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ON ANNIHILATIONS OF IDEALS

IN SKEW MONOID RINGS

Rasul Mohammadi, Ahmad Moussavi, and Masoome Zahiri

Abstract. According to Jacobson [31], a right ideal is bounded if it con-
tains a non-zero ideal, and Faith [15] called a ring strongly right bounded
if every non-zero right ideal is bounded. From [30], a ring is strongly
right AB if every non-zero right annihilator is bounded. In this paper,
we introduce and investigate a particular class of McCoy rings which sat-
isfy Property (A) and the conditions asked by Nielsen [42]. It is shown
that for a u.p.-monoid M and σ : M → End(R) a compatible monoid
homomorphism, if R is reversible, then the skew monoid ring R ∗ M is
strongly right AB. If R is a strongly right AB ring, M is a u.p.-monoid
and σ : M → End(R) is a weakly rigid monoid homomorphism, then the
skew monoid ring R ∗M has right Property (A).

1. Introduction

Throughout this article, all rings are associative with identity. Recall that
a monoid M is called a u.p.-monoid (unique product monoid) if for any two
nonempty finite subsets A,B ⊆ M there exists an element g ∈ M uniquely
presented in the form ab where a ∈ A and b ∈ B. Unique product monoids
and groups play an important role in ring theory, for example providing a
positive case in the zero-divisor problem for group rings (see also [6]), and
their structural properties have been extensively studied (see [17]). The class
of u.p.-monoids includes the right and the left totally ordered monoids, sub-
monoids of a free group, and torsionfree nilpotent groups. Every u.p.-monoid
S is cancellative and has no non-unity element of finite order.

Let R be a ring, let M be a monoid and let σ : M → End(R) a monoid
homomorphism. For any g ∈ M, we denote the image of g under σ by σg. Then
we can form a skew monoid ring R∗M (induced by the monoid homomorphism
σ) by taking its elements to be finite formal combinations

∑

g∈M agg with

multiplication induced by (agg)(bhh) = agσg(bh)gh.
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According to Jacobson [31], a right ideal of R is bounded if it contains a non-
zero ideal of R. From [18], a ring R is right (left) duo if every right (left) ideal
is an ideal, and Faith [13] said a ring would be called strongly right bounded if
every non-zero right ideal were bounded. The class of strongly bounded rings
has been observed by many authors (e.g. [7], [31], [48], [49]).

Due to H. Bell [5], a ring R is said to have the insertion of factors property

(simply, IFP) if ab = 0 implies aRb = 0 for a, b ∈ R. Note that a ring R has
IFP if and only if any right (or left) annihilator is an ideal. Rings with IFP
are also called semicommutative, see [11]. Right (resp. left) duo rings are both
strongly right (resp. left) bounded and semicommutative.

In [30], S. U. Hwang, N. K. Kim and Y. Lee introduced a condition that is
a generalization of strongly bounded rings and semicommutative rings, calling
a ring strongly right AB if every non-zero right annihilator is bounded. An
element c of R is called right regular if rR(c) = 0, left regular if lR(c) = 0 and
regular if rR(c) = 0 = lR(c).

According to [7], a ring R is called 2-primal if the prime radical of R and the
set of nilpotent elements of R coincide. Another property between commutative
and 2-primal is what Cohn in [10] calls reversible rings: those rings R with the
property that ab = 0 ⇒ ba = 0 for all a, b ∈ R. We direct the reader to the
excellent papers [1] and [38] for a nice introduction to some standard zero-
divisor conditions.

There is another important ring theoretic condition common in the literature
related to the zero divisor and annihilator conditions we have been studying.
Neilsen in [42], calls a ring R right McCoy (resp. left McCoy) if for each
pair of non-zero polynomial f(x), g(x) ∈ R[x] with f(x)g(x) = 0, then there
exists a non-zero element r ∈ R with f(x)r = 0 (resp. rg(x) = 0). Neilsen
[42] asked whether there is a natural class of McCoy rings which includes all
reversible rings and all rings R such that R[x] is semicommutative. We use this
to define a new class of rings strengthening the condition for reversible rings.
This property between “reversible” and “McCoy” is what we call nil-reversible
rings. We say a ring R is nil -reversible, if ab = 0 ⇔ ba = 0, where b ∈ nil(R).

An important theorem in commutative ring theory, related to zero-divisor
conditions, is that if I is an ideal in a Noetherian ring and if I consists entirely
of zero divisors, then the annihilator of I is nonzero. This result fails for some
non-Noetherian rings, even if the ideal I is finitely generated. Huckaba and
Keller [29], say that a commutative ring R has Property (A) if every finitely
generated ideal of R consisting entirely of zero divisors has nonzero annihilator.
Many authors have studied commutative rings with Property (A) ([3], [22],
[28], [29], [36], [45], etc.), and have obtained several results which are useful
studying commutative rings with zero-divisors. Hong, Kim, Lee and Ryu [27]
extended Property (A) to noncommutative rings, and study such rings and
several extensions with Property (A).

In this paper, we investigate a particular class of McCoy rings which satisfy
Property (A) and the conditions asked by Nielsen [42]. Whenever the skew
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monoid ring R ∗M is strongly right AB and rR∗M (Y ) 6= 0, then rR(Y ) 6= 0,
for any Y ⊆ R ∗ M . We then conclude that, nil-reversible rings is a larger
class than the class asked by Nielsen [42], and satisfies the conditions. Indeed,
nil-reversible rings is a natural class of McCoy rings which includes reversible
rings, all rings R such that R[x] is strongly right (or left) AB (and hence all
rings R such that R[x] is semicommutative).

We prove that for a u.p.-monoid M and σ : M → End(R) a compatible
monoid homomorphism, if R is nil-reversible, then the skew monoid ring R∗M
is strongly right AB. If R is strongly right AB, M a u.p.-monoid and σ : M →
End(R) a weakly rigid monoid homomorphism, then R ∗M has right Property
(A).

It is also shown that, when M is a u.p.-group and σ : M → Aut(R) is a
group homomorphism such that the ring R is M -compatible and right duo,
then R is right skew M -McCoy. Also, if R ∗ M is strongly right AB, then R
is right skew M -McCoy and R ∗ M has right Property (A). Whenever R is
strongly right AB and skew M -Armendariz, then R ∗M is strongly right AB.
Moreover, if R is strongly right AB and right skew M -McCoy, then R ∗M has
right Property (A).

Whenever R is a right duo ring and σi is a compatible automorphism of R
and σiσj = σjσi for each i, j, then R is right skew McCoy. This implies that, if

R is a right duo ring, then the rings R[x1, x2, . . . , xn] and R[x1, x2, . . . , xn, x
−1
1 ,

. . . , x−1
n ] have right Property (A), which also gives an answer to a question

asked in [27].
For any non-empty subset X of R, annihilators will be denoted by rR(X)

and lR(X). We write Zl(R), Zr(R) for the set of all left zero-divisors of R and
the set of all right zero-divisors of R. The set of all nilpotent elements of R are
denoted by nil(R). For any α = a1g1 + · · ·+ amgm ∈ R ∗M (ai 6= 0 for each i),
we call m, the length of α and we denote by Cα the set of all coefficients of α.

2. Rings whose right annihilators are bounded

According to Jacobson [31], a right ideal of R is bounded if it contains a
non-zero ideal of R. This concept has been extended in several ways. From
Faith [13], a ring R is called strongly right (resp. left) bounded if every non-zero
right (resp. left) ideal of R contains a non-zero ideal. A ring is called strongly

bounded if it is both strongly right and strongly left bounded. Right (resp.
left) duo rings are strongly right (resp. left) bounded and semicommutative.
Birkenmeier and Tucci [7, Proposition 6] showed that a ring R is right duo if
and only if R/I is strongly right bounded for all ideals I of R.

