ON ANNIHILATIONS OF IDEALS IN SKEW MONOID RINGS

Rasul Mohammadi, Ahmad Moussavi, and Masoome Zahiri

Abstract

According to Jacobson [31], a right ideal is bounded if it contains a non-zero ideal, and Faith [15] called a ring strongly right bounded if every non-zero right ideal is bounded. From [30], a ring is strongly right $A B$ if every non-zero right annihilator is bounded. In this paper, we introduce and investigate a particular class of McCoy rings which satisfy Property (A) and the conditions asked by Nielsen [42]. It is shown that for a u.p.-monoid M and $\sigma: M \rightarrow \operatorname{End}(R)$ a compatible monoid homomorphism, if R is reversible, then the skew monoid ring $R * M$ is strongly right $A B$. If R is a strongly right $A B$ ring, M is a u.p.-monoid and $\sigma: M \rightarrow \operatorname{End}(R)$ is a weakly rigid monoid homomorphism, then the skew monoid ring $R * M$ has right $\operatorname{Property}(A)$.

1. Introduction

Throughout this article, all rings are associative with identity. Recall that a monoid M is called a u.p.-monoid (unique product monoid) if for any two nonempty finite subsets $A, B \subseteq M$ there exists an element $g \in M$ uniquely presented in the form $a b$ where $a \in A$ and $b \in B$. Unique product monoids and groups play an important role in ring theory, for example providing a positive case in the zero-divisor problem for group rings (see also [6]), and their structural properties have been extensively studied (see [17]). The class of u.p.-monoids includes the right and the left totally ordered monoids, submonoids of a free group, and torsionfree nilpotent groups. Every u.p.-monoid S is cancellative and has no non-unity element of finite order.

Let R be a ring, let M be a monoid and let $\sigma: M \rightarrow \operatorname{End}(R)$ a monoid homomorphism. For any $g \in M$, we denote the image of g under σ by σ_{g}. Then we can form a skew monoid ring $R * M$ (induced by the monoid homomorphism σ) by taking its elements to be finite formal combinations $\sum_{g \in M} a_{g} g$ with multiplication induced by $\left(a_{g} g\right)\left(b_{h} h\right)=a_{g} \sigma_{g}\left(b_{h}\right) g h$.

Received February 22, 2015.
2010 Mathematics Subject Classification. 16D25, 16D70, 16S34.
Key words and phrases. skew monoid ring, McCoy ring, strongly right $A B$ ring, nilreversible ring, CN ring, rings with Property (A), zip ring.

According to Jacobson [31], a right ideal of R is bounded if it contains a nonzero ideal of R. From [18], a ring R is right (left) duo if every right (left) ideal is an ideal, and Faith [13] said a ring would be called strongly right bounded if every non-zero right ideal were bounded. The class of strongly bounded rings has been observed by many authors (e.g. [7], [31], [48], [49]).

Due to H. Bell [5], a ring R is said to have the insertion of factors property (simply, $I F P$) if $a b=0$ implies $a R b=0$ for $a, b \in R$. Note that a ring R has $I F P$ if and only if any right (or left) annihilator is an ideal. Rings with $I F P$ are also called semicommutative, see [11]. Right (resp. left) duo rings are both strongly right (resp. left) bounded and semicommutative.

In [30], S. U. Hwang, N. K. Kim and Y. Lee introduced a condition that is a generalization of strongly bounded rings and semicommutative rings, calling a ring strongly right $A B$ if every non-zero right annihilator is bounded. An element c of R is called right regular if $r_{R}(c)=0$, left regular if $l_{R}(c)=0$ and regular if $r_{R}(c)=0=l_{R}(c)$.

According to [7], a ring R is called 2-primal if the prime radical of R and the set of nilpotent elements of R coincide. Another property between commutative and 2-primal is what Cohn in [10] calls reversible rings: those rings R with the property that $a b=0 \Rightarrow b a=0$ for all $a, b \in R$. We direct the reader to the excellent papers [1] and [38] for a nice introduction to some standard zerodivisor conditions.

There is another important ring theoretic condition common in the literature related to the zero divisor and annihilator conditions we have been studying. Neilsen in [42], calls a ring R right McCoy (resp. left McCoy) if for each pair of non-zero polynomial $f(x), g(x) \in R[x]$ with $f(x) g(x)=0$, then there exists a non-zero element $r \in R$ with $f(x) r=0$ (resp. $r g(x)=0$). Neilsen [42] asked whether there is a natural class of McCoy rings which includes all reversible rings and all rings R such that $R[x]$ is semicommutative. We use this to define a new class of rings strengthening the condition for reversible rings. This property between "reversible" and "McCoy" is what we call nil-reversible rings. We say a ring R is nil-reversible, if $a b=0 \Leftrightarrow b a=0$, where $b \in \operatorname{nil}(R)$.

An important theorem in commutative ring theory, related to zero-divisor conditions, is that if I is an ideal in a Noetherian ring and if I consists entirely of zero divisors, then the annihilator of I is nonzero. This result fails for some non-Noetherian rings, even if the ideal I is finitely generated. Huckaba and Keller [29], say that a commutative ring R has Property (A) if every finitely generated ideal of R consisting entirely of zero divisors has nonzero annihilator. Many authors have studied commutative rings with Property (A) ([3], [22], [28], [29], [36], [45], etc.), and have obtained several results which are useful studying commutative rings with zero-divisors. Hong, Kim, Lee and Ryu [27] extended Property (A) to noncommutative rings, and study such rings and several extensions with Property (A).

In this paper, we investigate a particular class of McCoy rings which satisfy Property (A) and the conditions asked by Nielsen [42]. Whenever the skew
monoid ring $R * M$ is strongly right $A B$ and $r_{R * M}(Y) \neq 0$, then $r_{R}(Y) \neq 0$, for any $Y \subseteq R * M$. We then conclude that, nil-reversible rings is a larger class than the class asked by Nielsen [42], and satisfies the conditions. Indeed, nil-reversible rings is a natural class of McCoy rings which includes reversible rings, all rings R such that $R[x]$ is strongly right (or left) $A B$ (and hence all rings R such that $R[x]$ is semicommutative).

We prove that for a u.p.-monoid M and $\sigma: M \rightarrow \operatorname{End}(R)$ a compatible monoid homomorphism, if R is nil-reversible, then the skew monoid ring $R * M$ is strongly right $A B$. If R is strongly right $A B, M$ a u.p.-monoid and $\sigma: M \rightarrow$ $\operatorname{End}(R)$ a weakly rigid monoid homomorphism, then $R * M$ has right Property (A).

It is also shown that, when M is a u.p.-group and $\sigma: M \rightarrow \operatorname{Aut}(R)$ is a group homomorphism such that the ring R is M-compatible and right duo, then R is right skew M-McCoy. Also, if $R * M$ is strongly right $A B$, then R is right skew M-McCoy and $R * M$ has right Property (A). Whenever R is strongly right $A B$ and skew M-Armendariz, then $R * M$ is strongly right $A B$. Moreover, if R is strongly right $A B$ and right skew M-McCoy, then $R * M$ has right Property (A).

Whenever R is a right duo ring and σ_{i} is a compatible automorphism of R and $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ for each i, j, then R is right skew McCoy. This implies that, if R is a right duo ring, then the rings $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $R\left[x_{1}, x_{2}, \ldots, x_{n}, x_{1}^{-1}\right.$, $\left.\ldots, x_{n}^{-1}\right]$ have right Property (A), which also gives an answer to a question asked in [27].

For any non-empty subset X of R, annihilators will be denoted by $r_{R}(X)$ and $l_{R}(X)$. We write $Z_{l}(R), Z_{r}(R)$ for the set of all left zero-divisors of R and the set of all right zero-divisors of R. The set of all nilpotent elements of R are denoted by $\operatorname{nil}(R)$. For any $\alpha=a_{1} g_{1}+\cdots+a_{m} g_{m} \in R * M\left(a_{i} \neq 0\right.$ for each $\left.i\right)$, we call m, the length of α and we denote by C_{α} the set of all coefficients of α.

2. Rings whose right annihilators are bounded

According to Jacobson [31], a right ideal of R is bounded if it contains a non-zero ideal of R. This concept has been extended in several ways. From Faith [13], a ring R is called strongly right (resp. left) bounded if every non-zero right (resp. left) ideal of R contains a non-zero ideal. A ring is called strongly bounded if it is both strongly right and strongly left bounded. Right (resp. left) duo rings are strongly right (resp. left) bounded and semicommutative. Birkenmeier and Tucci [7, Proposition 6] showed that a ring R is right duo if and only if R / I is strongly right bounded for all ideals I of R.

A ring R is called right (resp. left) $A B$ if every essential right (resp. left) annihilator of R is bounded.

Definition 2.1 ([30]). A ring R is called strongly right (resp. left) $A B$ if every non-zero right (resp. left) annihilator of R is bounded; R is called strongly $A B$ if R is strongly right and strongly left $A B$.

Obviously strongly right bounded rings and semicommutative rings are both strongly right $A B$, but the converses need not be true (see [30]).
Definition 2.2. We say a ring R is nil-reversible, if for every $a \in R, b \in \operatorname{nil}(R)$, $a b=0 \Leftrightarrow b a=0$.

Reversible rings are clearly nil-reversible. In [39] the authors called a ring R nil-semicommutative if for every $a, b \in \operatorname{nil}(R), a b=0$ implies $a R b=0$. Obviously, every nil-reversible ring is nil-semicommutative, so nil-reversible rings form a proper subclass of the class of 2-primal rings, by [39, Lemma 2.7].

According to Krempa [34], an endomorphism α of a ring R is said to be rigid if $a \alpha(a)=0$ implies $a=0$ for $a \in R$. A ring R is said to be α-rigid if there exists a rigid endomorphism α of R. In [21], the authors introduced α-compatible rings and studied their properties. A ring R is α-compatible if for each $a, b \in R, a b=0$ if and only if $a \alpha(b)=0$. Basic properties of rigid and compatible endomorphisms, proved by Hashemi and the second author in [21, Lemmas 2.2 and 2.1].

Let R be a ring, M a monoid and $\sigma: M \rightarrow \operatorname{End}(R)$ a monoid homomorphism. The ring R is called M-compatible if σ_{g} is compatible for every $g \in M$.

The following lemma which appeared in [21, Lemma 3.2] will be helpful in the sequel.

Lemma 2.3. Let R be an α-compatible ring. Then we have the following:
(1) If $a b=0$, then $a \alpha^{n}(b)=\alpha^{n}(a) b=0$ for all positive integers n.
(2) If $\alpha^{k}(a) b=0$ for some positive integer k, then $a b=0$.
(3) If $a b \in \operatorname{nil}(R)$, then $a \alpha(b) \in \operatorname{nil}(R)$ for all $a, b \in R$.

