e)(aiα

i(bj))nij = (((1−e)ai)αi((1−e)bj))mij = 0.
Let kij = max{mij , nij}. Then e(aiα

i(bj))kij = 0 and (1− e)(aiα
i(bj))kij = 0.

Hence (aiα
i(bj))kij = 0. This means that R is weak α-skew Armendariz. ¤

Let I be an ideal of R. If α(I) ⊆ I, then ᾱ : R/I → R/I defined by
ᾱ(a + I) = α(a) + I for a ∈ R is an endomorphism of the factor ring R/I

Proposition 2.9. Let α be an endomorphism of a ring R and I be an ideal of
R with α(I) ⊆ I. If I ⊆ nil(R) and R/I is weak ᾱ-skew Armendariz, then R
is weak α-skew Armendariz.
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Proof. Let f(x) = a0 +a1x+ · · ·+amxm, g(x) = b0 +b1x+ · · ·+bnxn in R[x; α]
with f(x)g(x) = 0. Then (

∑m
i=0 āix

i)(
∑n

j=0 b̄jx
j) = 0. Thus (āiᾱ

i(b̄j))nij = 0
for some positive integer nij . Hence aiα

i(bj) ∈ nil(R). Therefore R is weak
α-skew Armendariz. ¤

Let D be a ring and C a subring of D with 1D ∈ C. Let R = R[D,C] =
{(d1, . . . , dn, c, c, . . .) | di ∈ D, c ∈ C, n ≥ 1}. With addition and multiplication
defined componentwise, R is a ring (see [3]). Let α be an endomorphism of D.
Then ᾱ : R −→ R defined by ᾱ((d1, . . . , dn, c, c, . . .)) = (α(d1), . . . , α(dn), α(c),
α(c), . . .) for (d1, . . . , dn, c, c, . . .) ∈ R is an endomorphism of R.

Proposition 2.10. D is weak α-skew Armendariz if and only if R is weak
ᾱ-skew Armendariz.

Proof. Suppose that D is weak α-skew Armendariz. Let f(x) =
∑p

i=0 ξix
i,

g(x) =
∑q

j=0 δjx
j ∈ R[x; ᾱ] be such that f(x)g(x) = 0. Without loss of gener-

ality, we can assume that there exists n such that ξi = (a1i, . . . , ani, ci, ci, . . .),
δj = (b1j , . . . , bnj , dj , dj , . . .) ∈ R for all i, j. Let fs(x) =

∑p
i=0 asix

i, gs(x) =∑q
j=0 bsjx

j with 1 ≤ s ≤ n and f ′(x) =
∑p

i=0 cix
i, g′(x) =

∑q
j=0 djx

j . From
f(x)g(x) = 0, we obtain fs(x)gs(x) = 0 and f ′(x)g′(x) = 0 in D[x; α] for
all s. Hence asiα

i(bsj) ∈ nil(R) and ciα
i(dj) ∈ nil(R) for all i, j, s. Sup-

pose that (asiα
i(bsj))tsij = 0 and (ciα

i(dj))t′ij = 0 for 1 ≤ s ≤ n. Set
tij = max{t1ij , t2ij , . . . , tnij , t

′
ij}. Then we have (ξiᾱ

i(δj))tij = 0 for all i, j.
This means R is weak ᾱ-skew Armendariz.

Conversely, since D is a invariant subring of R, the assertion holds. ¤
Let R be a ring, α an automorphism of R and Ω a multiplicatively closed

subset of R consisting of central regular elements. We define ᾱ : Ω−1R → Ω−1R
by ᾱ(b−1a) = (α(b))−1α(a) for any b−1a ∈ Ω−1R. Then ᾱ is an automorphism
of Ω−1R.

Proposition 2.11. A ring R is weak α-skew Armendariz if and only if Ω−1R
is weak ᾱ-skew Armendariz.

Proof. The proof is similar to that of Proposition 3.11. ¤
The ring of Laurent polynomials in x coefficients in a ring R consists of all

formal sums
∑n

i=k aix
i with obvious addition and multiplication, where ai ∈ R

and k, n are (possibly negative) integers. We denote this ring by R[x;x−1].
For an automorphism α of R, ᾱ : R[x; x−1] → R[x;x−1] defined by ᾱ(f(x)) =∑n

i=k α(ai)xi is an automorphism of R[x;x−1]. ᾱ|R[x], the restriction of ᾱ to
R[x], is also denoted by ᾱ.