A ring R is called right (resp. left) AB if every essential right (resp. left)
annihilator of R is bounded.

Definition 2.1 ([30]). A ring R is called strongly right (resp. left) AB if every
non-zero right (resp. left) annihilator of R is bounded; R is called strongly AB
if R is strongly right and strongly left AB.
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Obviously strongly right bounded rings and semicommutative rings are both
strongly right AB, but the converses need not be true (see [30]).

Definition 2.2. We say a ring R is nil-reversible, if for every a ∈ R, b ∈ nil(R),
ab = 0 ⇔ ba = 0.

Reversible rings are clearly nil-reversible. In [39] the authors called a ring
R nil-semicommutative if for every a, b ∈ nil(R), ab = 0 implies aRb = 0.
Obviously, every nil-reversible ring is nil-semicommutative, so nil-reversible
rings form a proper subclass of the class of 2-primal rings, by [39, Lemma 2.7].

According to Krempa [34], an endomorphism α of a ring R is said to be
rigid if aα(a) = 0 implies a = 0 for a ∈ R. A ring R is said to be α-rigid
if there exists a rigid endomorphism α of R. In [21], the authors introduced
α-compatible rings and studied their properties. A ring R is α-compatible if
for each a, b ∈ R, ab = 0 if and only if aα(b) = 0. Basic properties of rigid and
compatible endomorphisms, proved by Hashemi and the second author in [21,
Lemmas 2.2 and 2.1].

Let R be a ring, M a monoid and σ : M → End(R) a monoid homomor-
phism. The ring R is called M -compatible if σg is compatible for every g ∈ M .

The following lemma which appeared in [21, Lemma 3.2] will be helpful in
the sequel.

Lemma 2.3. Let R be an α-compatible ring. Then we have the following:
(1) If ab = 0, then aαn(b) = αn(a)b = 0 for all positive integers n.
(2) If αk(a)b = 0 for some positive integer k, then ab = 0.
(3) If ab ∈ nil(R), then aα(b) ∈ nil(R) for all a, b ∈ R.

Lemma 2.4. Let R be a ring, M a u.p.-monoid and σ : M → End(R) a

compatible monoid homomorphism. Then we have the following:
(1) ab ∈ nil(R) ⇔ aσg(b) ∈ nil(R) for all a, b ∈ R and all g ∈ M ;
(2) abc = 0 ⇔ aσg(b)c = 0 for all a, b, c ∈ R and all g ∈ M.

Proof. The proof is similar to the proof of [44, Lemma 2.4]. �

Lemma 2.5 ([19, Theorem 4.4]). Let R be a 2-primal ring, let M be a u.p-

monoid and let σ : M → End(R) be a monoid homomorphism such that the

ring R is M -compatible. Then nil(R ∗M) = nil(R) ∗M .

Theorem 2.6. Let R be a nil-reversible ring, let M be a u.p.-monoid and

let σ : M → End(R) be a monoid homomorphism such that the ring R is

M -compatible. Then R ∗M is a strongly AB ring.

Proof. We prove the right case, the proof of the left case is similar. Suppose
X ⊆ R ∗M and rR∗M (X) 6= 0. Let Xβ = 0, for some β = b1h1 + b2h2 + · · ·+
bnhn ∈ R ∗M with minimal length.

Case 1: β ∈ nil(R ∗ M). We show that Xbj = 0 for every 1 ≤ j ≤ n.
Assume, on the contrary, that Xbk 6= 0 for some 1 ≤ k ≤ n. Then there
exists α ∈ X such that αbk 6= 0, where α = a1g1 + · · · + amgm. On the
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other hand we have αβ = 0. Since M is a u.p.-monoid, there exist i, j with
1 ≤ i ≤ m and 1 ≤ j ≤ n such that gihj is uniquely presented by considering
two subsets A = {g1, . . . , gm} and B = {h1, . . . , hn} of M . We may assume
without loss of generality that i = j = 1. Then a1σg1(b1) = 0, as g1h1 is
uniquely presented. Since R is M -compatible nil-reversible and by Lemma 2.4,
b1a1 = 0. Now take β to be βa1. But β has n− 1 terms and αβ = 0, which
contradicts to our assumption that β has minimal length such that αβ = 0,
thus β = 0. By nil-reversibility of R, a1β = 0, and from αβ = 0 we get
(a2g2+· · ·+amgm)(b1h1+b2h2+· · ·+bnhn) = 0. Continuing in this way we can
show that aiβ = 0 for each 1 ≤ i ≤ m, which contradicts with our assumption
that αbk 6= 0. Thus Xbj = 0, 1 ≤ j ≤ n, and this implies XRbj = 0, as
nil(R ∗M) = nil(R) ∗M by Lemma 2.5 and R is M -compatible nil-reversible.
So for every γ = c1l1+ · · ·+cklk ∈ R∗M , Xctσlt(bj) = 0, 1 ≤ j ≤ n, 1 ≤ t ≤ k.
Therefore X(R ∗M)bj = 0, and so R ∗M is strongly right AB.

Case 2: β /∈ nil(R ∗M). Then we have two subcases:
(i) βCX 6= 0 (we denote by CX the set of all coefficients of elements of

X). In this case there exists a ∈ CX such that βa 6= 0. Then there exists
γ = c1l1 + · · · + cklk ∈ X with a ∈ Cγ . From Xβ = 0, we get γβ = 0. Since
nil(R) is an ideal of R, it is easy to see that cibj ∈ nil(R), 1 ≤ i ≤ k, 1 ≤ j ≤ n.
Hence bja ∈ nil(R) and that βa ∈ nil(R ∗M). As Xβ = 0, we have Xβa = 0
and reduce to the previous case.

(ii) βCX = 0. When XRbj = 0 for some 1 ≤ j ≤ n, there is nothing to
prove. Now assume that XRbj 6= 0 for all 1 ≤ j ≤ n. Then for some α = a1g1+
· · ·+amgm ∈ X,αRbj 6= 0. So akgkrβ 6= 0 for some r ∈ R and 1 ≤ k ≤ m. Since
βCX = 0, we have akgkrβCX = 0. On the other hand βak = 0, as βCX = 0.
So akσgk(rCβ) ∈ nil(R), and hence by nil-reversibility CXakgkrCβ = 0. Thus
CXRakrCβ = 0, by nil-reversibility and M -compatibility of R. So for every
γ = c1l1+ · · ·+ cklk ∈ R ∗M , CXctσlt(akrCβ) = 0, 1 ≤ t ≤ k. This shows that
X(R ∗M)akrβ = 0 and we are done. �

Clearly every nil-reversible ring is strongly AB.

Corollary 2.7. Let R be a nil-reversible ring and let σi be a compatible endo-

morphism of R. Assume that σiσj = σjσi for each i, j. Then the skew polyno-

mial rings R[x1, x2, . . . , xn;σ1, . . . , σn] and R[x1, x2, . . . , xn, x
−1
1 , . . . , x−1

n ;σ1,

. . . , σn] are strongly AB.

Corollary 2.8. If R is a nil-reversible ring, then the rings R[x1, x2, . . . , xn]
and R[x1, x2, . . . , xn, x

−1
1 , . . . , x−1

n ] are strongly AB.

Corollary 2.9. Let R be a reversible ring, let M be a u.p.-monoid and let

σ : M → End(R) be a monoid homomorphism such that the ring R is M -

compatible. Then R ∗M is a strongly AB ring.

Right (resp. left) duo rings are both strongly right (resp. left) bounded and
semicommutative. By M. P. Darzin [12] a ring R is a CN -ring whenever every
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nilpotent element of R is central. D. Khurana et al. [33], introduced the notion
of unit-central rings (i.e., every invertible element of it lies in center), and
show that each unit-central ring is a CN -ring. It is clear that CN -rings and
reversible rings are nil-reversible.