Lemma 2.4. Let R be a ring, M a u.p.-monoid and $\sigma: M \rightarrow \operatorname{End}(R) a$ compatible monoid homomorphism. Then we have the following:
(1) $a b \in \operatorname{nil}(R) \Leftrightarrow a \sigma_{g}(b) \in \operatorname{nil}(R)$ for all $a, b \in R$ and all $g \in M$;
(2) $a b c=0 \Leftrightarrow a \sigma_{g}(b) c=0$ for all $a, b, c \in R$ and all $g \in M$.

Proof. The proof is similar to the proof of [44, Lemma 2.4].
Lemma 2.5 ([19, Theorem 4.4]). Let R be a 2-primal ring, let M be a u.pmonoid and let $\sigma: M \rightarrow \operatorname{End}(R)$ be a monoid homomorphism such that the ring R is M-compatible. Then $\operatorname{nil}(R * M)=\operatorname{nil}(R) * M$.

Theorem 2.6. Let R be a nil-reversible ring, let M be a u.p.-monoid and let $\sigma: M \rightarrow \operatorname{End}(R)$ be a monoid homomorphism such that the ring R is M-compatible. Then $R * M$ is a strongly $A B$ ring.

Proof. We prove the right case, the proof of the left case is similar. Suppose $X \subseteq R * M$ and $r_{R * M}(X) \neq 0$. Let $X \beta=0$, for some $\beta=b_{1} h_{1}+b_{2} h_{2}+\cdots+$ $b_{n} h_{n} \in R * M$ with minimal length.

Case 1: $\beta \in \operatorname{nil}(R * M)$. We show that $X b_{j}=0$ for every $1 \leq j \leq n$. Assume, on the contrary, that $X b_{k} \neq 0$ for some $1 \leq k \leq n$. Then there exists $\alpha \in X$ such that $\alpha b_{k} \neq 0$, where $\alpha=a_{1} g_{1}+\cdots+a_{m} g_{m}$. On the
other hand we have $\alpha \beta=0$. Since M is a u.p.-monoid, there exist i, j with $1 \leq i \leq m$ and $1 \leq j \leq n$ such that $g_{i} h_{j}$ is uniquely presented by considering two subsets $A=\left\{g_{1}, \ldots, g_{m}\right\}$ and $B=\left\{h_{1}, \ldots, h_{n}\right\}$ of M. We may assume without loss of generality that $i=j=1$. Then $a_{1} \sigma_{g_{1}}\left(b_{1}\right)=0$, as $g_{1} h_{1}$ is uniquely presented. Since R is M-compatible nil-reversible and by Lemma 2.4, $b_{1} a_{1}=0$. Now take $\bar{\beta}$ to be βa_{1}. But $\bar{\beta}$ has $n-1$ terms and $\alpha \bar{\beta}=0$, which contradicts to our assumption that β has minimal length such that $\alpha \beta=0$, thus $\bar{\beta}=0$. By nil-reversibility of $R, a_{1} \beta=0$, and from $\alpha \beta=0$ we get $\left(a_{2} g_{2}+\cdots+a_{m} g_{m}\right)\left(b_{1} h_{1}+b_{2} h_{2}+\cdots+b_{n} h_{n}\right)=0$. Continuing in this way we can show that $a_{i} \beta=0$ for each $1 \leq i \leq m$, which contradicts with our assumption that $\alpha b_{k} \neq 0$. Thus $X b_{j}=0,1 \leq j \leq n$, and this implies $X R b_{j}=0$, as $\operatorname{nil}(R * M)=\operatorname{nil}(R) * M$ by Lemma 2.5 and R is M-compatible nil-reversible. So for every $\gamma=c_{1} l_{1}+\cdots+c_{k} l_{k} \in R * M, X c_{t} \sigma_{l_{t}}\left(b_{j}\right)=0,1 \leq j \leq n, 1 \leq t \leq k$. Therefore $X(R * M) b_{j}=0$, and so $R * M$ is strongly right $A B$.

Case 2: $\beta \notin \operatorname{nil}(R * M)$. Then we have two subcases:
(i) $\beta C_{X} \neq 0$ (we denote by C_{X} the set of all coefficients of elements of $X)$. In this case there exists $a \in C_{X}$ such that $\beta a \neq 0$. Then there exists $\gamma=c_{1} l_{1}+\cdots+c_{k} l_{k} \in X$ with $a \in C_{\gamma}$. From $X \beta=0$, we get $\gamma \beta=0$. Since $\operatorname{nil}(R)$ is an ideal of R, it is easy to see that $c_{i} b_{j} \in \operatorname{nil}(R), 1 \leq i \leq k, 1 \leq j \leq n$. Hence $b_{j} a \in \operatorname{nil}(R)$ and that $\beta a \in \operatorname{nil}(R * M)$. As $X \beta=0$, we have $X \beta a=0$ and reduce to the previous case.
(ii) $\beta C_{X}=0$. When $X R b_{j}=0$ for some $1 \leq j \leq n$, there is nothing to prove. Now assume that $X R b_{j} \neq 0$ for all $1 \leq j \leq n$. Then for some $\alpha=a_{1} g_{1}+$ $\cdots+a_{m} g_{m} \in X, \alpha R b_{j} \neq 0$. So $a_{k} g_{k} r \beta \neq 0$ for some $r \in R$ and $1 \leq k \leq m$. Since $\beta C_{X}=0$, we have $a_{k} g_{k} r \beta C_{X}=0$. On the other hand $\beta a_{k}=0$, as $\beta C_{X}=0$. So $a_{k} \sigma_{g_{k}}\left(r C_{\beta}\right) \in \operatorname{nil}(R)$, and hence by nil-reversibility $C_{X} a_{k} g_{k} r C_{\beta}=0$. Thus $C_{X} R a_{k} r C_{\beta}=0$, by nil-reversibility and M-compatibility of R. So for every $\gamma=c_{1} l_{1}+\cdots+c_{k} l_{k} \in R * M, C_{X} c_{t} \sigma_{l_{t}}\left(a_{k} r C_{\beta}\right)=0,1 \leq t \leq k$. This shows that $X(R * M) a_{k} r \beta=0$ and we are done.

Clearly every nil-reversible ring is strongly $A B$.
Corollary 2.7. Let R be a nil-reversible ring and let σ_{i} be a compatible endomorphism of R. Assume that $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ for each i, j. Then the skew polynomial rings $R\left[x_{1}, x_{2}, \ldots, x_{n} ; \sigma_{1}, \ldots, \sigma_{n}\right]$ and $R\left[x_{1}, x_{2}, \ldots, x_{n}, x_{1}^{-1}, \ldots, x_{n}^{-1} ; \sigma_{1}\right.$, $\left.\ldots, \sigma_{n}\right]$ are strongly $A B$.

Corollary 2.8. If R is a nil-reversible ring, then the rings $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $R\left[x_{1}, x_{2}, \ldots, x_{n}, x_{1}^{-1}, \ldots, x_{n}^{-1}\right]$ are strongly $A B$.

Corollary 2.9. Let R be a reversible ring, let M be a u.p.-monoid and let $\sigma: M \rightarrow \operatorname{End}(R)$ be a monoid homomorphism such that the ring R is M compatible. Then $R * M$ is a strongly $A B$ ring.

Right (resp. left) duo rings are both strongly right (resp. left) bounded and semicommutative. By M. P. Darzin [12] a ring R is a $C N$-ring whenever every
nilpotent element of R is central. D. Khurana et al. [33], introduced the notion of unit-central rings (i.e., every invertible element of it lies in center), and show that each unit-central ring is a $C N$-ring. It is clear that $C N$-rings and reversible rings are nil-reversible.

Corollary 2.10. Let R be a $C N$-ring, let M be a u.p.-monoid and let $\sigma: M \rightarrow$ $\operatorname{End}(R)$ be a monoid homomorphism such that the ring R is M-compatible. Then $R * M$ is a strongly $A B$ ring.
Corollary 2.11. Let R be a $C N$-ring, let σ_{i} be a compatible endomorphism of R such that $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ for each i, j. Then the rings $R\left[x_{1}, x_{2}, \ldots, x_{n} ; \sigma_{1}, \ldots\right.$, $\left.\sigma_{n}\right]$ and $R\left[x_{1}, x_{2}, \ldots, x_{n}, x_{1}^{-1}, \ldots, x_{n}^{-1} ; \sigma_{1}, \ldots, \sigma_{n}\right]$ are strongly $A B$.
Corollary 2.12. If R is a $C N$-ring, then the polynomial rings $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $R\left[x_{1}, x_{2}, \ldots, x_{n}, x_{1}^{-1}, \ldots, x_{n}^{-1}\right]$ are strongly $A B$.

A ring R is called Armendariz if whenever polynomials $f(x)=\sum_{i=0}^{n} a_{i} x^{i}$, $g(x)=\sum_{j=0}^{m} b_{j} x^{j}$ satisfy $f(x) g(x)=0$, then $a_{i} b_{j}=0$ for each i, j. This definition was given by Rege and Chhawchharia in [46] using the name Armendariz since E. Armendariz had proved in [2] that reduced rings satisfied this condition. Also, by Anderson and Camillo [1, Theorem 4], a ring R is Armendariz if and only if so is $R[x]$.

Definition 2.13 ([19, Definition 3.1]). Let R be a ring, let M be a monoid and let $\sigma: M \rightarrow \operatorname{End}(R)$ be a monoid homomorphism. A ring R is called skew M-Armendariz, if whenever elements $\alpha=a_{1} g_{1}+a_{2} g_{2}+\cdots+a_{n} g_{n}, \beta=$ $b_{1} h_{1}+b_{2} h_{2}+\cdots+b_{m} h_{m} \in R * M$ satisfy $\alpha \beta=0$, then $a_{i} \sigma_{g_{i}}\left(b_{j}\right)=0$ for each i, j.

Proposition 2.14. Let R be a skew M-Armendariz ring, let M be a u.p.monoid and let $\sigma: M \rightarrow \operatorname{End}(R)$ be a monoid homomorphism. Then R is reversible and M-compatible if and only if $R * M$ is reversible.

Proof. Let $\alpha=a_{1} g_{1}+a_{2} g_{2}+\cdots+a_{n} g_{n}$ and $\beta=b_{1} h_{1}+b_{2} h_{2}+\cdots+b_{m} h_{m}$ be non-zero elements of $R * M$, such that $\alpha \beta=0$. Since R is M-Armendariz, we have $a_{i} \sigma_{g_{i}}\left(b_{j}\right)=0$. By M-compatibility of $R, a_{i} b_{j}=0$. Since R is reversible and M-compatible, $b_{j} \sigma_{h_{j}}\left(a_{i}\right)=0$. So $\beta \alpha=0$ and $R * M$ is reversible. The converse is clear since reversible rings are closed under subring. It follows from [37, Lemma 4.4(ii)] that if $R * M$ is reversible, then R is M-compatible.

Corollary 2.15. Let R be a σ_{i}-skew Armendariz ring and let σ_{i} be a compatible endomorphism of R for each i. Assume that $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ for each i, j. Then R is reversible if and only if the skew polynomial ring $R\left[x_{1}, x_{2}, \ldots, x_{n} ; \sigma_{1}, \ldots\right.$, $\left.\sigma_{n}\right]$ is reversible if and only if $R\left[x_{1}, x_{2}, \ldots, x_{n}, x_{1}^{-1}, \ldots, x_{n}^{-1}, \sigma_{1}, \ldots, \sigma_{n}\right]$ is reversible.