Corollary 2.12. For a ring R and an automorphism α of R, R[x] is weak
ᾱ-skew Armendariz if and only if R[x; x−1] is weak ᾱ-skew Armendariz.

Proof. Suppose that R[x] is weak ᾱ-skew Armendariz. Let Ω = {1, x, x2, . . . , },
then clearly Ω is a multiplicatively closed subset of R[x]. Since R[x;x−1] =
Ω−1R[x], the proof is completed by Proposition 2.10. The converse is clear. ¤
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3. Reversible rings and weak α-skew Armendariz rings

A ring R is called reversible if for any a, b ∈ R, ab = 0 implies ba = 0. A
ring R is called semicommutative if for any a, b ∈ R, ab = 0 implies aRb = 0.
Kim and Lee [7] showed that the reversible rings are semicommutative and
the converse may not be true. Moreover, Rege and Chhawchharia showed
that commutative (hence reversible) rings need not to be Armendariz in [9,
Example 3.2]. Liu and Zhao showed that the semicommutative rings are weak
Armendariz, so are the reversible rings. However, there exists an endomorphism
α of a reversible ring R such that R is not weak α-skew Armendariz by the
following example.

Example 3.1. Let R = Z2

⊕
Z2, where Z2 is the ring of integer module 2.

Then R is a commutative reduced ring. So it is reversible. Let α : R −→ R be
an endomorphism defined by α((a, b)) = (b, a). Then for p = (1, 0) + (1, 0)x,
q = (0, 1)+(1, 0)x in R[x; α], pq = 0, but (1, 0)α((0, 1)) = (1, 0) is not nilpotent.
Therefore R is not weak α-skew Armendariz.

Example 3.2 also shows that weak α-skew Armendariz rings need not be
reversible.

Example 3.2. In Example 2.6, S4 is weak ᾱ-skew Armendariz, but S4 is not
semicommutative by [6, Example 1.3], so it is not reversible.

Lemma 3.3. Let R be a reversible ring and α be an endomorphism of R
such that aα(b) = 0 whenever ab = 0 for any a, b ∈ R. If ab ∈ nil(R), then
aαk(b) ∈ nil(R) for any positive integer k.

Proof. Suppose that (ab)t = 0 for a, b ∈ R and some positive integer t. Then
(ab)t−1ab = 0, so (ab)t−1aαk(b) = 0 for any positive integer k by the hypothesis.
Thus, aαk(b)(ab)t−1 = 0 since R is reversible. That is, aαk(b)(ab)t−2ab = 0.
Similarly, we have aαk(b)(ab)t−2aαk(b) = 0, (aαk(b))2(ab)t−2 = 0. Continuing
this process, we obtain that (aαk(b))t = 0. ¤

Lemma 3.4. Let R be a reversible ring and α be an endomorphism of R such
that aα(b) = 0 whenever ab = 0 for any a, b ∈ R. If a0, a1, . . . , an ∈ nil(R),
then a0 + a1x + · · ·+ anxn ∈ nil(R[x; α]).

Proof. First we claim that αk1(a)αk2(a) · · ·αkm(a) = 0 if am = 0, where
k1, k2, . . . , km are any nonnegative integers. Since am−1a = 0, am−1αkm(a) = 0
by the hypothesis. Thus, αkm(a)am−1 = 0 since R is reversible. We have
αkm(a)am−2a = 0. Similarly αkm(a)am−2αkm−1(a) = 0. It follows that
αkm−1(a)αkm(a)am−2 = 0. Continuing this process, we obtain the above result.

Suppose that ami
i = 0, i = 0, 1, . . . , n. Let k = m0 + m1 + · · · + mn + 1.