Corollary 2.10. Let R be a CN -ring, let M be a u.p.-monoid and let σ : M →
End(R) be a monoid homomorphism such that the ring R is M -compatible.

Then R ∗M is a strongly AB ring.

Corollary 2.11. Let R be a CN -ring, let σi be a compatible endomorphism of

R such that σiσj = σjσi for each i, j. Then the rings R[x1, x2, . . . , xn;σ1, . . .,

σn] and R[x1, x2, . . . , xn, x
−1
1 , . . . , x−1

n ;σ1, . . . , σn] are strongly AB.

Corollary 2.12. If R is a CN -ring, then the polynomial rings R[x1, x2, . . . , xn]
and R[x1, x2, . . . , xn, x

−1
1 , . . . , x−1

n ] are strongly AB.

A ring R is called Armendariz if whenever polynomials f(x) =
∑n

i=0 aix
i,

g(x) =
∑m

j=0 bjx
j satisfy f(x)g(x) = 0, then aibj = 0 for each i, j. This defini-

tion was given by Rege and Chhawchharia in [46] using the name Armendariz
since E. Armendariz had proved in [2] that reduced rings satisfied this condi-
tion. Also, by Anderson and Camillo [1, Theorem 4], a ring R is Armendariz
if and only if so is R[x].

Definition 2.13 ([19, Definition 3.1]). Let R be a ring, let M be a monoid
and let σ : M → End(R) be a monoid homomorphism. A ring R is called
skew M -Armendariz, if whenever elements α = a1g1 + a2g2 + · · ·+ angn, β =
b1h1 + b2h2 + · · ·+ bmhm ∈ R ∗M satisfy αβ = 0, then aiσgi(bj) = 0 for each
i, j.

Proposition 2.14. Let R be a skew M -Armendariz ring, let M be a u.p.-

monoid and let σ : M → End(R) be a monoid homomorphism. Then R is

reversible and M -compatible if and only if R ∗M is reversible.

Proof. Let α = a1g1 + a2g2 + · · ·+ angn and β = b1h1 + b2h2 + · · ·+ bmhm be
non-zero elements of R ∗M , such that αβ = 0. Since R is M -Armendariz, we
have aiσgi(bj) = 0. By M -compatibility of R, aibj = 0. Since R is reversible
and M -compatible, bjσhj

(ai) = 0. So βα = 0 and R ∗ M is reversible. The
converse is clear since reversible rings are closed under subring. It follows from
[37, Lemma 4.4(ii)] that if R ∗M is reversible, then R is M -compatible. �

Corollary 2.15. Let R be a σi-skew Armendariz ring and let σi be a compati-

ble endomorphism of R for each i. Assume that σiσj = σjσi for each i, j. Then
R is reversible if and only if the skew polynomial ring R[x1, x2, . . . , xn;σ1, . . .,
σn] is reversible if and only if R[x1, x2, . . . , xn, x

−1
1 , . . . , x−1

n , σ1, . . . , σn] is re-

versible.

Definition 2.16. Let R be a ring, let M be a monoid and let σ : M → End(R)
be a monoid homomorphism. We say a ring R is right skew M -McCoy if
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whenever 0 6= α = a1g1 + · · ·+ angn, 0 6= β = b1h1 + · · ·+ bmhm ∈ R ∗M with
gi, hj ∈ M , ai, bj ∈ R satisfy αβ = 0, then αr = 0 for some nonzero r ∈ R.
Left skew M -McCoy rings are defined similarly. If R is both left and right skew
M -McCoy, then we say R is skew M -McCoy.

Theorem 2.17. Let R be a ring, let M be a u.p.-monoid and let σ : M →
Aut(R) be a monoid homomorphism. If S = R ∗M is strongly right AB and

rS(Y ) 6= 0, then rR(Y ) 6= 0 for any Y ⊆ S.

Proof. Suppose Y ⊆ R ∗ M and rR∗M (Y ) 6= 0. Let Y ′ be the right ideal of
R ∗M generated by Y. Since R ∗M is strongly right AB and rR∗M (Y ) 6= 0; it
follows that rR∗M (Y ′) 6= 0. Hence by [26, Theorem 3] we have rR(Y

′) 6= 0 and
thus rR(Y ) 6= 0. �

Corollary 2.18. Let R be a ring and let σi be an automorphism of R such

that σiσj = σjσi for each i, j. Let S be either R[x1, x2, . . . , xn;σ1, . . . , σn]

or R[x1, x2, . . . , xn, x
−1
1 , . . . , x−1

n ;σ1, . . . , σn]. If S is strongly right AB and

rS(Y ) 6= 0, then rR(Y ) 6= 0 for any Y ⊆ S.

Corollary 2.19. Let R be a ring, let M be a u.p.-monoid and let σ : M →
Aut(R) be a monoid homomorphism. If S = R∗M is nil-reversible and rS(Y ) 6=
0, then rR(Y ) 6= 0 for any Y ⊆ S.

Corollary 2.20. Let R be a ring, let M be a u.p.-monoid and let σ : M →
Aut(R) be a monoid homomorphism. If S = R ∗ M is a reversible ring and

rS(Y ) 6= 0, then rR(Y ) 6= 0 for any Y ⊆ S.

Corollary 2.21. Let R be a ring and let M be a u.p.-monoid and let σ : M →
Aut(R) be a monoid homomorphism. If R ∗ M is a strongly right AB ring,

then R is a right skew M-McCoy ring.

Corollary 2.22. If the polynomial ring R[x] is strongly right AB, then R is a

right McCoy ring.

Corollary 2.23. The class of McCoy rings includes nil-reversible rings and

all rings R such that R[x] is strongly right AB.

Therefore, we conclude that, nil-reversible rings is a larger class of rings
which satisfy the conditions asked by Nielsen [42]. Indeed, nil-reversible rings
is a natural class of McCoy rings which includes reversible rings, CN rings, all
rings R such that R[x] is strongly right (or left) AB (and hence all rings R
such that R[x] is semicommutative).

Lemma 2.24. Let M be a u.p.-monoid, |M | ≥ 2 and α1, α2, . . . , αn ∈ R ∗M .

Then there exist k1, k2, . . . , kn ∈ M such that α1k1, . . . , αnkn are distinct.

Proof. Let αi= ai1h
(i)
1 +ai2h

(i)
2 + · · ·+ainih

(i)
ni and put Ai= {h

(i)
1 , h

(i)
2 , . . . , h

(i)
ni }

for 1 ≤ i ≤ n. Let 1 ≤ t ≤ n be maximal number such that A1, A2, . . . , At are
disjoint. In this case we take, k1 = k2 = · · · = kt = eM . We need to assume that
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|Ai| ≥ 2 for each i. Now take eM 6= h
(t+1)
s ∈ At+1, 1 ≤ s ≤ n(t+ 1). We claim

that there exists a positive integermt+1 such that A1, A2, . . . , At+1(h
(t+1)
s )mt+1

are disjoint, otherwise for some h
(t+1)
j ∈ At+1 we get h

(t+1)
j (h

(t+1)
s )k ∈

⋃t
i=1 Ai,

for all positive integers k. This follows a contradiction, since by [6, Lemma 1.1],

u.p.-monoids are cancellative. So h
(t+1)
i (h

(t+1)
s )pli 6∈

⋃t
i=1 Ai for some positive

integers li and each p ∈ N, 1 ≤ i ≤ n(t+1). Therefore A1, A2, . . . , At, At+1kt+1

are disjoint, where kt+1 = (h
(t+1)
s )mt+1 with mt+1 = l1l2 · · · ln(t+1). By a

similar method as above there exist kt+2, . . . , kn ∈ M such that α1k1, . . . , αnkn
are distinct. �

Lemma 2.25. Let R be a semicommutative ring, let M be a u.p.-group and

σ : M → End(R) be a monoid homomorphism such that the ring R is M -

compatible. Assume that α = a1g1+a2g2+· · ·+amgm and β = b1h1+· · ·+bnhn

are non-zero elements of R ∗M such that αβ = 0. Then there exists ai ∈ Cα

such that ani β = 0.