Definition 2.16. Let R be a ring, let M be a monoid and let $\sigma: M \rightarrow \operatorname{End}(R)$ be a monoid homomorphism. We say a ring R is right skew $M-M c C o y$ if
whenever $0 \neq \alpha=a_{1} g_{1}+\cdots+a_{n} g_{n}, 0 \neq \beta=b_{1} h_{1}+\cdots+b_{m} h_{m} \in R * M$ with $g_{i}, h_{j} \in M, a_{i}, b_{j} \in R$ satisfy $\alpha \beta=0$, then $\alpha r=0$ for some nonzero $r \in R$. Left skew $M-M c C o y$ rings are defined similarly. If R is both left and right skew $M-\mathrm{McCoy}$, then we say R is skew $M-M c C o y$.

Theorem 2.17. Let R be a ring, let M be a u.p.-monoid and let $\sigma: M \rightarrow$ $\operatorname{Aut}(R)$ be a monoid homomorphism. If $S=R * M$ is strongly right $A B$ and $r_{S}(Y) \neq 0$, then $r_{R}(Y) \neq 0$ for any $Y \subseteq S$.
Proof. Suppose $Y \subseteq R * M$ and $r_{R * M}(Y) \neq 0$. Let Y^{\prime} be the right ideal of $R * M$ generated by Y. Since $R * M$ is strongly right $A B$ and $r_{R * M}(Y) \neq 0$; it follows that $r_{R * M}\left(Y^{\prime}\right) \neq 0$. Hence by [26, Theorem 3] we have $r_{R}\left(Y^{\prime}\right) \neq 0$ and thus $r_{R}(Y) \neq 0$.

Corollary 2.18. Let R be a ring and let σ_{i} be an automorphism of R such that $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ for each i, j. Let S be either $R\left[x_{1}, x_{2}, \ldots, x_{n} ; \sigma_{1}, \ldots, \sigma_{n}\right]$ or $R\left[x_{1}, x_{2}, \ldots, x_{n}, x_{1}^{-1}, \ldots, x_{n}^{-1} ; \sigma_{1}, \ldots, \sigma_{n}\right]$. If S is strongly right $A B$ and $r_{S}(Y) \neq 0$, then $r_{R}(Y) \neq 0$ for any $Y \subseteq S$.

Corollary 2.19. Let R be a ring, let M be a u.p.-monoid and let $\sigma: M \rightarrow$ $\operatorname{Aut}(R)$ be a monoid homomorphism. If $S=R * M$ is nil-reversible and $r_{S}(Y) \neq$ 0 , then $r_{R}(Y) \neq 0$ for any $Y \subseteq S$.

Corollary 2.20. Let R be a ring, let M be a u.p.-monoid and let $\sigma: M \rightarrow$ $\operatorname{Aut}(R)$ be a monoid homomorphism. If $S=R * M$ is a reversible ring and $r_{S}(Y) \neq 0$, then $r_{R}(Y) \neq 0$ for any $Y \subseteq S$.

Corollary 2.21. Let R be a ring and let M be a u.p.-monoid and let $\sigma: M \rightarrow$ $\operatorname{Aut}(R)$ be a monoid homomorphism. If $R * M$ is a strongly right $A B$ ring, then R is a right skew $M-M c C o y$ ring.
Corollary 2.22. If the polynomial ring $R[x]$ is strongly right $A B$, then R is a right $M c$ Coy ring.

Corollary 2.23. The class of McCoy rings includes nil-reversible rings and all rings R such that $R[x]$ is strongly right $A B$.

Therefore, we conclude that, nil-reversible rings is a larger class of rings which satisfy the conditions asked by Nielsen [42]. Indeed, nil-reversible rings is a natural class of McCoy rings which includes reversible rings, $C N$ rings, all rings R such that $R[x]$ is strongly right (or left) $A B$ (and hence all rings R such that $R[x]$ is semicommutative).

Lemma 2.24. Let M be a u.p.-monoid, $|M| \geq 2$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in R * M$. Then there exist $k_{1}, k_{2}, \ldots, k_{n} \in M$ such that $\alpha_{1} k_{1}, \ldots, \alpha_{n} k_{n}$ are distinct.
Proof. Let $\alpha_{i}=a_{i 1} h_{1}^{(i)}+a_{i 2} h_{2}^{(i)}+\cdots+a_{i n i} h_{n i}^{(i)}$ and put $A_{i}=\left\{h_{1}^{(i)}, h_{2}^{(i)}, \ldots, h_{n i}^{(i)}\right\}$ for $1 \leq i \leq n$. Let $1 \leq t \leq n$ be maximal number such that $A_{1}, A_{2}, \ldots, A_{t}$ are disjoint. In this case we take, $k_{1}=k_{2}=\cdots=k_{t}=e_{M}$. We need to assume that
$\left|A_{i}\right| \geq 2$ for each i. Now take $e_{M} \neq h_{s}^{(t+1)} \in A_{t+1}, 1 \leq s \leq n(t+1)$. We claim that there exists a positive integer m_{t+1} such that $A_{1}, A_{2}, \ldots, A_{t+1}\left(h_{s}^{(t+1)}\right)^{m_{t+1}}$ are disjoint, otherwise for some $h_{j}^{(t+1)} \in A_{t+1}$ we get $h_{j}^{(t+1)}\left(h_{s}^{(t+1)}\right)^{k} \in \bigcup_{i=1}^{t} A_{i}$, for all positive integers k. This follows a contradiction, since by [6, Lemma 1.1], u.p.-monoids are cancellative. So $h_{i}^{(t+1)}\left(h_{s}^{(t+1)}\right)^{p l_{i}} \notin \bigcup_{i=1}^{t} A_{i}$ for some positive integers l_{i} and each $p \in \mathbb{N}, 1 \leq i \leq n(t+1)$. Therefore $A_{1}, A_{2}, \ldots, A_{t}, A_{t+1} k_{t+1}$ are disjoint, where $k_{t+1}=\left(h_{s}^{(t+1)}\right)^{m_{t+1}}$ with $m_{t+1}=l_{1} l_{2} \cdots l_{n(t+1)}$. By a similar method as above there exist $k_{t+2}, \ldots, k_{n} \in M$ such that $\alpha_{1} k_{1}, \ldots, \alpha_{n} k_{n}$ are distinct.

Lemma 2.25. Let R be a semicommutative ring, let M be a u.p.-group and $\sigma: M \rightarrow \operatorname{End}(R)$ be a monoid homomorphism such that the ring R is M compatible. Assume that $\alpha=a_{1} g_{1}+a_{2} g_{2}+\cdots+a_{m} g_{m}$ and $\beta=b_{1} h_{1}+\cdots+b_{n} h_{n}$ are non-zero elements of $R * M$ such that $\alpha \beta=0$. Then there exists $a_{i} \in C_{\alpha}$ such that $a_{i}^{n} \beta=0$.

Proof. Let $\alpha=a_{1} g_{1}+\cdots+a_{m} g_{m}$ and $\beta=b_{1} h_{1}+\cdots+b_{n} h_{n}$ be non-zero elements of $R * M$. Since M is a u.p.-group, there exist i, j, t, k with $1 \leq i \leq m$ and $1 \leq t, j, k \leq n$ such that $g_{i} h_{t} h_{j}^{-1} h_{k}$ is uniquely presented by considering two subsets $A=\left\{g_{1}, \ldots, g_{m}\right\}$ and $B=\left\{h_{t} h_{j}^{-1} h_{k}: 1 \leq t, j, k \leq n\right\}$ of M. We may assume without loss of generality that $i=j=k=t=1$. Hence $a_{1} \sigma_{g_{1}}\left(b_{1}\right)=0$. Since R is M-compatible, we have $a_{1} b_{1}=0$. By semicommutativity of $R, 0=$ $a_{1} \alpha \beta=\left(a_{1}^{2} g_{1}+\cdots+a_{1} a_{m} g_{m}\right)\left(b_{1} h_{1}+\cdots+b_{n} h_{n}\right)=\left(a_{1}^{2} g_{1}+\cdots+a_{1} a_{m} g_{m}\right)\left(b_{2} h_{2}+\right.$ $\left.\cdots+b_{n} h_{n}\right)$. Since M is u.p.-group, $0=\left(a_{1}^{2} g_{1}+\cdots+a_{1} a_{m} g_{m}\right)\left(b_{2} h_{2}+\cdots+\right.$ $\left.b_{n} h_{n}\right) h_{2}^{-1} h_{1}=\left(a_{1}^{2} g_{1}+\cdots+a_{1} a_{m} g_{m}\right)\left(b_{2} h_{1}+\cdots+b_{n} h_{n} h_{2}^{-1} h_{1}\right)$. Since $g_{1} h_{1}$ is uniquely presented, $a_{1}^{2} b_{2}=0$. Then by a similar argument as above and since R is semicommutative, we have $0=a_{1}^{2} \alpha \beta=\left(a_{1}^{3} g_{1}+\cdots+a_{1}^{2} a_{m} g_{m}\right)\left(b_{1} h_{1}+\cdots+\right.$ $\left.b_{n} h_{n}\right)=\left(a_{1}^{3} g_{1}+\cdots+a_{1}^{2} a_{m} g_{m}\right)\left(b_{3} h_{3}+\cdots+b_{n} h_{n}\right)$. Continuing this process, we can deduce that $a_{1}^{n} \beta=0$. We consider $i=1$, so there exist $a_{i} \in C_{\alpha}$ such that $a_{i}^{n} \beta=0$.

Corollary 2.26. Let R be a semicommutative ring and α be an automorphism of R. Assume that R is α-compatible. Also let $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ and $g(x)=b_{0}+b_{1} x \cdots+a_{m} x^{m}$ be non-zero elements of $R\left[x, x^{-1} ; \alpha\right]$ or $R[x ; \alpha]$, such that $f(x) g(x)=0$. Then there exists $a_{i} \in C_{f}$ such that $a_{i}^{m} g(x)=0$.

In [27], Hong, Kim and Lee, asked a question that, if R is a right duo ring does $R[x]$ have right Property (A) ? In Corollary 3.12, we show that, if R is a right duo ring, then the rings $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $R\left[x_{1}, x_{2}, \ldots, x_{n}, x_{1}^{-1}, \ldots\right.$, $\left.x_{n}^{-1}\right]$ have right Property (A). We need the following result which is a generalization of [8, Theorem 8.2] to the more general setting:

Theorem 2.27. Let R be a ring, let M be a u.p.-group and let $\sigma: M \rightarrow \operatorname{Aut}(R)$ be a group homomorphism such that the ring R is M-compatible. If R is a right duo ring, then R is right skew $M-M c C o y$.