Then

(a0 + a1x + · · ·+ anxn)k =
nk∑
s=0

(
∑

i1+i2+···+ik=s

αt1(ai1)α
t2(ai2) · · ·αtk(aik

))xs,
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where tj ≥ 0, aij
∈ {a0, a1, . . . , an}, j = 1, 2, . . . , k. If the number of a0

′s in
αt1(ai1)α

t2(ai2) · · ·αtk(aik
) is more than m0, then we write αt1(ai1)α

t2(ai2) · · ·
αtk(aik

) as b0α
p1(a0)b1α

p2(a0) · · · bq−1α
pq (a0)bq, where p1, p2, . . . , pq ≥ 0 and bi

is a product of some elements choosing from {αtj (aij
)|aij

6= a0, j = 1, 2, . . . , k}
or is equal to 1. Since am0

0 = 0, αp1(a0)αp2(a0) · · ·αpq (a0) = 0. Thus

αt1(ai1)α
t2(ai2) · · ·αtk(aik

) = 0

since R is reversible. If the number of ai
′s in αt1(ai1)α

t2(ai2) · · ·αtk(aik
) is

more than mi, then a similar discussion yields that

αt1(ai1)α
t2(ai2) · · ·αtk(aik

) = 0.

Hence ∑

i1+i2+···+ik=s

αt1(ai1)α
t2(ai2) · · ·αtk(aik

) = 0,

which implies that (a0 + a1x + · · ·+ anxn)k = 0 in R[x; α]. ¤

Proposition 3.5. Let R be a reversible ring and α be an endomorphism of R
such that aα(b) = 0 whenever ab = 0 for any a, b ∈ R. Then R is weak α-skew
Armendariz.

Proof. Suppose that f(x)g(x) = 0, where f(x) = a0 + a1x + · · · + amxm and
g(x) = b0 + b1x + · · ·+ bnxn ∈ R[x; α]. Then we have the following equations:

a0b0 = 0(1)
a0b1 + a1α(b0) = 0(2)

a0b2 + a1α(b1) + a2α
2(b0) = 0(3)
· · ·

a0bk + a1α(bk−1) + · · ·+ ak−1α
k−1(b1) + akαk(b0) = 0(4)

· · ·
We will show that aiα

i(bj) ∈ nil(R) by induction on i + j.
If i + j = 0, then a0b0 = 0 ∈ nil(R).
Now suppose that k ≤ m + n is such that aiα

i(bj) ∈ nil(R) when i + j < k.
We will show that aiα

i(bj) ∈ nil(R) when i+j = k. By Lemma 3.3, aiα
k(b0) ∈

nil(R) for any i < k. Since R is reversible, airα
k(b0) ∈ nil(R) for any r ∈ R.

Multiplying the equation (4) on the right side by αk(b0), then the equation (4)
becomes

a0bkαk(b0)+a1α(bk−1)αk(b0)+ · · ·+ak−1α
k−1(b1)αk(b0)+akαk(b0)αk(b0)=0.

It follows that

akαk(b0)αk(b0)=−(a0bkαk(b0)+a1α(bk−1)αk(b0)+ · · ·+ak−1α
k−1(b1)αk(b0)).

Since R is reversible, by [8, Lemma 3.1], akαk(b0)αk(b0) ∈ nil(R). Thus,
akαk(b0) ∈ nil(R). Multiplying the equation (4) on the right side by αk−1(b1).
Similarly we have ak−1α

k−1(b1) ∈ nil(R). Continuing this process, we have
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aiα
i(bj) ∈ nil(R) when i + j = k. Therefore aiα

i(bj) ∈ nil(R) for all i, j, and
R is weak α-skew Armendariz. ¤

We note that R is reversible in Example 3.1, but R is not weak α-skew
Armendariz. Thus the condition that ab = 0 implies aα(b) = 0 in Proposition
3.5 is not superfluous.

Recall that for an endomorphism α of a ring R, α is rigid if aα(a) = 0 implies
a = 0 for any a ∈ R. R is α-rigid if there exists a rigid endomorphism α of
R. If R is α-rigid, then R is reversible and satisfies the condition that ab = 0
implies aα(b) = 0 for any a, b ∈ R, but the converse is not true by the following
examples.

Example 3.6. Let R = Z4 and α = 1R. Then R is reversible, and ab = 0
implies α(ab) = 0. But R is not α-rigid.