Proof. Let α = a1g1+· · ·+amgm and β = b1h1+· · ·+bnhn be non-zero elements
of R ∗ M . Since M is a u.p.-group, there exist i, j, t, k with 1 ≤ i ≤ m and
1 ≤ t, j, k ≤ n such that gihth

−1
j hk is uniquely presented by considering two

subsets A = {g1, . . . , gm} and B = {hth
−1
j hk : 1 ≤ t, j, k ≤ n} of M . We may

assume without loss of generality that i = j = k = t = 1. Hence a1σg1 (b1) = 0.
Since R is M -compatible, we have a1b1 = 0. By semicommutativity of R, 0 =
a1αβ = (a21g1+· · ·+a1amgm)(b1h1+· · ·+bnhn) = (a21g1+· · ·+a1amgm)(b2h2+
· · · + bnhn). Since M is u.p.-group, 0 = (a21g1 + · · · + a1amgm)(b2h2 + · · · +
bnhn)h

−1
2 h1 = (a21g1 + · · · + a1amgm)(b2h1 + · · · + bnhnh

−1
2 h1). Since g1h1 is

uniquely presented, a21b2 = 0. Then by a similar argument as above and since
R is semicommutative, we have 0 = a21αβ = (a31g1+ · · ·+a21amgm)(b1h1+ · · ·+
bnhn) = (a31g1 + · · ·+ a21amgm)(b3h3 + · · ·+ bnhn). Continuing this process, we
can deduce that an1β = 0. We consider i = 1, so there exist ai ∈ Cα such that
ani β = 0. �

Corollary 2.26. Let R be a semicommutative ring and α be an automorphism

of R. Assume that R is α-compatible. Also let f(x) = a0 + a1x + · · · + anx
n

and g(x) = b0+ b1x · · ·+amxm be non-zero elements of R[x, x−1;α] or R[x;α],
such that f(x)g(x) = 0. Then there exists ai ∈ Cf such that ami g(x) = 0.

In [27], Hong, Kim and Lee, asked a question that, if R is a right duo ring
does R[x] have right Property (A)? In Corollary 3.12, we show that, if R is
a right duo ring, then the rings R[x1, x2, . . . , xn] and R[x1, x2, . . . , xn, x

−1
1 , . . .,

x−1
n ] have right Property (A). We need the following result which is a general-

ization of [8, Theorem 8.2] to the more general setting:

Theorem 2.27. Let R be a ring, let M be a u.p.-group and let σ : M → Aut(R)
be a group homomorphism such that the ring R is M -compatible. If R is a right

duo ring, then R is right skew M -McCoy.
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Proof. We apply the method of Camillo and Nielsen in the proof of [8, Theorem
8.2]. For every γ ∈ R ∗ M we let Iγ denote the right ideal generated by the
coefficients of γ. Suppose α, β ∈ R ∗ M with αβ = 0 and β 6= 0. We will
prove, by induction on the length of α, that there is some non-zero element in
Iβ which annihilates α on the right. Write α =

∑m
i=1 aigi and β =

∑n
j=1 bjhj .

First, if α = a1g1, then

(a1g1)(b1h1 + b2h2 + · · ·+ bnhn) = 0.

Since M is a u.p.-group, there exist i, j, k, such that g1hih
−1
j hk is uniquely

presented by considering two subsets A = {g1} and B = {hih
−1
j hk : 1 ≤

i, j, k ≤ n} ofM . We may assume without loss of generality that i = j = k = 1.
Hence a1σg1(b1) = 0. So 0 = (a1g1)(b1h1 + b2h2 + · · ·+ bnhn) = (a1g1)(b2h2 +

· · · + bnhn). Since M is a u.p.-group, 0 = (a1g1)(b2h2 + · · · + bnhn)h
−1
2 h1 =

(a1g1)(b2h1+· · ·+bnhnh
−1
2 h1). Since g1h1 is uniquely presented, a1σg1 (b2) = 0.

Continuing this process and since R is M -compatible, we have a1bj = 0, for
each j. Let length(α) ≥ 2.

Since duo rings are semicommutative, there exists 1 ≤ l ≤ m satisfying
an−1
l bj 6= 0 = anl bj by Lemma 2.25. We then have the following.
Case (i): Suppose alβ = 0. This implies alIβ = 0. In this case we set

α1 = α − algl and find α1β = 0. But length(α1) < length(α), and hence by
induction there exists a non-zero element b ∈ Iβ satisfying α1b = 0, whence
αb = 0.

Case (ii): Suppose alβ 6= 0. Then albt = 0 for some bt ∈ Cβ . Let albj 6= 0.

Since R is right duo, there exists r ∈ R with an−1
l bj = bjr. If we let β1 =

βσ−1
gj (r), then clearly αβ1 = 0, and (0) 6= Iβ1

⊆ Iβ . This means we can replace
β by β1 without any loss of generality. By construction, al annihilates the first
j coefficients of β1, so after repeating this process a finite number of times we
reduce to the previous case. �

Let S be either the skew polynomial ring R[x1, . . . , xn;σ1, . . . , σn] or the
skew Laurent polynomial ring R[x1, . . . , xn, x

−1
1 , . . . , x−1

n , σ1, . . . , σn]. We say
the ring R is skew McCoy, when the equation f(x)g(x) = 0 over S, where
f(x), g(x) 6= 0 implies there exists a nonzero r ∈ R with f(x)r = 0.

Corollary 2.28. Let R be a right duo ring, let σi be a compatible automorphism

of R such that σiσj = σjσi for each i, j. Then R is skew McCoy.

Corollary 2.29 ([8, Theorem 8.2]). Every right duo ring is right McCoy.

Theorem 2.30. Let R be a M -compatible ring, let M be a u.p.-monoid and

let σ : M → End(R) be a monoid homomorphism. If R is skew M -Armendariz

and strongly right AB, then R ∗M is strongly right AB.

Proof. We adopt the proof of [30, Proposition 4.6]. Assume R is strongly right
AB and X ⊆ R ∗M with rR∗M (X) 6= 0 and let C be the set of all coefficients
of the elements of X . Take non-zero α = a1g1 + a2g2 + · · ·+ angn ∈ rR∗M (X).
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Then for any β = b1h1 + b2h2 + · · · + bmhm ∈ X, βα = 0. Since R is skew
M -Armendariz and M -compatible, biaj = 0 for all i, j. Thus aj ∈ rR(C),
1 ≤ j ≤ n, entailing rR(C) 6= 0. Since R is strongly right AB, there exists a
non-zero ideal I of R such that rR(C) ⊇ I. So CRt = 0 for each 0 6= t ∈ I.
By M -compatibility of R, X(R ∗M)t = 0. Therefore R ∗M is strongly right
AB. �

Proposition 2.31. Let R be a ring, let M be a u.p.-monoid and let σ : M →
End(R) be a monoid homomorphism such that the ring R is M -compatible. If

R ∗M is strongly right AB, then R is right skew M -McCoy and strongly right

AB.

Proof. We adopt the proof of [30, Proposition 4.6]. Suppose that S = R ∗M is
strongly right AB. Let X ⊆ R with rR(X) 6= 0. Note that rR(X) = rS(X)∩R.
Since rR(X) 6= 0, we get rS(X) 6= 0. But S is strongly right AB, so there is a
non-zero ideal L of S such that rS(X) ⊇ L. For every γ = c1l1+c2l2+· · ·+ctlt ∈
L, SγS ⊆ L. So XRγ ⊆ XSγ = 0. This implies that XRck = 0, 1 ≤ k ≤ t. So
rR(X) ⊇ RckR. Therefore R is strongly right AB. �

Corollary 2.32. Let R be a σi-skew Armendariz ring for each i and let σi be

a compatible endomorphism of R such that σiσj = σjσi for each i, j. Then R is

strongly right AB if and only if R[x1, . . . , xn;σ1, . . . , σn] is strongly right AB
if and only if R[x1, . . . , xn, x

−1
1 , . . . , x−1

n , σ1, . . . , σn] is strongly right AB.