Proof. We apply the method of Camillo and Nielsen in the proof of [8, Theorem 8.2]. For every $\gamma \in R * M$ we let I_{γ} denote the right ideal generated by the coefficients of γ. Suppose $\alpha, \beta \in R * M$ with $\alpha \beta=0$ and $\beta \neq 0$. We will prove, by induction on the length of α, that there is some non-zero element in I_{β} which annihilates α on the right. Write $\alpha=\sum_{i=1}^{m} a_{i} g_{i}$ and $\beta=\sum_{j=1}^{n} b_{j} h_{j}$. First, if $\alpha=a_{1} g_{1}$, then

$$
\left(a_{1} g_{1}\right)\left(b_{1} h_{1}+b_{2} h_{2}+\cdots+b_{n} h_{n}\right)=0
$$

Since M is a u.p.-group, there exist i, j, k, such that $g_{1} h_{i} h_{j}^{-1} h_{k}$ is uniquely presented by considering two subsets $A=\left\{g_{1}\right\}$ and $B=\left\{h_{i} h_{j}^{-1} h_{k}: 1 \leq\right.$ $i, j, k \leq n\}$ of M. We may assume without loss of generality that $i=j=k=1$. Hence $a_{1} \sigma_{g_{1}}\left(b_{1}\right)=0$. So $0=\left(a_{1} g_{1}\right)\left(b_{1} h_{1}+b_{2} h_{2}+\cdots+b_{n} h_{n}\right)=\left(a_{1} g_{1}\right)\left(b_{2} h_{2}+\right.$ $\left.\cdots+b_{n} h_{n}\right)$. Since M is a u.p.-group, $0=\left(a_{1} g_{1}\right)\left(b_{2} h_{2}+\cdots+b_{n} h_{n}\right) h_{2}^{-1} h_{1}=$ $\left(a_{1} g_{1}\right)\left(b_{2} h_{1}+\cdots+b_{n} h_{n} h_{2}^{-1} h_{1}\right)$. Since $g_{1} h_{1}$ is uniquely presented, $a_{1} \sigma_{g_{1}}\left(b_{2}\right)=0$. Continuing this process and since R is M-compatible, we have $a_{1} b_{j}=0$, for each j. Let length $(\alpha) \geq 2$.

Since duo rings are semicommutative, there exists $1 \leq l \leq m$ satisfying $a_{l}^{n-1} b_{j} \neq 0=a_{l}^{n} b_{j}$ by Lemma 2.25. We then have the following.

Case (i): Suppose $a_{l} \beta=0$. This implies $a_{l} I_{\beta}=0$. In this case we set $\alpha_{1}=\alpha-a_{l} g_{l}$ and find $\alpha_{1} \beta=0$. But length $\left(\alpha_{1}\right)<\operatorname{length}(\alpha)$, and hence by induction there exists a non-zero element $b \in I_{\beta}$ satisfying $\alpha_{1} b=0$, whence $\alpha b=0$.

Case (ii): Suppose $a_{l} \beta \neq 0$. Then $a_{l} b_{t}=0$ for some $b_{t} \in C_{\beta}$. Let $a_{l} b_{j} \neq 0$. Since R is right duo, there exists $r \in R$ with $a_{l}^{n-1} b_{j}=b_{j} r$. If we let $\beta_{1}=$ $\beta \sigma_{g_{j}}^{-1}(r)$, then clearly $\alpha \beta_{1}=0$, and $(0) \neq I_{\beta_{1}} \subseteq I_{\beta}$. This means we can replace β by β_{1} without any loss of generality. By construction, a_{l} annihilates the first j coefficients of β_{1}, so after repeating this process a finite number of times we reduce to the previous case.

Let S be either the skew polynomial ring $R\left[x_{1}, \ldots, x_{n} ; \sigma_{1}, \ldots, \sigma_{n}\right]$ or the skew Laurent polynomial ring $R\left[x_{1}, \ldots, x_{n}, x_{1}^{-1}, \ldots, x_{n}^{-1}, \sigma_{1}, \ldots, \sigma_{n}\right]$. We say the ring R is skew McCoy, when the equation $f(x) g(x)=0$ over S, where $f(x), g(x) \neq 0$ implies there exists a nonzero $r \in R$ with $f(x) r=0$.

Corollary 2.28. Let R be a right duo ring, let σ_{i} be a compatible automorphism of R such that $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ for each i, j. Then R is skew McCoy.
Corollary 2.29 ([8, Theorem 8.2]). Every right duo ring is right McCoy.
Theorem 2.30. Let R be a M-compatible ring, let M be a u.p.-monoid and let $\sigma: M \rightarrow \operatorname{End}(R)$ be a monoid homomorphism. If R is skew M-Armendariz and strongly right $A B$, then $R * M$ is strongly right $A B$.
Proof. We adopt the proof of [30, Proposition 4.6]. Assume R is strongly right $A B$ and $X \subseteq R * M$ with $r_{R * M}(X) \neq 0$ and let C be the set of all coefficients of the elements of X. Take non-zero $\alpha=a_{1} g_{1}+a_{2} g_{2}+\cdots+a_{n} g_{n} \in r_{R * M}(X)$.

Then for any $\beta=b_{1} h_{1}+b_{2} h_{2}+\cdots+b_{m} h_{m} \in X, \beta \alpha=0$. Since R is skew M-Armendariz and M-compatible, $b_{i} a_{j}=0$ for all i, j. Thus $a_{j} \in r_{R}(C)$, $1 \leq j \leq n$, entailing $r_{R}(C) \neq 0$. Since R is strongly right $A B$, there exists a non-zero ideal I of R such that $r_{R}(C) \supseteq I$. So $C R t=0$ for each $0 \neq t \in I$. By M-compatibility of $R, X(R * M) t=0$. Therefore $R * M$ is strongly right $A B$.

Proposition 2.31. Let R be a ring, let M be a u.p.-monoid and let $\sigma: M \rightarrow$ $\operatorname{End}(R)$ be a monoid homomorphism such that the ring R is M-compatible. If $R * M$ is strongly right $A B$, then R is right skew $M-M c C o y$ and strongly right $A B$.

Proof. We adopt the proof of [30, Proposition 4.6]. Suppose that $S=R * M$ is strongly right $A B$. Let $X \subseteq R$ with $r_{R}(X) \neq 0$. Note that $r_{R}(X)=r_{S}(X) \cap R$. Since $r_{R}(X) \neq 0$, we get $r_{S}(X) \neq 0$. But S is strongly right $A B$, so there is a non-zero ideal L of S such that $r_{S}(X) \supseteq L$. For every $\gamma=c_{1} l_{1}+c_{2} l_{2}+\cdots+c_{t} l_{t} \in$ $L, S \gamma S \subseteq L$. So $X R \gamma \subseteq X S \gamma=0$. This implies that $X R c_{k}=0,1 \leq k \leq t$. So $r_{R}(X) \supseteq R c_{k} R$. Therefore R is strongly right $A B$.

Corollary 2.32. Let R be a σ_{i}-skew Armendariz ring for each i and let σ_{i} be a compatible endomorphism of R such that $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ for each i, j. Then R is strongly right $A B$ if and only if $R\left[x_{1}, \ldots, x_{n} ; \sigma_{1}, \ldots, \sigma_{n}\right]$ is strongly right $A B$ if and only if $R\left[x_{1}, \ldots, x_{n}, x_{1}^{-1}, \ldots, x_{n}^{-1}, \sigma_{1}, \ldots, \sigma_{n}\right]$ is strongly right $A B$.

Corollary 2.33 ([30, Proposition 4.6]). Let R be an Armendariz ring. Then R is strongly right $A B$ if and only if $R[x]$ is strongly right $A B$.

Let R be a ring and σ denotes an endomorphism of R with $\sigma(1)=1$. We denote the identity matrix and unit matrices in the full matrix ring $M_{n}(R)$, by I_{n} and $E_{i j}$, respectively. In [35], T. K. Lee and Y. Zhou introduced a subring of the skew triangular matrix ring as a set of all triangular matrices $T_{n}(R)$, with addition pointwise and a new multiplication subject to the condition $E_{i j} r=$ $\sigma^{j-i}(r) E_{i j}$. So $\left(a_{i j}\right)\left(b_{i j}\right)=\left(c_{i j}\right)$, where $c_{i j}=a_{i i} b_{i j}+a_{i, i+1} \sigma\left(b_{i+1, j}\right)+\cdots+$ $a_{i j} \sigma^{j-i}\left(b_{j j}\right)$ for each $i \leq j$ and denoted it, by $T_{n}(R, \sigma)$.

Let R be a ring with an endomorphism σ. Consider the following subset of triangular matrices $T_{n}(R, \sigma)$, denoted by

$$
T(R, n, \sigma)=\left\{\left.\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & \ldots & a_{n} \\
0 & a_{1} & a_{2} & \ldots & a_{n-1} \\
0 & 0 & a_{1} & \ldots & a_{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & a_{1}
\end{array}\right) \right\rvert\, a_{i} \in R\right\}
$$

with $n \geq 2$. It is easy to see that $T(R, n, \sigma)$ is a ring with matrix addition and multiplication. We can denote elements of $T(R, n ; \sigma)$ by $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, then $T(R, n ; \sigma)$ is a ring with addition pointwise and multiplication given by $\left(a_{0}, \ldots, a_{n-1}\right)\left(b_{0}, \ldots, b_{n-1}\right)=\left(a_{0} b_{0}, a_{0} * b_{1}+a_{1} * b_{0}, \ldots, a_{0} * b_{n-1}+\cdots+a_{n-1} * b_{0}\right)$,
with $a_{i} * b_{j}=a_{i} \sigma^{i}\left(b_{j}\right)$ for each i and j. In the special case, when $\sigma=i d_{R}$, we use $T(R, n)$ instead of $T(R, n, \sigma)$. On the other hand, there is a ring isomorphism $\varphi: R[x ; \sigma] /\left(x^{n}\right) \rightarrow T(R, n, \sigma)$, given by $\varphi\left(\sum_{i=0}^{n-1} a_{i} x^{i}\right)=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$. So $T(R, n, \sigma) \cong R[x ; \sigma] /\left(x^{n}\right)$, where $\left(x^{n}\right)$ is the ideal generated by x^{n}.
Lemma 2.34. Let R be a ring and $0 \neq a \in R$. Then a is right (resp. left) regular if and only if $\left(a, a_{1}, a_{2}, \ldots, a_{n-1}\right) \in T(R, n, \sigma)$ is right (resp. left) regular.