Example 3.7. Let R = {( a t
0 a ) |a ∈ Z, t ∈ C}, where Z and C are the set of all

integers and all complex numbers, respectively. Then R is a commutative ring,
so it is reversible. Let α : R −→ R be defined by α(( a t

0 a )) =
(

a t̄
0 a

)
, where t̄

denotes the conjugate of t. Then
(1) R is not α-rigid: ( 0 t

0 0 )α(( 0 t
0 0 )) = 0, but ( 0 t

0 0 ) 6= 0 if t 6= 0.
(2) AB = 0 implies Aα(B) = 0 for any A, B ∈ R.
Let A = ( a s

0 a ) and B =
(

b t
0 b

)
. If AB = 0, ab = 0 and at + sb = 0.

(i) a 6= 0, then b = 0, t = 0. So Aα(B) = 0.
(ii) b 6= 0, then a = 0, s = 0. So Aα(B) = 0.
(iii) a = 0, b = 0, then Aα(B) = 0.

For a ring R and an endomorphism α of R, ᾱ : R[x] → R[x] defined by
ᾱ(f(x)) =

∑m
i=0 α(ai)xi for any f(x) =

∑m
i=0 aix

i ∈ R[x] is an endomorphism
of R[x]. Moreover, the endomorphism of R[x]/(xn) induced by ᾱ is also denoted
by ᾱ. Hong, Kim and Kwak [4, Proposition 8] showed that if R is an α-rigid
ring, then R[x]/(x2) is ᾱ-skew Armendariz. For weak α-skew Armendariz rings,
we have the following results.

Theorem 3.8. Let R be a reversible ring and α be an endomorphism of R
such that aα(b) = 0 whenever ab = 0 for any a, b ∈ R. Then R[x]/(xn) is a
weak ᾱ-skew Armendariz ring for any positive integer n.

Proof. Denote x̄ in R[x]/(xn) by u, so R[x]/(xn) = R[u] = R+Ru+· · ·+Run−1,
where u commutes with elements of R and un = 0. Let f , g ∈ R[u][y; ᾱ] be
such that fg = 0. Suppose that f =

∑p
i=0 fiy

i and g =
∑q

j=0 gjy
j , where

fi =
∑n−1

s=0 a
(i)
s us, gj =

∑n−1
t=0 b

(j)
t ut for 0 ≤ i ≤ p and 0 ≤ j ≤ q. From fg = 0,

we have the following equation ∑

s+t=k

usvt = 0

in R[y;α], k = 0, 1, . . . , n − 1, where us = a
(0)
s + a

(1)
s y + · · · + a

(p)
s yp and

vt = b
(0)
t + b

(1)
t y + · · · + b

(q)
t yq. We will show by induction on s + t that
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a
(i)
s αi(b(j)

t ) ∈ nil(R) for any 0 ≤ i ≤ p, 0 ≤ j ≤ q, and any s, t with s + t =
0, 1, . . . , n−1. If s+ t = 0, then s = t = 0. Thus u0v0 = 0. By Proposition 3.5,
R is weak α-skew Armendariz, so a

(i)
0 αi(b(j)

0 ) ∈ nil(R) for 0 ≤ i ≤ p, 0 ≤ j ≤ q.
Now suppose that k ≤ n−1 is such that a

(i)
s αi(b(j)

t ) ∈ nil(R) for any 0 ≤ i ≤ p,
0 ≤ j ≤ q and any s, t with s + t < k. We will show that a

(i)
s αi(b(j)

t ) ∈ nil(R)
for any 0 ≤ i ≤ p, 0 ≤ j ≤ q and any s, t with s + t = k. From the equation

u0vk + u1vk−1 + · · ·+ ukv0 = 0,

we have ∑

s+t=k

a(0)
s b

(0)
t = 0(1)

∑

s+t=k

a(0)
s b

(1)
t +

∑

s+t=k

a(1)
s α(b(0)

t ) = 0(2)

∑

s+t=k

a(0)
s b

(2)
t +

∑

s+t=k

a(1)
s α(b(1)

t ) +
∑

s+t=k

a(2)
s α2(b(0)

t ) = 0(3)

· · ·

∑

s+t=k

a(0)
s b

(p+q)
t +

∑

s+t=k

a(1)
s α(b(p+q−1)

t ) + · · ·+
∑

s+t=k

a(p+q)
s αp+q(b(0)

t ) = 0.