Corollary 2.33 ([30, Proposition 4.6]). Let R be an Armendariz ring. Then

R is strongly right AB if and only if R[x] is strongly right AB.

Let R be a ring and σ denotes an endomorphism of R with σ(1) = 1. We
denote the identity matrix and unit matrices in the full matrix ring Mn(R), by
In and Eij , respectively. In [35], T. K. Lee and Y. Zhou introduced a subring of
the skew triangular matrix ring as a set of all triangular matrices Tn(R), with
addition pointwise and a new multiplication subject to the condition Eijr =
σj−i(r)Eij . So (aij)(bij) = (cij), where cij = aiibij + ai,i+1σ(bi+1,j) + · · · +
aijσ

j−i(bjj) for each i ≤ j and denoted it, by Tn(R, σ).
Let R be a ring with an endomorphism σ. Consider the following subset of

triangular matrices Tn(R, σ), denoted by

T (R, n, σ) =









































a1 a2 a3 . . . an
0 a1 a2 . . . an−1

0 0 a1 . . . an−2

...
...

...
. . .

...
0 0 0 . . . a1















|ai ∈ R



























with n ≥ 2. It is easy to see that T (R, n, σ) is a ring with matrix addition
and multiplication. We can denote elements of T (R, n;σ) by (a1, a2, . . . , an),
then T (R, n;σ) is a ring with addition pointwise and multiplication given by
(a0, . . . , an−1)(b0, . . . , bn−1) = (a0b0, a0∗b1+a1∗b0, . . . , a0∗bn−1+· · ·+an−1∗b0),
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with ai∗bj = aiσ
i(bj) for each i and j. In the special case, when σ = idR, we use

T (R, n) instead of T (R, n, σ). On the other hand, there is a ring isomorphism

ϕ : R[x;σ]/(xn) → T (R, n, σ), given by ϕ(
∑n−1

i=0 aix
i) = (a0, a1, . . . , an−1). So

T (R, n, σ) ∼= R[x;σ]/(xn), where (xn) is the ideal generated by xn.

Lemma 2.34. Let R be a ring and 0 6= a ∈ R. Then a is right (resp. left)
regular if and only if (a, a1, a2, . . . , an−1) ∈ T (R, n, σ) is right (resp. left)
regular.

Proof. We adopt the proof of [30, Lemma 2.1]. Suppose that a ∈ R is right
regular, and let

A = (a, a1, a2, . . . , an−1) ∈ T (R, n, σ).

We proceed by induction on n. Put (a, a1)(b, b1) = 0 for some (b, b1) ∈
T (R, n, σ). Then ab = 0 and ab1 + a1σ(b) = 0. Since a is right regular,
b = 0, and so b1 = 0; hence (a, a1) is right regular. Next let

AB = 0, B = (b, b1, b2, . . . , bn−1) ∈ T (R, n, σ).

Then we get
(a, a1, a2, . . . , an−2)(b, b1, b2, . . . , bn−2) = 0.

By the induction hypothesis we obtain b = 0 and bj = 0 for 1 ≤ j ≤ n − 2;
hence abn−1 + a1σ(bn−2) + · · · + an−2σ

n−2(b1) + an−1σ
n−1(b) = 0, abn−2 +

a1σ(bn−3) + · · · + an−2σ
n−2(b) = 0, . . . , ab = 0. Inductively we obtain b = 0

and bj = 0 for j = 1, 2, . . . , n− 1, concluding that A is right regular.
Conversely assume that A is right regular, and let ab = 0 for some b ∈ R.

Then from A(bE1(n−1)) = 0 we have b = 0. Thus a is regular. The proof of left
case is similar. �

Proposition 2.35. A ring R is strongly right (resp. left) AB if and only if

T (R, n, σ) is strongly right (resp. left) AB for any n ≥ 2.

Proof. We apply the method of Hwang et al. in the proof of [30, Theorem 2.2].
Let R be strongly right AB and X ⊆ T (R, n, σ) with rT (R,n,σ)(X) 6= 0. Then
any diagonal in matrices in X is not right regular by Lemma 2.34. Let Y be
the set of all elements in R, which occur as diagonal entries of elements in X .
If Y = 0, then rT (R,n,σ)(X) contains a non-zero ideal RE1(n−1) of T (R, n, σ).
Next we suppose Y 6= 0 and let a be in Y . Take

0 6= (b, b1, . . . , bn−1) ∈ rT (R,n,σ)(X).

We will show rR(Y ) 6= 0. If b 6= 0, then rR(Y ) 6= 0. Assume b = 0, since
(b, b1, . . . , bn−1) 6= 0, there exist bj 6= 0, 1 ≤ j ≤ n − 1 and abj = 0. So
rR(Y ) 6= 0.

Now since R is strongly right AB, there is a non-zero ideal I of R with
I ⊆ rR(Y ). Then rT (R,n,σ) contains a non-zero ideal IE1(n−1) of T (R, n, σ).
Thus T (R, n, σ) is strongly right AB.

Conversely suppose that T (R, n, σ) is strongly right AB and V ⊆ R with
rR(V ) 6= 0. Let W = {aIn | a ∈ V } ⊆ T (R, n, σ), where In is the n×n identity
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matrix. Then rT (R,n,σ)(W ) 6= 0 because WU = 0 for any non-zero matrix
U in T (R, n, σ) with entries in rR(V ). Since T (R, n, σ) is strongly right AB,
there exists a non-zero ideal J of T (R, n, σ) such that rT (R,n,σ)(W ) ⊇ J . Now
set K = {c ∈ R | c is an entry of a matrix in J}. Then K is a non-zero ideal
of R from the computations (aIn)(rIn)C = 0 for a ∈ V , r ∈ R and C ∈ J .
Moreover aK = 0 for all a ∈ V from (aIn)J = 0, entailing rR(X) ⊇ K. Thus
R is strongly right AB. The proof of the left case is similar. �

Example 2.36. Let R be a ring. Assume α and σ are rigid endomorphisms
such that ασ = σα. Since R is reduced, T (R, n, σ) is strongly right AB by
Proposition 2.35 and by [20, Theorem 2.8 and Corollary 2.5], T (R, n, σ) is
skew Armendariz and α-compatible. So T (R, n, σ)[x;α] is strongly right AB,
by Corollary 2.32.

Definition 2.37 ([9]). A ring R is said to have the right finite intersection

property (simply, right FIP ) if, for any subset X of R, there exists a finite
subset X0 of X such that rR(X) = rR(X0).

Proposition 2.38. Let R be a ring, let M be a u.p.-group with |M | ≥ 2 and

let σ : M → Aut(R) be a group homomorphism such that the ring R is M -

compatible. If R is right duo and R ∗M has right FIP, then R ∗M is strongly

right AB.