Proof. We adopt the proof of [30, Lemma 2.1]. Suppose that $a \in R$ is right regular, and let

$$
A=\left(a, a_{1}, a_{2}, \ldots, a_{n-1}\right) \in T(R, n, \sigma)
$$

We proceed by induction on n. Put $\left(a, a_{1}\right)\left(b, b_{1}\right)=0$ for some $\left(b, b_{1}\right) \in$ $T(R, n, \sigma)$. Then $a b=0$ and $a b_{1}+a_{1} \sigma(b)=0$. Since a is right regular, $b=0$, and so $b_{1}=0$; hence $\left(a, a_{1}\right)$ is right regular. Next let

$$
A B=0, B=\left(b, b_{1}, b_{2}, \ldots, b_{n-1}\right) \in T(R, n, \sigma) .
$$

Then we get

$$
\left(a, a_{1}, a_{2}, \ldots, a_{n-2}\right)\left(b, b_{1}, b_{2}, \ldots, b_{n-2}\right)=0
$$

By the induction hypothesis we obtain $b=0$ and $b_{j}=0$ for $1 \leq j \leq n-2$; hence $a b_{n-1}+a_{1} \sigma\left(b_{n-2}\right)+\cdots+a_{n-2} \sigma^{n-2}\left(b_{1}\right)+a_{n-1} \sigma^{n-1}(b)=0, a b_{n-2}+$ $a_{1} \sigma\left(b_{n-3}\right)+\cdots+a_{n-2} \sigma^{n-2}(b)=0, \ldots, a b=0$. Inductively we obtain $b=0$ and $b_{j}=0$ for $j=1,2, \ldots, n-1$, concluding that A is right regular.

Conversely assume that A is right regular, and let $a b=0$ for some $b \in R$. Then from $A\left(b E_{1(n-1)}\right)=0$ we have $b=0$. Thus a is regular. The proof of left case is similar.

Proposition 2.35. A ring R is strongly right (resp. left) $A B$ if and only if $T(R, n, \sigma)$ is strongly right (resp. left) $A B$ for any $n \geq 2$.
Proof. We apply the method of Hwang et al. in the proof of [30, Theorem 2.2]. Let R be strongly right $A B$ and $X \subseteq T(R, n, \sigma)$ with $r_{T(R, n, \sigma)}(X) \neq 0$. Then any diagonal in matrices in X is not right regular by Lemma 2.34. Let Y be the set of all elements in R, which occur as diagonal entries of elements in X. If $Y=0$, then $r_{T(R, n, \sigma)}(X)$ contains a non-zero ideal $R E_{1(n-1)}$ of $T(R, n, \sigma)$. Next we suppose $Y \neq 0$ and let a be in Y. Take

$$
0 \neq\left(b, b_{1}, \ldots, b_{n-1}\right) \in r_{T(R, n, \sigma)}(X)
$$

We will show $r_{R}(Y) \neq 0$. If $b \neq 0$, then $r_{R}(Y) \neq 0$. Assume $b=0$, since $\left(b, b_{1}, \ldots, b_{n-1}\right) \neq 0$, there exist $b_{j} \neq 0,1 \leq j \leq n-1$ and $a b_{j}=0$. So $r_{R}(Y) \neq 0$.

Now since R is strongly right $A B$, there is a non-zero ideal I of R with $I \subseteq r_{R}(Y)$. Then $r_{T(R, n, \sigma)}$ contains a non-zero ideal $I E_{1(n-1)}$ of $T(R, n, \sigma)$. Thus $T(R, n, \sigma)$ is strongly right $A B$.

Conversely suppose that $T(R, n, \sigma)$ is strongly right $A B$ and $V \subseteq R$ with $r_{R}(V) \neq 0$. Let $W=\left\{a I_{n} \mid a \in V\right\} \subseteq T(R, n, \sigma)$, where I_{n} is the $n \times n$ identity
matrix. Then $r_{T(R, n, \sigma)}(W) \neq 0$ because $W U=0$ for any non-zero matrix U in $T(R, n, \sigma)$ with entries in $r_{R}(V)$. Since $T(R, n, \sigma)$ is strongly right $A B$, there exists a non-zero ideal J of $T(R, n, \sigma)$ such that $r_{T(R, n, \sigma)}(W) \supseteq J$. Now set $K=\{c \in R \mid c$ is an entry of a matrix in $J\}$. Then K is a non-zero ideal of R from the computations $\left(a I_{n}\right)\left(r I_{n}\right) C=0$ for $a \in V, r \in R$ and $C \in J$. Moreover $a K=0$ for all $a \in V$ from $\left(a I_{n}\right) J=0$, entailing $r_{R}(X) \supseteq K$. Thus R is strongly right $A B$. The proof of the left case is similar.

Example 2.36. Let R be a ring. Assume α and σ are rigid endomorphisms such that $\alpha \sigma=\sigma \alpha$. Since R is reduced, $T(R, n, \sigma)$ is strongly right $A B$ by Proposition 2.35 and by [20, Theorem 2.8 and Corollary 2.5], $T(R, n, \sigma)$ is skew Armendariz and $\bar{\alpha}$-compatible. So $T(R, n, \sigma)[x ; \bar{\alpha}]$ is strongly right $A B$, by Corollary 2.32 .

Definition 2.37 ([9]). A ring R is said to have the right finite intersection property (simply, right FIP) if, for any subset X of R, there exists a finite subset X_{0} of X such that $r_{R}(X)=r_{R}\left(X_{0}\right)$.

Proposition 2.38. Let R be a ring, let M be a u.p.-group with $|M| \geq 2$ and let $\sigma: M \rightarrow \operatorname{Aut}(R)$ be a group homomorphism such that the ring R is M compatible. If R is right duo and $R * M$ has right FIP, then $R * M$ is strongly right $A B$.

Proof. Assume that $X \subseteq R * M$ and $r_{R * M}(X) \neq 0$. Then there exists a finite subset X_{0} of X such that $r_{R * M}(X)=r_{R * M}\left(X_{0}\right)$, as $R * M$ has right $F I P$. Assume that $X_{0}=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\}$, where $\alpha_{i}=a_{i 1} g_{i 1}+a_{i 2} g_{i 2}+\cdots+$ $a_{i n_{i}} g_{i n_{i}}, 1 \leq i \leq k$ with positive integers n_{i}. By Proposition 2.24, there exist $h_{1}, \ldots, h_{k} \in M$ such that $\alpha_{1} h_{1}, \alpha_{2} h_{2}, \ldots, \alpha_{k} h_{k}$, are distinct. Take $\alpha=$ $\alpha_{1} h_{1}+\alpha_{2} h_{2}+\cdots+\alpha_{k} h_{k}$. Then for some $0 \neq \beta \in R * M$ we have $\alpha \beta=0$. By Theorem 2.27, right duo rings are right skew M-McCoy, so there exists $0 \neq c \in R$ such that $a_{i j} c=0,1 \leq i \leq k, 1 \leq j \leq n_{i}$, as R is M-compatible. Since R is strongly right $A B$, there exists an ideal J such that $a_{i j} J=0$. For each $0 \neq d \in J$, we have $a_{i j} R d=0,1 \leq i \leq k, 1 \leq j \leq n_{i}$. Thus we have $X_{0}(R * M) d=0$, by M-compatibility of R. So $0 \neq(R * M) d(R * M) \subseteq r_{R * M}\left(X_{0}\right)$ and hence $R * M$ is strongly right $A B$.

Corollary 2.39. Let R be a right duo ring and let σ_{i} be a compatible automorphism of R with $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ for each i, j. Let S be either $R\left[x_{1}, \ldots, x_{n} ; \sigma_{1}, \ldots\right.$, $\left.\sigma_{n}\right]$ or $R\left[x_{1}, \ldots, x_{n}, x_{1}^{-1}, \ldots, x_{n}^{-1} ; \sigma_{1}, \ldots, \sigma_{n}\right]$. If S has right IFP, then S is strongly right $A B$.

Faith [15] called a ring R right zip provided that if the right annihilator $r_{R}(X)$ of a subset X of R is zero, then there exists a finite subset $Y \subseteq X$ such that $r_{R}(Y)=0$. The concept of zip rings was initiated by Zelmanowitz [50] and appeared in various papers. Zelmanowitz stated that any ring satisfying the descending chain condition on right annihilators is a right zip ring, but the converse does not hold. Extensions of zip rings were studied by several
authors. Beachy and Blair [4] showed that if R is a commutative zip ring, then the polynomial ring $R[x]$ over R is a zip ring. In [47, Theorem 2.4], Singh and et al., show that, R is right zip if and only if $R * M$ is right zip.

Proposition 2.40. Let R be a right skew $M-M c C o y$ ring, let M be a u.p.monoid with $|M| \geq 2$ and let $\sigma: M \rightarrow \operatorname{End}(R)$ be a monoid homomorphism such that the ring R is M-compatible. If R is strongly right $A B$ and $R * M$ is right zip, then $R * M$ is strongly right $A B$.

Proof. Let $r_{R * M}(X) \neq 0$, where $X \subseteq R * M$. Assume, on the contrary, that $r_{R * M}(X(R * M))=0$. Since $R * M$ is right zip there exists a finite subset $X_{0}=$ $\left\{\alpha_{1} \gamma_{1}, \alpha_{2} \gamma_{2}, \ldots, \alpha_{k} \gamma_{k}\right\} \subseteq X(R * M)$, where $\alpha_{i}=a_{i 1} g_{i 1}+a_{i 2} g_{i 2}+\cdots+a_{i n_{i}} g_{i n_{i}} \in$ $X, \gamma_{i} \in R * M, 1 \leq i \leq k$, such that $r_{R * M}\left(X_{0}\right)=0$. Since $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\} \subseteq X$, we have $0 \neq r_{R * M}(X) \subseteq r_{R * M}\left(\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}\right)$. So $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\} \beta=0$ for some $0 \neq \beta \in R * M$. By Proposition 2.24, there exist $h_{1}, \ldots, h_{k} \in M$ such that $\alpha_{1} h_{1}, \alpha_{2} h_{2}, \ldots, \alpha_{k} h_{k}$ are distinct. Put $\alpha=\alpha_{1} h_{1}+\alpha_{2} h_{2}+\cdots+\alpha_{k} h_{k}$. Since $\alpha_{i} \beta=0$ for every $1 \leq i \leq k$, we have $\alpha \beta=0$. Since R is right skew M-McCoy, there exists $0 \neq c \in R$ such that $\alpha c=0$. Therefore $a_{i j} c=0,1 \leq i \leq k$, $1 \leq j \leq n_{i}$, as R is M-compatible. Since R is strongly right $A B$, there exists an ideal J such that $a_{i j} J=0$ for every i, j. For every $0 \neq d \in J, a_{i j} R d=0$, $1 \leq i \leq k, 0 \leq j \leq n_{i}$. Since R is M-compatible, $\alpha_{i}(R * M) d=0$. But this is a contradiction as we assumed $r_{R * M}\left(X_{0}\right)=0$.

Corollary 2.41. Let R be a skew $M c C o y$, right zip and strongly right $A B$ ring and let σ_{i} be a compatible endomorphism of R with $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ for each i, j. Then the rings $R\left[x_{1}, \ldots, x_{n} ; \sigma_{1}, \ldots, \sigma_{n}\right]$ and $R\left[x_{1}, \ldots, x_{n}, x_{1}^{-1}, \ldots, x_{n}^{-1} ; \sigma_{1}, \ldots\right.$, $\left.\sigma_{n}\right]$ are strongly right $A B$.

Corollary 2.42. Let R be a right $M c C o y$, right zip and strongly right $A B$ ring. Then the rings $R\left[x_{1}, \ldots, x_{n}\right]$ and $R\left[x_{1}, \ldots, x_{n}, x_{1}^{-1}, \ldots, x_{n}^{-1}\right]$ are strongly right $A B$.