(4)

If s ≥ 1, then k− s < k. Thus, by the induction hypothesis, a
(0)
0 b

(0)
k−s ∈ nil(R).

Since R is reversible, b
(0)
k−sa

(0)
0 ∈ nil(R), and a

(0)
1 b

(0)
k−1a

(0)
0 + a

(0)
2 b

(0)
k−2a

(0)
0 + · · ·+

a
(0)
k b

(0)
0 a

(0)
0 = a

(0)
1 (b(0)

k−1a
(0)
0 ) + a

(0)
2 (b(0)

k−2a
(0)
0 ) + · · · + a

(0)
k (b(0)

0 a
(0)
0 ) ∈ nil(R) by

[8, Lemma 3.1]. Therefore, if we multiply
∑

s+t=k a
(0)
s b

(0)
t = 0 on the right side

by a
(0)
0 , then it follows that a

(0)
0 b

(0)
k a

(0)
0 ∈ nil(R) and, so a

(0)
0 b

(0)
k ∈ nil(R). If we

multiply
∑

s+t=k a
(0)
s b

(0)
t = 0 on the right side by a

(0)
1 , then, by [8, Lemma 3.1],

a
(0)
1 b

(0)
k−1a

(0)
1 = −a

(0)
0 b

(0)
k a

(0)
1 − (a(0)

2 b
(0)
k−2a

(0)
1 + · · ·+ a

(0)
k b

(0)
0 a

(0)
1 )

= −(a(0)
0 b

(0)
k )a(0)

1 − (a(0)
2 (b(0)

k−2a
(0)
1 ) + · · ·+ a

(0)
k (b(0)

0 a
(0)
1 )) ∈ nil(R).

Thus a
(0)
1 b

(0)
k−1 ∈ nil(R). Similarly, we can show that a

(0)
2 b

(0)
k−2 ∈ nil(R), . . .,

a
(0)
k b

(0)
0 ∈ nil(R). So we have a

(i)
s αi(b(j)

t ) ∈ nil(R) for any s, t with s+t = k and
any i, j with i+ j = 0. Suppose that l ≤ p+ q is such that a

(i)
s αi(b(j)

t ) ∈ nil(R)
for any s, t with s + t = k and any i, j with i + j < l. We will show
that a

(i)
s αi(b(j)

t ) ∈ nil(R) for any s, t with s + t = k and any i, j with
i + j = l. If t < k, then by the induction hypothesis, a

(0)
0 b

(j)
t ∈ nil(R),

so a
(0)
0 αr(b(j)

t ) ∈ nil(R) for any nonnegative integer r by Lemma 3.3. Hence
αr(b(j)

t )a(0)
0 ∈ nil(R). If i ≥ 1, then l−i < l. Thus, by the induction hypothesis

on p+q, a
(0)
0 (b(l−i)

k ) ∈ nil(R) for any i ≥ 1, which implies a
(0)
0 αr(b(l−i)

k ) ∈ nil(R)
for any nonnegative integer r. Hence αr(b(l−i)

k )a(0)
0 ∈ nil(R). Multiplying
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∑
s+t=k a

(0)
s b

(l)
t +

∑
s+t=k a

(1)
s α(b(l−1)

t ) + · · · + ∑
s+t=k a

(l)
s αl(b(0)

t ) = 0 on the

right side by a
(0)
0 . We have a

(0)
0 b

(l)
k a

(0)
0 ∈ nil(R) by [8, Lemma 3.1] and Lemma

3.3. Thus a
(0)
0 b

(1)
k ∈ nil(R). Similarly we can show that a

(i)
s αi(b(j)

t ) ∈ nil(R)
for any s, t with s + t = k and any i, j with i + j = l. Therefore, by induction,
we have a