Proof. Assume that X ⊆ R ∗ M and rR∗M (X) 6= 0. Then there exists a
finite subset X0 of X such that rR∗M (X) = rR∗M (X0), as R ∗ M has right
FIP . Assume that X0 = {α1, α2, . . . , αk}, where αi = ai1gi1 + ai2gi2 + · · · +
aini

gini
, 1 ≤ i ≤ k with positive integers ni. By Proposition 2.24, there

exist h1, . . . , hk ∈ M such that α1h1, α2h2, . . . , αkhk, are distinct. Take α =
α1h1 + α2h2 + · · · + αkhk. Then for some 0 6= β ∈ R ∗ M we have αβ = 0.
By Theorem 2.27, right duo rings are right skew M -McCoy, so there exists
0 6= c ∈ R such that aijc = 0, 1 ≤ i ≤ k, 1 ≤ j ≤ ni, as R is M -compatible.
Since R is strongly right AB, there exists an ideal J such that aijJ = 0. For
each 0 6= d ∈ J , we have aijRd = 0, 1 ≤ i ≤ k, 1 ≤ j ≤ ni. Thus we have
X0(R∗M)d = 0, byM -compatibility ofR. So 0 6= (R∗M)d(R∗M) ⊆ rR∗M (X0)
and hence R ∗M is strongly right AB. �

Corollary 2.39. Let R be a right duo ring and let σi be a compatible automor-

phism of R with σiσj = σjσi for each i, j. Let S be either R[x1, . . . , xn;σ1, . . .,

σn] or R[x1, . . . , xn, x
−1
1 , . . . , x−1

n ;σ1, . . . , σn]. If S has right IFP , then S is

strongly right AB.

Faith [15] called a ring R right zip provided that if the right annihilator
rR(X) of a subset X of R is zero, then there exists a finite subset Y ⊆ X such
that rR(Y ) = 0. The concept of zip rings was initiated by Zelmanowitz [50]
and appeared in various papers. Zelmanowitz stated that any ring satisfying
the descending chain condition on right annihilators is a right zip ring, but
the converse does not hold. Extensions of zip rings were studied by several
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authors. Beachy and Blair [4] showed that if R is a commutative zip ring, then
the polynomial ring R[x] over R is a zip ring. In [47, Theorem 2.4], Singh and
et al., show that, R is right zip if and only if R ∗M is right zip.

Proposition 2.40. Let R be a right skew M -McCoy ring, let M be a u.p.-

monoid with |M | ≥ 2 and let σ : M → End(R) be a monoid homomorphism

such that the ring R is M -compatible. If R is strongly right AB and R ∗M is

right zip, then R ∗M is strongly right AB.

Proof. Let rR∗M (X) 6= 0, where X ⊆ R ∗ M . Assume, on the contrary, that
rR∗M (X(R∗M)) = 0. Since R∗M is right zip there exists a finite subset X0 =
{α1γ1, α2γ2, . . . , αkγk} ⊆ X(R∗M), where αi = ai1gi1+ai2gi2+· · ·+aini

gini
∈

X, γi ∈ R ∗M , 1 ≤ i ≤ k, such that rR∗M (X0) = 0. Since {α1, . . . , αk} ⊆ X ,
we have 0 6= rR∗M (X) ⊆ rR∗M ({α1, . . . , αk}). So {α1, . . . , αk}β = 0 for some
0 6= β ∈ R ∗ M . By Proposition 2.24, there exist h1, . . . , hk ∈ M such that
α1h1, α2h2, . . . , αkhk are distinct. Put α = α1h1 + α2h2 + · · · + αkhk. Since
αiβ = 0 for every 1 ≤ i ≤ k, we have αβ = 0. Since R is right skew M -McCoy,
there exists 0 6= c ∈ R such that αc = 0. Therefore aijc = 0, 1 ≤ i ≤ k,
1 ≤ j ≤ ni, as R is M -compatible. Since R is strongly right AB, there exists
an ideal J such that aijJ = 0 for every i, j. For every 0 6= d ∈ J , aijRd = 0,
1 ≤ i ≤ k, 0 ≤ j ≤ ni. Since R is M -compatible, αi(R ∗M)d = 0. But this is
a contradiction as we assumed rR∗M (X0) = 0. �

Corollary 2.41. Let R be a skew McCoy, right zip and strongly right AB ring

and let σi be a compatible endomorphism of R with σiσj = σjσi for each i, j.

Then the rings R[x1, . . . , xn;σ1, . . . , σn] and R[x1, . . . , xn, x
−1
1 , . . . , x−1

n ;σ1, . . .,
σn] are strongly right AB.

Corollary 2.42. Let R be a right McCoy, right zip and strongly right AB ring.

Then the rings R[x1, . . . , xn] and R[x1, . . . , xn, x
−1
1 , . . . , x−1

n ] are strongly right

AB.

By Proposition 2.35, a ring R is strongly right (resp. left) AB if and only
if T (R, n, σ) is strongly right (resp. left) AB for any n ≥ 2. Now we provide
more examples of noncommutative zip rings.

Proposition 2.43. Let R be a commutative ring with an endomorphisms σ
and let n ≥ 2. Then R is a zip ring if and only if T (R, n, σ) is a zip ring.

Proof. Assume that R is a zip ring and X ⊆ T (R, n, σ) with rT (R,n,σ)(X) = 0.
Let Y be the set of all elements in R, which occur as main diagonal entries
of elements in X . If Y = 0, then rT (R,n,σ)(X) contains E1n which contradicts
to our assumption. So Y 6= 0. We then have rR(Y ) = 0, as a ∈ rR(Y )
implies Y aE1n = 0. Since R is right zip, there exists a finite subset Y0 =
{r1, r2, . . . , rn} ⊆ Y, such that rR(Y0) = 0. For each 1 ≤ i ≤ n, put Ui to be the
set of matrices whose main diagonal entries are ri. Take Ai ∈ Ui, 1 ≤ i ≤ n.
Clearly U = {A1, . . . , An}, rT (R,n,σ)(U) = 0. So T (R, n, σ) is right zip. For the
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Converse we adopt the proof of [25, Proposition 3]. Suppose that T (R, n, σ) is a
right zip ring and X ⊆ R with rR(X) = 0. Let Y = {aI | a ∈ X} ⊆ T (R, n, σ),
where I is the n × n identity matrix. If B = (b1, b2, . . . , bn) ∈ rT (R,n,σ)(Y ),
then aI.B = 0 for all a ∈ X . Thus abj = 0 for all j. Therefore bj ∈ rR(X) = 0
and so bj = 0 for all j. Since T (R, n, σ) is right zip, there exists a finite
subset Y0 = {a1I, a2I, . . . , amI} ⊆ Y such that rT (R,n,σ)(Y0) = 0. Let X0 =
{a1, a2, . . . , am} ⊆ X . If b ∈ rR(X0), then akI(0, 0, . . . , 0, b) = 0 for all k =
1, 2, . . . ,m. Thus, (0, 0, . . . , 0, b) ∈ rR(Y0) = 0, so b = 0. Hence rR(X0) = 0
and therefore R is right zip. Moreover, R is zip because R is commutative. �

By Proposition 2.35, a ring R is strongly right (resp. left) AB if and only if
T (R, n, σ) is strongly right (resp. left) AB for any n ≥ 2. Also by Proposition
2.43, for each commutative ring R with an endomorphisms σ and for n ≥ 2,
R is a zip ring if and only if T (R, n, σ) is a zip ring. We can provide more
examples of strongly right AB rings.

Example 2.44. For any commutative domain R with endomorphisms σ, α
such that σα = ασ, the ring T (R, n, σ) is α-compatible and skew McCoy, by
[20, Theorem 2.8 and Corollary 2.5]. Since R is zip and strongly right AB,
T (R, n, σ) is zip and strongly right AB. So the ring T (R, n, σ)[x, α] is also
strongly right AB.

Theorem 2.45. Let R be a skew M -Armendariz ring, let M be a u.p.-monoid

and let σ : M → End(R) be a monoid homomorphism such that the ring R is

M -compatible. Then R is nil-reversible if and only if R ∗M is nil-reversible.