By Proposition 2.35, a ring R is strongly right (resp. left) $A B$ if and only if $T(R, n, \sigma)$ is strongly right (resp. left) $A B$ for any $n \geq 2$. Now we provide more examples of noncommutative zip rings.

Proposition 2.43. Let R be a commutative ring with an endomorphisms σ and let $n \geq 2$. Then R is a zip ring if and only if $T(R, n, \sigma)$ is a zip ring.
Proof. Assume that R is a zip ring and $X \subseteq T(R, n, \sigma)$ with $r_{T(R, n, \sigma)}(X)=0$. Let Y be the set of all elements in R, which occur as main diagonal entries of elements in X. If $Y=0$, then $r_{T(R, n, \sigma)}(X)$ contains $E_{1 n}$ which contradicts to our assumption. So $Y \neq 0$. We then have $r_{R}(Y)=0$, as $a \in r_{R}(Y)$ implies $Y a E_{1 n}=0$. Since R is right zip, there exists a finite subset $Y_{0}=$ $\left\{r_{1}, r_{2}, \ldots, r_{n}\right\} \subseteq Y$, such that $r_{R}\left(Y_{0}\right)=0$. For each $1 \leq i \leq n$, put U_{i} to be the set of matrices whose main diagonal entries are r_{i}. Take $A_{i} \in U_{i}, 1 \leq i \leq n$. Clearly $U=\left\{A_{1}, \ldots, A_{n}\right\}, r_{T(R, n, \sigma)}(U)=0$. So $T(R, n, \sigma)$ is right zip. For the

Converse we adopt the proof of [25, Proposition 3]. Suppose that $T(R, n, \sigma)$ is a right zip ring and $X \subseteq R$ with $r_{R}(X)=0$. Let $Y=\{a I \mid a \in X\} \subseteq T(R, n, \sigma)$, where I is the $n \times n$ identity matrix. If $B=\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in r_{T(R, n, \sigma)}(Y)$, then $a I . B=0$ for all $a \in X$. Thus $a b_{j}=0$ for all j. Therefore $b_{j} \in r_{R}(X)=0$ and so $b_{j}=0$ for all j. Since $T(R, n, \sigma)$ is right zip, there exists a finite subset $Y_{0}=\left\{a_{1} I, a_{2} I, \ldots, a_{m} I\right\} \subseteq Y$ such that $r_{T(R, n, \sigma)}\left(Y_{0}\right)=0$. Let $X_{0}=$ $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\} \subseteq X$. If $b \in r_{R}\left(X_{0}\right)$, then $a_{k} I(0,0, \ldots, 0, b)=0$ for all $k=$ $1,2, \ldots, m$. Thus, $(0,0, \ldots, 0, b) \in r_{R}\left(Y_{0}\right)=0$, so $b=0$. Hence $r_{R}\left(X_{0}\right)=0$ and therefore R is right zip. Moreover, R is zip because R is commutative.

By Proposition 2.35, a ring R is strongly right (resp. left) $A B$ if and only if $T(R, n, \sigma)$ is strongly right (resp. left) $A B$ for any $n \geq 2$. Also by Proposition 2.43, for each commutative ring R with an endomorphisms σ and for $n \geq 2$, R is a zip ring if and only if $T(R, n, \sigma)$ is a zip ring. We can provide more examples of strongly right $A B$ rings.

Example 2.44. For any commutative domain R with endomorphisms σ, α such that $\sigma \alpha=\alpha \sigma$, the ring $T(R, n, \sigma)$ is $\bar{\alpha}$-compatible and skew McCoy, by [20, Theorem 2.8 and Corollary 2.5]. Since R is zip and strongly right $A B$, $T(R, n, \sigma)$ is zip and strongly right $A B$. So the ring $T(R, n, \sigma)[x, \bar{\alpha}]$ is also strongly right $A B$.

Theorem 2.45. Let R be a skew M-Armendariz ring, let M be a u.p.-monoid and let $\sigma: M \rightarrow \operatorname{End}(R)$ be a monoid homomorphism such that the ring R is M-compatible. Then R is nil-reversible if and only if $R * M$ is nil-reversible.

Proof. Let R be nil-reversible. Let $\alpha=\sum_{i=0}^{n} a_{i} g_{i} \in R * M$ and $\beta=\sum_{j=0}^{m} b_{j} h_{j} \in$ $\operatorname{nil}(R * M)$ with $\alpha \beta=0$. By Lemma 2.5 , each $b_{j} \in \operatorname{nil}(R), 0 \leq j \leq m$, as R is 2-primal. Since R is skew M-Armendariz and M-compatible, $a_{i} b_{j}=0$ for every $0 \leq i \leq n, 0 \leq j \leq m$. Therefore $b_{j} \sigma_{h_{j}}\left(a_{i}\right)=0$, since R is nil-reversible and R is M-compatible. Consequently we have $\beta \alpha=0$. So $R * M$ is nil-reversible.

Corollary 2.46. Let R be a σ_{i}-skew Armendariz ring and let σ_{i} be a compatible endomorphism of R for each i. Assume that $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ for each i, j. Then R is nil-reversible if and only if the ring $R\left[x_{1}, x_{2}, \ldots, x_{n} ; \sigma_{1}, \ldots, \sigma_{n}\right]$ is nilreversible if and only if the ring $R\left[x_{1}, x_{2}, \ldots, x_{n}, x_{1}^{-1}, \ldots, x_{n}^{-1}, \sigma_{1}, \ldots, \sigma_{n}\right]$ is nil-reversible.
Corollary 2.47. Let R be an Armendariz ring. Then R is nil-reversible if and only if the ring $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is nil-reversible if and only if the ring $R\left[x_{1}, x_{2}, \ldots, x_{n}, x_{1}^{-1}, \ldots, x_{n}^{-1}\right]$ is nil-reversible.

3. Rings with Property (A)

Huckaba and Keller [29] introduced the following: a commutative ring R has Property (A) if every finitely generated ideal of R consisting entirely of zero-divisors has a nonzero annihilator. Property (A) was originally studied by

Quentel [45]. Quentel used the term Condition (C) for Property (A). The class of commutative rings with Property (A) is quite large. For example, Noetherian rings ([32], p. 56), rings whose prime ideals are maximal [22], the polynomial ring $R[x]$ and rings whose classical ring of quotients are von Neumann regular [22], are examples of rings with Property (A). Using Property (A), Hinkle and Huckaba [23] extend the concept Kronecker function rings from integral domains to rings with zero divisors. Many authors have studied commutative rings with Property (A), and have obtained several results which are useful studying commutative rings with zero-divisors. C. Y. Hong, N. K. Kim, Y. Lee and S. J. Ryu [27] extended the notion of Property (A) to noncommutative rings:

Definition 3.1 ([27]). A ring R has right (left) Property (A) if for every finitely generated two-sided ideal $I \subseteq Z_{l}(R)$ (resp. $Z_{r}(R)$), there exists nonzero $a \in R$ (resp. $b \in R$) such that $I a=0$ (resp. $b I=0$). A ring R is said to have Property (A) if R has the right and left Property (A).

According to [41], a ring R with a monomorphism α is called α-weakly rigid if for each $a, b \in R, a R b=0$ if and only if $a \alpha(R b)=0$. For any positive integer n, a ring R is α-weakly rigid if and only if, the n-by- n upper triangular matrix $\operatorname{ring} T_{n}(R)$ is $\bar{\alpha}$-weakly rigid if and only if, the matrix ring $M_{n}(R)$ is $\bar{\alpha}$-weakly rigid, where $\bar{\alpha}\left(\left(a_{i j}\right)\right)=\left(\alpha\left(a_{i j}\right)\right)$ for each $\left(a_{i j}\right) \in M_{n}(R)$. Also if R is a semiprime α-weakly rigid ring, then the polynomial ring $R[x]$ is a semiprime $\bar{\alpha}$ weakly rigid ring, where $\bar{\alpha}\left(\sum_{i=0}^{n} r_{i} x^{i}\right)=\sum_{i=0}^{n} \alpha\left(r_{i}\right) x^{i}$. For every prime ring R and any automorphism α, the rings $M_{n}(R), T_{n}(R), R[X]$ and the power series ring $R[[X]]$, for X an arbitrary nonempty set of indeterminates, are weakly rigid rings.

Definition 3.2. Let R be a ring, let M be a monoid and let $\sigma: M \rightarrow \operatorname{End}(R)$ be a monoid homomorphism. We say R is M-weakly rigid if σ_{g} is weakly rigid for every $g \in M$.

Lemma 3.3. Let R be a ring, let M be a monoid and let $\sigma: M \rightarrow \operatorname{End}(R)$ be a monoid homomorphism such that the ring R is M-weakly rigid. Then for every $a, b \in R$ and $g_{i}, g_{j} \in M, a R b=0$ if and only if $\sigma_{g_{i}}(a) R \sigma_{g_{j}}(b)=0$.

Proof. Suppose that $a R b=0$, so $\sigma_{g_{i}}(a R b)=0$, and hence $\sigma_{g_{i}}(a) \sigma_{g_{i}}(R b)=0$. Since R is M-weakly rigid, $\sigma_{g_{i}}(a) R b=0$. So for each $r \in R, \sigma_{g_{i}}(a) r R b=0$, and hence $\sigma_{g_{i}}(a) r \sigma_{g_{j}}(R b)=0$. Thus $\sigma_{g_{i}}(a) r \sigma_{g_{j}}(b)=0$, and for each i, j, $\sigma_{g_{i}}(a) R \sigma_{g_{j}}(b)=0$. Now assume that $\sigma_{g_{i}}(a) R \sigma_{g_{j}}(b)=0$, for each i, j. Since R is M-weakly rigid, $\sigma_{g_{i}}(a) \sigma_{g_{i}}\left(R \sigma_{g_{j}}(b)\right)=0$, so $\sigma_{g_{i}}\left(a R\left(\sigma_{g_{j}}(b)\right)=0\right.$. Since $\sigma_{g_{j}}$ is injective, $a R \sigma_{g_{j}}(b)=0$. This implies that $a R b=0$, as R is M-weakly rigid.

Hirano in [24, Theorem 2.2], proved that, when $r_{R[x]}(f(x) R[x]) \neq 0$ then $r_{R[x]}(f(x) R[x]) \cap R \neq 0$ for $f(x) \in R[x]$.