(i)
s αi(b(j)

t ) ∈ nil(R) for any 0 ≤ i ≤ p, any 0 ≤ j ≤ q and any s, t

with s + t = 0, 1, . . . , n − 1. Now fiᾱ
i(gj) = (Σn−1

s=0 a
(i)
s us)ᾱi(Σn−1

t=0 b
(j)
t ut) =

Σ2n−2
k=0 (Σs+t=ka

(i)
s αi(b(j)

t ))uk = Σn−1
k=0(Σs+t=ka

(i)
s αi(b(j)

t ))uk. Since R is re-
versible, by [8, Lemma 3.1], Σs+t=ka

(i)
s αi(b(j)

t ) ∈ nil(R). Thus by [8, Lemma
3.7], fiᾱ

i(gj) ∈ nil(R[u]). This shows that R[u] is weak ᾱ-skew Armendariz. ¤

Note that the weak Armendariz ring is weak 1R-skew Armendariz. Liu and
Zhao [8, Theorem 3.8] showed that if a ring R is semicommutative, then R[x]
is weak Armendariz. For the case of weak α-skew Armendariz, we have the
following result.

Theorem 3.9. Let R be a reversible ring and α be an endomorphism of R
such that aα(b) = 0 whenever ab = 0 for any a, b ∈ R. If for some positive
integer t, αt = 1R, then R[x] is weak ᾱ-skew Armendariz.

Proof. Let p(y) = f0(x) + f1(x)y + · · ·+ fm(x)ym and q(y) = g0(x) + g1(x)y +
· · · + gn(x)yn be in (R[x])[y; ᾱ] with p(y)q(y) = 0. We also let fi(x) =
ai0 + ai1x + · · · + aiwix

wi and gj(x) = bj0 + bj1x + · · · + bjvj x
vj for any

0 ≤ i ≤ m and 0 ≤ j ≤ n, where ai0, ai1, . . . , aiwi , bj0, bj1, . . . , bjvj ∈ R.
We claim that fi(x)ᾱi(gj(x)) ∈ nil(R[x]) for all 0 ≤ i ≤ m and 0 ≤ j ≤
n. Take a positive integer k such that k > deg(f0(x)) + deg(f1(x)) + · · · +
deg(fm(x)) + deg(g0(x)) + deg(g1(x)) + · · ·+ deg(gn(x)), where the degrees of
fi(x) and gj(x) are as the polynomials in R[x] and the degree of zero poly-
nomial is taken to be 0 for all 0 ≤ i ≤ m and 0 ≤ j ≤ n. Let f(x) =
f0(xt) + f1(xt)xtk+1 + f2(xt)x2tk+2 + · · ·+ fm(xt)xmtk+m and g(x) = g0(xt) +
g1(xt)xtk+1 + g2(xt)x2tk+2 + · · · + gn(xt)xntk+n ∈ R[x]. Then the set of coef-
ficients of the fi(x) (respectively, gj(x)) equals the set of coefficients of f(x)
(respectively, g(x)). Since p(y)q(y) = 0, x commutes with elements of R in
the polynomial ring R[x], and αt = 1R, we have f(x)g(x) = 0 in R[x; α]. By
Proposition 3.5, R is weak α-skew Armendariz, so ailα

i(bjs) ∈ nil(R) for any
0 ≤ i ≤ m, 0 ≤ j ≤ n, l ∈ {0, 1, . . . , w0, . . . , wm} and s ∈ {0, 1, . . . , v0, . . . , vn}.
Since R is reversible,

∑
l+s=k ailα

i(bjs) ∈ nil(R), k = 0, 1, . . . , wi + vj by [8,
Lemma 3.1]. So fi(x)αi(gj(x)) ∈ nil(R[x]) by [8, Lemma 3.7] for all i and j,
and hence R[x] is weak ᾱ-skew Armendariz. ¤

Hong, Kim, and Kwak [4, Proposition 3] showed that if a ring R is α-rigid,
then R[x; α] is reduced. Hence R[x; α] is Armendariz. Moreover, we note that
even if α satisfies the condition “α2 = 1R” in Example 3.7, R still need not be
α-rigid. However, for the weak Armendariz rings, the following result holds.
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Theorem 3.10. Let R be a reversible ring and α be an endomorphism of R
such that aα(b) = 0 whenever ab = 0 for any a, b ∈ R. If, for some positive
integer t, αt = 1R, then R[x; α] is weak Armendariz.