Proof. LetR be nil-reversible. Let α =
∑n

i=0 aigi ∈ R∗M and β =
∑m

j=0 bjhj ∈

nil(R ∗M) with αβ = 0. By Lemma 2.5, each bj ∈ nil(R), 0 ≤ j ≤ m, as R is
2-primal. Since R is skewM -Armendariz and M -compatible, aibj = 0 for every
0 ≤ i ≤ n, 0 ≤ j ≤ m. Therefore bjσhj

(ai) = 0, since R is nil-reversible and R
is M -compatible. Consequently we have βα = 0. So R∗M is nil-reversible. �

Corollary 2.46. Let R be a σi-skew Armendariz ring and let σi be a compatible

endomorphism of R for each i. Assume that σiσj = σjσi for each i, j. Then

R is nil-reversible if and only if the ring R[x1, x2, . . . , xn;σ1, . . . , σn] is nil-

reversible if and only if the ring R[x1, x2, . . . , xn, x
−1
1 , . . . , x−1

n , σ1, . . . , σn] is
nil-reversible.

Corollary 2.47. Let R be an Armendariz ring. Then R is nil-reversible if

and only if the ring R[x1, x2, . . . , xn] is nil-reversible if and only if the ring

R[x1, x2, . . . , xn, x
−1
1 , . . . , x−1

n ] is nil-reversible.

3. Rings with Property (A)

Huckaba and Keller [29] introduced the following: a commutative ring R
has Property (A) if every finitely generated ideal of R consisting entirely of
zero-divisors has a nonzero annihilator. Property (A) was originally studied by
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Quentel [45]. Quentel used the term Condition (C) for Property (A). The class
of commutative rings with Property (A) is quite large. For example, Noetherian
rings ([32], p. 56), rings whose prime ideals are maximal [22], the polynomial
ring R[x] and rings whose classical ring of quotients are von Neumann regular
[22], are examples of rings with Property (A). Using Property (A), Hinkle
and Huckaba [23] extend the concept Kronecker function rings from integral
domains to rings with zero divisors. Many authors have studied commutative
rings with Property (A), and have obtained several results which are useful
studying commutative rings with zero-divisors. C. Y. Hong, N. K. Kim, Y. Lee
and S. J. Ryu [27] extended the notion of Property (A) to noncommutative
rings:

Definition 3.1 ([27]). A ring R has right (left) Property (A) if for every finitely
generated two-sided ideal I ⊆ Zl(R) (resp. Zr(R)), there exists nonzero a ∈ R
(resp. b ∈ R) such that Ia = 0 (resp. bI = 0). A ring R is said to have Property
(A) if R has the right and left Property (A).

According to [41], a ring R with a monomorphism α is called α-weakly rigid

if for each a, b ∈ R, aRb = 0 if and only if aα(Rb) = 0. For any positive
integer n, a ring R is α-weakly rigid if and only if, the n-by-n upper triangular
matrix ring Tn(R) is α-weakly rigid if and only if, the matrix ring Mn(R) is
α-weakly rigid, where α((aij)) = (α(aij)) for each (aij) ∈ Mn(R). Also if R is a
semiprime α-weakly rigid ring, then the polynomial ring R[x] is a semiprime α-
weakly rigid ring, where α(

∑n
i=0 rix

i) =
∑n

i=0 α(ri)x
i. For every prime ring R

and any automorphism α, the rings Mn(R), Tn(R), R[X ] and the power series
ring R[[X ]], for X an arbitrary nonempty set of indeterminates, are weakly
rigid rings.

Definition 3.2. Let R be a ring, let M be a monoid and let σ : M → End(R)
be a monoid homomorphism. We say R is M -weakly rigid if σg is weakly rigid
for every g ∈ M .

Lemma 3.3. Let R be a ring, let M be a monoid and let σ : M → End(R)
be a monoid homomorphism such that the ring R is M -weakly rigid. Then for

every a, b ∈ R and gi, gj ∈ M , aRb = 0 if and only if σgi(a)Rσgj (b) = 0.

Proof. Suppose that aRb = 0, so σgi(aRb) = 0, and hence σgi(a)σgi (Rb) = 0.
Since R is M -weakly rigid, σgi (a)Rb = 0. So for each r ∈ R, σgi(a)rRb = 0,
and hence σgi(a)rσgj (Rb) = 0. Thus σgi(a)rσgj (b) = 0, and for each i, j,
σgi(a)Rσgj (b) = 0. Now assume that σgi (a)Rσgj (b) = 0, for each i, j. Since
R is M -weakly rigid, σgi(a)σgi (Rσgj (b)) = 0, so σgi(aR(σgj (b)) = 0. Since
σgj is injective, aRσgj (b) = 0. This implies that aRb = 0, as R is M -weakly
rigid. �

Hirano in [24, Theorem 2.2], proved that, when rR[x](f(x)R[x]) 6= 0 then
rR[x](f(x)R[x]) ∩R 6= 0 for f(x) ∈ R[x].
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Proposition 3.4. Let R be a ring, let M be a u.p.-monoid and let σ : M →
End(R) be a monoid homomorphism such that the ring R is M -weakly rigid.

For α ∈ S = R ∗M , if rS(αS) 6= 0, then rS(αS) ∩R 6= 0.

Proof. We apply the method of Hirano in the proof of [24, Theorem 2.2]. Let
α = a1g1+a2g2+ · · ·+angn. When α = 0 or length(α) = 1, then the assertion
is clear. So, let length(α) = n, n > 1. Assume, to the contrary, that rR(αS) =
0 and let β = b1h1+ b2h2+ · · ·+ bmhm ∈ S be a nonzero element with minimal
length in rS(αS). Since αSβ = 0, αRβ = 0. Since M is a u.p.-monoid, there
exist i, j with 1 ≤ i ≤ n and 1 ≤ j ≤ m such that gihj is uniquely presented by
considering two subsets A = {g1, . . . , gn} and B = {h1, . . . , hm} of M . We may
assume, without loss of generality, that i = n, j = m. Then anσgn(Rbm) = 0,
as gnhm is uniquely presented. Since R is M -weakly rigid, anRbm = 0. This
implies

anSβ = anS(bm−1hm−1 + · · ·+ b1h1)

and

0 = αSβ ⊇ αS(anSβ) = αS(anS(bm−1gm−1 + · · ·+ b1g1)).

So anR(bm−1gm−1 + · · · + b1h1) ⊆ rS(αS). Now take β to be anRβ. Since

length(β) = n−1, and αSβ = 0 this contradicts with the assumption that β has
minimal length such that αSβ = 0. Thus β = 0 and we have anS(bm−1hm−1+
· · · + b1h1) = 0. Therefore anRbj = 0, 1 ≤ j ≤ m. Hence (an−1gn−1 + · · · +
a1g1)S(bmhm + · · · + b1h1) = 0. Since M is a u.p.-monoid there exist i, j
with 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ m such that gihj is uniquely presented
by considering two subsets A = {g1, . . . , gn−1} and B = {h1, . . . , hm} of M .
We may assume without loss of generality that i = n − 1, j = m, and so
an−1σgn−1

(Rbm) = 0. Thus we have αS(an−1S(bm−1hm−1 + · · · + b1h1)) =
α(San−1S)β = 0. Since β is a nonzero element with minimal length in rS(αS),
we have an−1S(bm−1hm−1 + · · · + b1h1) = 0. Therefore an−1Rbj = 0, 1 ≤
j ≤ m. Repeating this process, we have aiRbj = 0 for all i, j. So aigiRbj = 0
and aiRlkbj = 0, gi, lk ∈ M , since R is M -weakly rigid. This implies that
b1, . . . , bm ∈ rR(αS). This is also a contradiction and hence the result follows.

�

Corollary 3.5. Let R be a ring and let σi be a weakly rigid endomorphism

of R such that σiσj = σjσi for each i, j. Assume that S is either the skew

polynomial ring R[x1, . . . , xn;σ1, . . . , σn] or the skew Laurent polynomial ring

R[x1, . . . , xn, x
−1
1 , . . . , x−1

n , σ1, . . . , σn]. If rS(fS) 6= 0, then rS(fS)∩R 6= 0 for

each f ∈ S.