Proposition 3.4. Let R be a ring, let M be a u.p.-monoid and let $\sigma: M \rightarrow$ $\operatorname{End}(R)$ be a monoid homomorphism such that the ring R is M-weakly rigid. For $\alpha \in S=R * M$, if $r_{S}(\alpha S) \neq 0$, then $r_{S}(\alpha S) \cap R \neq 0$.
Proof. We apply the method of Hirano in the proof of [24, Theorem 2.2]. Let $\alpha=a_{1} g_{1}+a_{2} g_{2}+\cdots+a_{n} g_{n}$. When $\alpha=0$ or length $(\alpha)=1$, then the assertion is clear. So, let length $(\alpha)=n, n>1$. Assume, to the contrary, that $r_{R}(\alpha S)=$ 0 and let $\beta=b_{1} h_{1}+b_{2} h_{2}+\cdots+b_{m} h_{m} \in S$ be a nonzero element with minimal length in $r_{S}(\alpha S)$. Since $\alpha S \beta=0, \alpha R \beta=0$. Since M is a u.p.-monoid, there exist i, j with $1 \leq i \leq n$ and $1 \leq j \leq m$ such that $g_{i} h_{j}$ is uniquely presented by considering two subsets $A=\left\{g_{1}, \ldots, g_{n}\right\}$ and $B=\left\{h_{1}, \ldots, h_{m}\right\}$ of M. We may assume, without loss of generality, that $i=n, j=m$. Then $a_{n} \sigma_{g_{n}}\left(R b_{m}\right)=0$, as $g_{n} h_{m}$ is uniquely presented. Since R is M-weakly rigid, $a_{n} R b_{m}=0$. This implies

$$
a_{n} S \beta=a_{n} S\left(b_{m-1} h_{m-1}+\cdots+b_{1} h_{1}\right)
$$

and

$$
0=\alpha S \beta \supseteq \alpha S\left(a_{n} S \beta\right)=\alpha S\left(a_{n} S\left(b_{m-1} g_{m-1}+\cdots+b_{1} g_{1}\right)\right)
$$

So $a_{n} R\left(b_{m-1} g_{m-1}+\cdots+b_{1} h_{1}\right) \subseteq r_{S}(\alpha S)$. Now take $\bar{\beta}$ to be $a_{n} R \beta$. Since length $(\bar{\beta})=n-1$, and $\alpha S \bar{\beta}=0$ this contradicts with the assumption that β has minimal length such that $\alpha S \beta=0$. Thus $\bar{\beta}=0$ and we have $a_{n} S\left(b_{m-1} h_{m-1}+\right.$ $\left.\cdots+b_{1} h_{1}\right)=0$. Therefore $a_{n} R b_{j}=0,1 \leq j \leq m$. Hence $\left(a_{n-1} g_{n-1}+\cdots+\right.$ $\left.a_{1} g_{1}\right) S\left(b_{m} h_{m}+\cdots+b_{1} h_{1}\right)=0$. Since M is a u.p.-monoid there exist i, j with $1 \leq i \leq n-1$ and $1 \leq j \leq m$ such that $g_{i} h_{j}$ is uniquely presented by considering two subsets $A=\left\{g_{1}, \ldots, g_{n-1}\right\}$ and $B=\left\{h_{1}, \ldots, h_{m}\right\}$ of M. We may assume without loss of generality that $i=n-1, j=m$, and so $a_{n-1} \sigma_{g_{n-1}}\left(R b_{m}\right)=0$. Thus we have $\alpha S\left(a_{n-1} S\left(b_{m-1} h_{m-1}+\cdots+b_{1} h_{1}\right)\right)=$ $\alpha\left(S a_{n-1} S\right) \beta=0$. Since β is a nonzero element with minimal length in $r_{S}(\alpha S)$, we have $a_{n-1} S\left(b_{m-1} h_{m-1}+\cdots+b_{1} h_{1}\right)=0$. Therefore $a_{n-1} R b_{j}=0,1 \leq$ $j \leq m$. Repeating this process, we have $a_{i} R b_{j}=0$ for all i, j. So $a_{i} g_{i} R b_{j}=0$ and $a_{i} R l_{k} b_{j}=0, g_{i}, l_{k} \in M$, since R is M-weakly rigid. This implies that $b_{1}, \ldots, b_{m} \in r_{R}(\alpha S)$. This is also a contradiction and hence the result follows.

Corollary 3.5. Let R be a ring and let σ_{i} be a weakly rigid endomorphism of R such that $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ for each i, j. Assume that S is either the skew polynomial ring $R\left[x_{1}, \ldots, x_{n} ; \sigma_{1}, \ldots, \sigma_{n}\right]$ or the skew Laurent polynomial ring $R\left[x_{1}, \ldots, x_{n}, x_{1}^{-1}, \ldots, x_{n}^{-1}, \sigma_{1}, \ldots, \sigma_{n}\right]$. If $r_{S}(f S) \neq 0$, then $r_{S}(f S) \cap R \neq 0$ for each $f \in S$.

Proposition 3.6. Let R be a ring, let M be a u.p.-monoid with $|M| \geq 2$ and let $\sigma: M \rightarrow \operatorname{End}(R)$ be a monoid homomorphism such that the ring R is M weakly rigid. Then $S=R * M$ has right Property (A) if and only if whenever $\alpha S \subseteq Z_{l}(S), r_{S}(\alpha S) \neq 0$.

Proof. We adopt the proof of [27, Lemma 2.8]. Let $I=\sum_{i=1}^{k} S \alpha_{i} S \subseteq Z_{l}(S)$, where $\alpha_{i}=a_{i 1} g_{i 1}+a_{i 2} g_{i 2}+\cdots+a_{i n_{i}} g_{i n_{i}}$. By Proposition 2.24, there exist $l_{1}, \ldots, l_{k} \in M$ such that $\alpha_{1} l_{1}, \alpha_{2} l_{2}, \ldots, \alpha_{k} l_{k}$ are distinct. Put $\beta=\alpha_{1} l_{1}+$ $\alpha_{2} l_{2}+\cdots+\alpha_{k} l_{k} \in I$. Thus $\beta S \subseteq I$. By hypothesis, $r_{S}(\beta S)=r_{S}(S \beta S) \neq 0$. So $r_{S}(S \beta S) \cap R \neq 0$, by Theorem 3.4. Thus for some nonzero $r \in R, S \beta S r=0$. Since $R \beta R \subseteq S \beta S$ and R is M-weakly rigid, we have $R a_{i j} R r=0$. Thus $R t_{k} a_{i j} g_{j} R h_{m} r=0$ for $t_{k}, g_{j}, h_{m} \in M$. So $\operatorname{Ir}=\left(\sum_{i=1}^{k} S \alpha_{i} S\right) r=0$. Therefore S has right Property (A). The converse is clear.

Corollary 3.7. Let R be a ring and let σ_{i} be a weakly rigid endomorphism of the ring R such that $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ for each i, j. Assume that S is the ring $R\left[x_{1}, x_{2}, \ldots, x_{n} ; \sigma_{1}, \ldots, \sigma_{n}\right]$ or $R\left[x_{1}, x_{2}, \ldots, x_{n}, x_{1}^{-1}, \ldots, x_{n}^{-1} ; \sigma_{1}, \ldots, \sigma_{n}\right]$. Then S has right Property (A) if and only if whenever $f S \subseteq Z_{l}(S), r_{S}(f S) \neq 0$ for each $f \in S$.

Corollary 3.8 ([27, Lemma 2.8]). For a ring $R, R[x]$ has right Property (A) if and only if whenever $f(x) R[x] \subseteq Z_{l}(R[x]), r_{R[x]}(f(x) R[x]) \neq 0$.

There exists a ring R which does not have $\operatorname{Property}(A)$ whose the polynomial ring $R[x]$ has Property (A). For, the polynomial ring $R[x]$ over any commutative ring R has Property (A) [29, Theorem 1], and there is a commutative ring R which does not have Property (A).
Theorem 3.9. Let R be a ring, let M be a u.p.-monoid and let $\sigma: M \rightarrow$ $\operatorname{End}(R)$ be a monoid homomorphism such that the ring R is M-compatible. If R is strongly right $A B$ and right skew $M-M c C o y$, then $R * M$ has right Property (A).

Proof. Put $S=R * M$ and let $X=\alpha S \subseteq Z_{l}(S)$, where $\alpha=a_{0} g_{0}+a_{1} g_{1}+$ $\cdots+a_{n} g_{n}$. By hypothesis, there exists $\beta \in R * M$ such that $\alpha \beta=0$. Since R is M-compatible and right skew M-McCoy, there exists $0 \neq c \in R$ such that $a_{i} c=0$ for each i. Since R is strongly right $A B$, there exists an ideal J such that $a_{i} J=0$ for each i. So for every $0 \neq d \in J, a_{i} R d=0$ for each i. Since R is M-compatible, we have $\alpha S d=0$. This implies that $R * M$ has right Property (A), by Proposition 3.6.

Corollary 3.10. Let R be a strongly right $A B$, skew $M c C o y$ ring and let σ_{i} be a compatible endomorphism of R for each $1 \leq i \leq n$. Assume that $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ for each $1 \leq i, j \leq n$. Then the rings $R\left[x_{1}, x_{2}, \ldots, x_{n} ; \sigma_{1}, \ldots, \sigma_{n}\right]$ and $R\left[x_{1}, x_{2}, \ldots, x_{n}, x_{1}^{-1}, \ldots, x_{n}^{-1}, \sigma_{1}, \ldots, \sigma_{n}\right]$ have right Property (A).
Corollary 3.11. Let R be a right duo ring, let M be a u.p.-group and let σ : $M \rightarrow \operatorname{Aut}(R)$ be a group homomorphism such that the ring R is M-compatible. Then $R * M$ has right Property (A).

Proof. It is clear that the right duo ring R is strongly right $A B$. Moreover, R is right skew M-McCoy by Theorem 2.27. So the result follows from Theorem 3.9 .