Proof. Let p(y), q(y) and k be the same as in the proof of Theorem 3.9. We
claim that fi(x)gj(x) ∈ nil(R[x;α]) for all 0 ≤ i ≤ m and 0 ≤ j ≤ n. Let
p(xtk) = f0(x) + f1(x)xtk + · · · + fm(x)xmtk and q(xtk) = g0(x) + g1(x)xtk +
· · · + gn(x)xntk ∈ R[x;α]. Then the set of coefficients of the fi(x) (respec-
tively, gj(x)) equals the set of coefficients of p(xtk) (respectively, q(xtk)). Since
p(y)q(y) = 0 and αt = 1R, we have p(xtk)q(xtk) = 0 in R[x;α]. Since R is
weak α-skew Armendariz by Proposition 3.5, we have ailα

l(bjs) ∈ nil(R) for
any 0 ≤ i ≤ m, 0 ≤ j ≤ n, 0 ≤ l ≤ wi and 0 ≤ s ≤ vj . Thus figj ∈ nil(R[x;α])
for all 0 ≤ i ≤ m, 0 ≤ j ≤ n by [8, Lemma 3.1] and Lemma 3.4, and hence
R[x;α] is weak Armendariz. ¤

Note that weak Armendariz rings are weak 1R-skew Armendariz rings. But
Example 3.1 shows that there exists an endomorphism α of R such that weak
Armendariz rings need not be weak α-skew Armendariz. We do not know
whether the converse is true. However, if R[x; α] is weak Armendariz, then
R is weak Armendariz since it is a invariant subring of R[x; α]. Thus, By
Proposition 3.5 and Theorem 3.10, we can obtain the conditions that weak
α-skew Armendariz rings are weak Armendariz rings.

Let α be an automorphism of a ring R. Suppose that there exists the classical
left quotient Q of R. Then for any b−1a ∈ Q, where a, b ∈ R with b regular,
the induced map ᾱ : Q(R) → Q(R) defined by ᾱ(b−1a) = (α(b))−1α(a) is also
an automorphism.

Proposition 3.11. Suppose that there exists the classical left quotient Q of a
ring R. If R is reversible, then R is weak α-skew Armendariz if and only if Q
is weak ᾱ-skew Armendariz.

Proof. Suppose that R is weak α-skew Armendariz. Let f(x) = s−1
0 a0 +

s−1
1 a1x+· · ·+s−1

m amxm and g(x) = t−1
0 b0+t−1

1 b1x+· · ·+t−1
n bnxn ∈ Q[x; ᾱ] such

that f(x)g(x) = 0. Let C be a left denominator set. There exist s, t ∈ C and
a′i, b′j ∈ R such that s−1

i ai = s−1a′i and t−1
j bj = t−1b′j for i = 0, 1, . . . , m and

j = 0, 1, . . . , n. Then s−1(a′0+a′1x+· · ·+a′mxm)t−1(b′0+b′1x+· · ·+b′nxn) = 0. It
follows that (a′0+a′1x+· · ·+a′mxm)t−1(b′0+b′1x+· · ·+b′nxn) = 0. Thus (a′0t

−1+
a′1(α(t))−1x+· · ·+a′m(αm(t))−1xm)(b′0+b′1x+· · ·+b′nxn) = 0. For (a′i(α

i(t))−1,
i = 0, 1, . . . , n, there exist t′ ∈ C and a′′i ∈ R such that a′i(α

i(t))−1 = t′−1a′′i .
Hence t′−1(a′′0 + a′′1x + · · ·+ a′′mxm)(b′0 + b′1x + · · ·+ b′nxn) = 0. We have that
(a′′0 + a′′1x + · · · + a′′mxm)(b′0 + b′1x + · · · + b′nxn) = 0. Since R is weak α-skew
Armendariz, a′′i αi(b′j) ∈ nil(R) for all i and j. Suppose that (a′′i αi(b′j))

nij = 0.
Since R is reversible, Q is semicommutative. Then (t′−1(a′′i αi(b′j)))

nij = 0. So
(a′iᾱ

i(t−1b′j))
nij = (a′i(α

i(t))−1αi(b′j))
nij = ((t′−1a′′i )αi(b′j))

nij = 0. Similarly
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we have (s−1
i a′i)(ᾱ

i(t−1
j b′j))

nij = (s−1a′i)(ᾱ
i(t−1b′j))

nij = 0. Therefore Q is
weak ᾱ-skew Armendariz. The converse is clear. ¤
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