Proposition 3.6. Let R be a ring, let M be a u.p.-monoid with |M | ≥ 2 and

let σ : M → End(R) be a monoid homomorphism such that the ring R is M -

weakly rigid. Then S = R ∗M has right Property (A) if and only if whenever

αS ⊆ Zl(S), rS(αS) 6= 0.
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Proof. We adopt the proof of [27, Lemma 2.8]. Let I =
∑k

i=1 SαiS ⊆ Zl(S),
where αi = ai1gi1 + ai2gi2 + · · · + aini

gini
. By Proposition 2.24, there exist

l1, . . . , lk ∈ M such that α1l1, α2l2, . . . , αklk are distinct. Put β = α1l1 +
α2l2+ · · ·+αklk ∈ I. Thus βS ⊆ I. By hypothesis, rS(βS) = rS(SβS) 6= 0. So
rS(SβS) ∩ R 6= 0, by Theorem 3.4. Thus for some nonzero r ∈ R, SβSr = 0.
Since RβR ⊆ SβS and R is M -weakly rigid, we have RaijRr = 0. Thus

RtkaijgjRhmr = 0 for tk, gj , hm ∈ M . So Ir = (
∑k

i=1 SαiS)r = 0. Therefore
S has right Property (A). The converse is clear. �

Corollary 3.7. Let R be a ring and let σi be a weakly rigid endomorphism

of the ring R such that σiσj = σjσi for each i, j. Assume that S is the

ring R[x1, x2, . . . , xn;σ1, . . . , σn] or R[x1, x2, . . . , xn, x
−1
1 , . . . , x−1

n ;σ1, . . . , σn].
Then S has right Property (A) if and only if whenever fS ⊆ Zl(S), rS(fS) 6= 0
for each f ∈ S.

Corollary 3.8 ([27, Lemma 2.8]). For a ring R, R[x] has right Property (A)
if and only if whenever f(x)R[x] ⊆ Zl(R[x]), rR[x](f(x)R[x]) 6= 0.

There exists a ring R which does not have Property (A) whose the poly-
nomial ring R[x] has Property (A). For, the polynomial ring R[x] over any
commutative ring R has Property (A) [29, Theorem 1], and there is a commu-
tative ring R which does not have Property (A).

Theorem 3.9. Let R be a ring, let M be a u.p.-monoid and let σ : M →
End(R) be a monoid homomorphism such that the ring R is M -compatible. If

R is strongly right AB and right skew M -McCoy, then R∗M has right Property

(A).

Proof. Put S = R ∗ M and let X = αS ⊆ Zl(S), where α = a0g0 + a1g1 +
· · ·+ angn. By hypothesis, there exists β ∈ R ∗M such that αβ = 0. Since R
is M -compatible and right skew M -McCoy, there exists 0 6= c ∈ R such that
aic = 0 for each i. Since R is strongly right AB, there exists an ideal J such
that aiJ = 0 for each i. So for every 0 6= d ∈ J , aiRd = 0 for each i. Since R is
M -compatible, we have αSd = 0. This implies that R ∗M has right Property
(A), by Proposition 3.6. �

Corollary 3.10. Let R be a strongly right AB, skew McCoy ring and let

σi be a compatible endomorphism of R for each 1 ≤ i ≤ n. Assume that

σiσj = σjσi for each 1 ≤ i, j ≤ n. Then the rings R[x1, x2, . . . , xn;σ1, . . . , σn]

and R[x1, x2, . . . , xn, x
−1
1 , . . . , x−1

n , σ1, . . . , σn] have right Property (A).

Corollary 3.11. Let R be a right duo ring, let M be a u.p.-group and let σ :
M → Aut(R) be a group homomorphism such that the ring R is M -compatible.

Then R ∗M has right Property (A).

Proof. It is clear that the right duo ring R is strongly right AB. Moreover, R
is right skew M -McCoy by Theorem 2.27. So the result follows from Theorem
3.9. �
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Corollary 3.12. Let R be a right duo ring and let σi be a compatible endo-

morphism of R such that σiσj = σjσi for each 1 ≤ i, j ≤ n. Then the rings

R[x1, x2, . . . , xn;σ1, . . . , σn] and R[x1, x2, . . . , xn, x
−1
1 , . . . , x−1

n , σ1, . . . , σn] have
right Property (A).

Corollary 3.13. If R is a right duo ring, then the rings R[x1, x2, . . . , xn] and
R[x1, x2, . . . , xn, x

−1
1 , . . . , x−1

n ] have right Property (A).

Corollary 3.14. Let R be a CN -ring and let σi be a compatible endomorphism

of R such that σiσj = σjσi for each i, j. Then the rings R[x1, x2, . . . , xn;σ1, . . .,

σn] and R[x1, x2, . . . , xn, x
−1
1 , . . . , x−1

n , σ1, . . . , σn] have right Property (A).

Corollary 3.15. Let R be a semicommutative and right skew M -McCoy ring,

let M be a u.p.-monoid and let σ : M → End(R) be a monoid homomorphism

such that the ring R is M -compatible. Then R ∗M has right Property (A).

Corollary 3.16. Let R be a semicommutative skew McCoy ring and let σi be

a compatible endomorphism of R with σiσj = σjσi for each i, j. Then the rings

R[x1, x2, . . . , xn;σ1, . . . , σn] and R[x1, x2, . . . , xn, x
−1
1 , . . . , x−1

n , σ1, . . . , σn] have
right Property (A).

Corollary 3.17. If R is a semicommutative right McCoy ring, then the rings

R[x1, x2, . . . , xn] and R[x1, x2, . . . , xn, x
−1
1 , . . . , x−1

n ] have right Property (A).

Corollary 3.18 ([27, Proposition 2.10]). If R is a semicommutative and right

McCoy ring, then R[x] has right Property (A).

Corollary 3.19. Let R be a reversible ring, let M be a u.p.-monoid and let

σ : M → End(R) be a monoid homomorphism such that R is M -compatible.

Then R ∗M has right Property (A).

Corollary 3.20. Let R be a reversible ring and let σi be a compatible endo-

morphism of R such that σiσj = σjσi for each 1 ≤ i, j ≤ n. Then the rings

R[x1, x2, . . . , xn;σ1, . . . , σn] and R[x1, x2, . . . , xn, x
−1
1 , . . . , x−1

n , σ1, . . . , σn] have
right Property (A).

Corollary 3.21 ([27, Corollary 2.11]). If R is a reversible ring, then R[x] has
right Property (A).

Theorem 3.22. Let R be a ring, let M be a u.p.-monoid and let σ : M →
Aut(R) be a monoid homomorphism such that the ring R is M -compatible. If

R ∗M is strongly right AB, then R ∗M has right Property (A).

Proof. LetX = αS ⊆ Zl(S), where α = a0g0+a1g1+· · ·+angn. By hypothesis,
there exists β ∈ R ∗M such that αβ = 0. Since R is M -compatible and right
skew M -McCoy, there exists 0 6= c ∈ R such that aic = 0 for each i. Since
R ∗ M is strongly right AB, by 2.30, R is strongly right AB, so there exists
an ideal J such that aiJ = 0. So for every 0 6= d ∈ J , aiRd = 0 for each i.
Since R is M -compatible, we have αSd = 0. This implies that R ∗M has right
Property (A), by Proposition 3.6. �
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Corollary 3.23. Let S be either the ring R[x1, x2, . . . , xn;σ1, . . . , σn] or the

ring R[x1, x2, . . . , xn, x
−1
1 , . . . , x−1

n , σ1, . . . , σn] with σiσj = σjσi for each 1 ≤
i, j ≤ n. Assume that S is a strongly right AB ring and σi is a compatible

automorphism of R, 1 ≤ i ≤ n. Then S has right Property (A).

Corollary 3.24. If either R[x] or R[x, x−1] is a strongly right AB ring, then

R[x] and R[x, x−1] have right Property (A).
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