Corollary 3.12. Let R be a right duo ring and let σ_{i} be a compatible endomorphism of R such that $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ for each $1 \leq i, j \leq n$. Then the rings $R\left[x_{1}, x_{2}, \ldots, x_{n} ; \sigma_{1}, \ldots, \sigma_{n}\right]$ and $R\left[x_{1}, x_{2}, \ldots, x_{n}, x_{1}^{-1}, \ldots, x_{n}^{-1}, \sigma_{1}, \ldots, \sigma_{n}\right]$ have right Property (A).
Corollary 3.13. If R is a right duo ring, then the rings $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $R\left[x_{1}, x_{2}, \ldots, x_{n}, x_{1}^{-1}, \ldots, x_{n}^{-1}\right]$ have right Property (A).
Corollary 3.14. Let R be a $C N$-ring and let σ_{i} be a compatible endomorphism of R such that $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ for each i, j. Then the rings $R\left[x_{1}, x_{2}, \ldots, x_{n} ; \sigma_{1}, \ldots\right.$, $\left.\sigma_{n}\right]$ and $R\left[x_{1}, x_{2}, \ldots, x_{n}, x_{1}^{-1}, \ldots, x_{n}^{-1}, \sigma_{1}, \ldots, \sigma_{n}\right]$ have right Property (A).
Corollary 3.15. Let R be a semicommutative and right skew $M-M c C o y$ ring, let M be a u.p.-monoid and let $\sigma: M \rightarrow \operatorname{End}(R)$ be a monoid homomorphism such that the ring R is M-compatible. Then $R * M$ has right Property (A).
Corollary 3.16. Let R be a semicommutative skew McCoy ring and let σ_{i} be a compatible endomorphism of R with $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ for each i, j. Then the rings $R\left[x_{1}, x_{2}, \ldots, x_{n} ; \sigma_{1}, \ldots, \sigma_{n}\right]$ and $R\left[x_{1}, x_{2}, \ldots, x_{n}, x_{1}^{-1}, \ldots, x_{n}^{-1}, \sigma_{1}, \ldots, \sigma_{n}\right]$ have right Property (A).
Corollary 3.17. If R is a semicommutative right McCoy ring, then the rings $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $R\left[x_{1}, x_{2}, \ldots, x_{n}, x_{1}^{-1}, \ldots, x_{n}^{-1}\right]$ have right Property (A).
Corollary 3.18 ([27, Proposition 2.10]). If R is a semicommutative and right $M c$ Coy ring, then $R[x]$ has right Property (A).
Corollary 3.19. Let R be a reversible ring, let M be a u.p.-monoid and let $\sigma: M \rightarrow \operatorname{End}(R)$ be a monoid homomorphism such that R is M-compatible. Then $R * M$ has right Property (A).
Corollary 3.20. Let R be a reversible ring and let σ_{i} be a compatible endomorphism of R such that $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ for each $1 \leq i, j \leq n$. Then the rings $R\left[x_{1}, x_{2}, \ldots, x_{n} ; \sigma_{1}, \ldots, \sigma_{n}\right]$ and $R\left[x_{1}, x_{2}, \ldots, x_{n}, x_{1}^{-1}, \ldots, x_{n}^{-1}, \sigma_{1}, \ldots, \sigma_{n}\right]$ have right Property (A).
Corollary 3.21 ([27, Corollary 2.11]). If R is a reversible ring, then $R[x]$ has right Property (A).
Theorem 3.22. Let R be a ring, let M be a u.p.-monoid and let $\sigma: M \rightarrow$ $\operatorname{Aut}(R)$ be a monoid homomorphism such that the ring R is M-compatible. If $R * M$ is strongly right $A B$, then $R * M$ has right Property (A).
Proof. Let $X=\alpha S \subseteq Z_{l}(S)$, where $\alpha=a_{0} g_{0}+a_{1} g_{1}+\cdots+a_{n} g_{n}$. By hypothesis, there exists $\beta \in R * M$ such that $\alpha \beta=0$. Since R is M-compatible and right skew M-McCoy, there exists $0 \neq c \in R$ such that $a_{i} c=0$ for each i. Since $R * M$ is strongly right $A B$, by $2.30, R$ is strongly right $A B$, so there exists an ideal J such that $a_{i} J=0$. So for every $0 \neq d \in J, a_{i} R d=0$ for each i. Since R is M-compatible, we have $\alpha S d=0$. This implies that $R * M$ has right Property (A), by Proposition 3.6.

Corollary 3.23. Let S be either the ring $R\left[x_{1}, x_{2}, \ldots, x_{n} ; \sigma_{1}, \ldots, \sigma_{n}\right]$ or the ring $R\left[x_{1}, x_{2}, \ldots, x_{n}, x_{1}^{-1}, \ldots, x_{n}^{-1}, \sigma_{1}, \ldots, \sigma_{n}\right]$ with $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ for each $1 \leq$ $i, j \leq n$. Assume that S is a strongly right $A B$ ring and σ_{i} is a compatible automorphism of $R, 1 \leq i \leq n$. Then S has right Property (A).

Corollary 3.24. If either $R[x]$ or $R\left[x, x^{-1}\right]$ is a strongly right $A B$ ring, then $R[x]$ and $R\left[x, x^{-1}\right]$ have right Property (A).

References

[1] D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272.
[2] E. P. Armendariz, A note on extensions of Baer and p.p.-rings, J. Austral. Math. Soc. 18 (1974), 470-473.
[3] F. Azarpanah, O. A. S. Karamzadeh, and A. Rezai Aliabad, On ideals consisting entirely of zero divisors, Comm. Algebra 28 (2000), no. 2, 1061-1073.
[4] J. A. Beachy and W. D. Blair, Rings whose faithful left ideals are cofaithful, Pacific J. Math. 58 (1975), no. 1, 1-13.
[5] H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368.
[6] G. F. Birkenmeier and J. K. Park, Triangular matrix representations of ring extensions, J. Algebra 265 (2003), no. 2, 457-477.
[7] G. F. Birkenmeier and R. P. Tucci, Homomorphic images and the singular ideal of a strongly right bounded ring, Comm. Algebra 16 (1988), no. 6, 1099-1122.
[8] V. Camillo and P. P. Nielsen, McCoy rings and zero-divisors, J. Pure Appl. Algebra 212 (2008), no. 3, 599-615.
[9] J. Clark, Y. Hirano, H. K. Kim, and Y. Lee, On a generalized finite intersection property, Comm. Algebra 40 (2012), no. 6, 2151-2160.
[10] P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641-648.
[11] L. M. de Narbonne, Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents, In Proceedings of the 106th National Congress of Learned Societies, 71-73, Bibliotheque Nationale, Paris, 1982.
[12] M. P. Drazin, Rings with central idempotent or nilpotent elements, Proc. Edinburgh Math. Soc. 9 (1958), no. 2, 157-165.
[13] C. Faith, Algebra II, Springer-Verlag, Berlin., 1976.
[14] \qquad , Commutative FPF rings arising as split-null extensions, Proc. Amer. Math. Soc. 90 (1984), no. 2, 181-185.
[15] _, Rings with zero intersection property on annihilator: zip rings, Publ. Math. $\mathbf{3 3}$ (1989), no. 2, 329-338.
[16] _, Annihilator ideals, associated primes and Kasch-McCoy commutative rings, Comm. Algebra 19 (1991), no. 7, 1867-1892.
[17] S. P. Farbman, The unique product property of groups and their amalgamated free products, J. Algebra 178 (1995), no. 3, 962-990.
[18] E. H. Feller, Properties of primary noncommutative rings, Trans. Amer. Math. Soc. Publ. Math. 89 (1958), 79-91.
[19] M. Habibi and R. Manaviyat, A generalization of nil-Armendariz rings, J. Algebra Appl. 12 (2013), no. 6, 1350001, 30 pages.
[20] M. Habibi, A. Moussavi, and A. Alhevaz, The McCoy condition on ore extensions, Comm. Algebra 41 (2013), no. 1, 124-141.
[21] E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar. 3 (2005), no. 3, 207-224.
[22] M. Henriksen and M. Jerison, The space of minimal prime ideals of a commutative ring, Trans. Amer. Math. Soc. 115 (1965), 110-130.
[23] G. Hinkle and J. A. Huckaba, The generalized Kronecker function ring and the ring $R(X)$, J. Reine Angew. Math. 292 (1977), 25-36.
[24] Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168 (2002), no. 1, 45-52.
[25] C. Y. Hong, N. K. Kim, T. K. Kwak, and Y. Lee, Extensions of zip rings, J. Pure Appl. Algebra 195 (2005), no. 3, 231-242.
[26] C. Y. Hong, N. K. Kim, and Y. Lee, Extensions of McCoy's Theorem, Glasg. Math. J. 52 (2010), no. 1, 155-159.
[27] C. Y. Hong, N. K. Kim, Y. Lee, and S. J. Ryu, Rings with Property (A) and their extensions, J. Algebra 315 (2007), no. 2, 612-628.
[28] J. A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker Inc., New York, 1988.
[29] J. A. Huckaba and J. M. Keller, Annihilation of ideals in commutative rings, Pacific J. Math. 83 (1979), no. 2, 375-379.
[30] S. U. Hwang, N. K. Kim, and Y. Lee, On rings whose right annihilator are bounded, Glasg. Math. J. 51 (2009), no. 3, 539-559.
[31] N. Jacobson, The Theory of Rings, Amer. Math. Soc., Providence, RI, 1943.
[32] I. Kaplansky, Commutative Rings, Allyn and Bacon, Boston, 1970.
[33] D. Khurana, G. Marks, and K. Srivastava, On unit-central rings, Advances in ring theory, 205-212, Trends Math., Birkhäuser/Springer Basel AG, Basel, 2010.
[34] J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289-300.
[35] T. K. Lee and Y. Zhou, A unified approach to the Armendariz property of polynomial rings and power series rings, Colloq. Math. 113 (2008), no. 1, 151-169.
[36] T. G. Lucas, Two annihilator conditions: Property (A) and (a.c.), Comm. Algebra 14 (1986), no. 3, 557-580.
[37] G. Marks, Reversible and symmetric rings J. Pure Appl. Algebra 174 (2002), no. 3, 311-318.
[38] G. Marks, R. Mazurek, and M. Zimbowski, A unified approach to various generalization of Armendariz rings Bull. Aust. Math. Soc. 81 (2010), no. 3, 361-397.
[39] R. Mohammadi, A. Moussavi, and M. Zahiti, On nil-semicommutative rings, Int. Electron. J. Algebra 11 (2012), 20-37.
[40] A. Moussavi and E. Hashemi, On (α, δ)-skew Armendariz rings, J. Korean Math. Soc. 42 (2005), no. 2, 353-363.
[41] A. R. Nasr-Isfahani and A. Moussavi, On weakly rigid rings, Glasg. Math. J. 51 (2009), no. 3, 425-440.
[42] P. P. Nielsen,Semi-commutativity and the McCoy condition, J. Algebra 298 (2006), no. 1, 134-141.
[43] J. Okninski, Semigroup Algebras, Marcel Dekker, New York, 1991.
[44] L. Ouyang, On weak annihilator ideals of skew monoid rings, Comm. Algebra 39 (2011), no. 11, 4259-4272.
[45] Y. Quentel, Sur la compacité du spectre minimal d'un anneau, Bull. Soc. Math. France 99 (1971), 265-272.
[46] M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17.
[47] A. B. Singh, M. R. Khan, and V. N. Dixit, Skew monoid rings over zip rings, Int. J. Algebra 4 (2010), no. 21-24, 1031-1036.
[48] W. Xue, On strongly right bounded finite rings, Bull. Austral. Math. Soc. 44 (1991), no. 3, 353-355.
[49] __ Structure of minimal noncommutative duo rings and minimal strongly bounded non-duo rings, Comm. Algebra 20 (1992), no. 9, 2777-2788.
[50] J. M. Zelmanowitz, The finite intersection property on annihilator right ideals, Proc. Amer. Math. Soc. 57 (1976), no. 2, 213-216.

Rasul Mohammadi
Department of Pure Mathematics
Faculty of Mathematical Sciences
Tarbiat Modares University
P.O.Box:14115-134, Tehran, Iran

E-mail address: mohamadi.rasul@yahoo.com
Ahmad Moussavi
Department of Pure Mathematics
Faculty of Mathematical Sciences
Tarbiat Modares University
P.O.Box:14115-134, Tehran, Iran

E-mail address: moussavi.a@modares.ac.ir, moussavi.a@gmail.com
Masoome Zahiri
Department of Pure Mathematics
Faculty of Mathematical Sciences
Tarbiat Modares University
P.O.Box:14115-134, Tehran, Iran

E-mail address: m.zahiri86@gmail.com

