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ON ANNIHILATIONS OF IDEALS
IN SKEW MONOID RINGS

RASUL MOHAMMADI, AHMAD MOUSSAVI, AND MASOOME ZAHIRI

ABSTRACT. According to Jacobson [31], a right ideal is bounded if it con-
tains a non-zero ideal, and Faith [15] called a ring strongly right bounded
if every non-zero right ideal is bounded. From [30], a ring is strongly
right AB if every non-zero right annihilator is bounded. In this paper,
we introduce and investigate a particular class of McCoy rings which sat-
isfy Property (A) and the conditions asked by Nielsen [42]. It is shown
that for a u.p.-monoid M and o : M — End(R) a compatible monoid
homomorphism, if R is reversible, then the skew monoid ring R * M is
strongly right AB. If R is a strongly right AB ring, M is a u.p.-monoid
and o : M — End(R) is a weakly rigid monoid homomorphism, then the
skew monoid ring R * M has right Property (A).

1. Introduction

Throughout this article, all rings are associative with identity. Recall that
a monoid M is called a u.p.-monoid (unique product monoid) if for any two
nonempty finite subsets A, B C M there exists an element g € M uniquely
presented in the form ab where a € A and b € B. Unique product monoids
and groups play an important role in ring theory, for example providing a
positive case in the zero-divisor problem for group rings (see also [6]), and
their structural properties have been extensively studied (see [17]). The class
of u.p.-monoids includes the right and the left totally ordered monoids, sub-
monoids of a free group, and torsionfree nilpotent groups. Every u.p.-monoid
S is cancellative and has no non-unity element of finite order.

Let R be a ring, let M be a monoid and let ¢ : M — End(R) a monoid
homomorphism. For any g € M, we denote the image of g under o by o4. Then
we can form a skew monoid ring R+ M (induced by the monoid homomorphism
o) by taking its elements to be finite formal combinations geM Ggg With
multiplication induced by (ag9)(brh) = ag04(bp)gh.
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According to Jacobson [31], a right ideal of R is bounded if it contains a non-
zero ideal of R. From [18], a ring R is right (left) duo if every right (left) ideal
is an ideal, and Faith [13] said a ring would be called strongly right bounded if
every non-zero right ideal were bounded. The class of strongly bounded rings
has been observed by many authors (e.g. [7], [31], [48], [49]).

Due to H. Bell [5], a ring R is said to have the insertion of factors property
(simply, IFP) if ab = 0 implies aRb = 0 for a,b € R. Note that a ring R has
IFP if and only if any right (or left) annihilator is an ideal. Rings with IFP
are also called semicommutative, see [11]. Right (resp. left) duo rings are both
strongly right (resp. left) bounded and semicommutative.

In [30], S. U. Hwang, N. K. Kim and Y. Lee introduced a condition that is
a generalization of strongly bounded rings and semicommutative rings, calling
a ring strongly right AB if every non-zero right annihilator is bounded. An
element ¢ of R is called right regular if rg(c) = 0, left regular if [r(c) = 0 and
regular if rg(c) = 0 = lg(c).

According to [7], a ring R is called 2-primal if the prime radical of R and the
set of nilpotent elements of R coincide. Another property between commutative
and 2-primal is what Cohn in [10] calls reversible rings: those rings R with the
property that ab = 0 = ba = 0 for all a,b € R. We direct the reader to the
excellent papers [1] and [38] for a nice introduction to some standard zero-
divisor conditions.

There is another important ring theoretic condition common in the literature
related to the zero divisor and annihilator conditions we have been studying.
Neilsen in [42], calls a ring R right McCoy (resp. left McCoy) if for each
pair of non-zero polynomial f(z),g(x) € R[z] with f(z)g(z) = 0, then there
exists a non-zero element r € R with f(x)r = 0 (resp. rg(z) = 0). Neilsen
[42] asked whether there is a natural class of McCoy rings which includes all
reversible rings and all rings R such that R[z] is semicommutative. We use this
to define a new class of rings strengthening the condition for reversible rings.
This property between “reversible” and “McCoy” is what we call nil-reversible
rings. We say a ring R is nil-reversible, if ab =0 < ba = 0, where b € nil(R).

An important theorem in commutative ring theory, related to zero-divisor
conditions, is that if I is an ideal in a Noetherian ring and if I consists entirely
of zero divisors, then the annihilator of I is nonzero. This result fails for some
non-Noetherian rings, even if the ideal I is finitely generated. Huckaba and
Keller [29], say that a commutative ring R has Property (A) if every finitely
generated ideal of R consisting entirely of zero divisors has nonzero annihilator.
Many authors have studied commutative rings with Property (A) ([3], [22],
[28], [29], [36], [45], etc.), and have obtained several results which are useful
studying commutative rings with zero-divisors. Hong, Kim, Lee and Ryu [27]
extended Property (A) to noncommutative rings, and study such rings and
several extensions with Property (A).

In this paper, we investigate a particular class of McCoy rings which satisfy
Property (A) and the conditions asked by Nielsen [42]. Whenever the skew
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monoid ring R * M is strongly right AB and rr.«n(Y) # 0, then rg(Y) # 0,
for any Y C R M. We then conclude that, nil-reversible rings is a larger
class than the class asked by Nielsen [42], and satisfies the conditions. Indeed,
nil-reversible rings is a natural class of McCoy rings which includes reversible
rings, all rings R such that R[z] is strongly right (or left) AB (and hence all
rings R such that R[x] is semicommutative).

We prove that for a u.p.-monoid M and ¢ : M — End(R) a compatible
monoid homomorphism, if R is nil-reversible, then the skew monoid ring R M
is strongly right AB. If R is strongly right AB, M a u.p.-monoid and ¢ : M —
End(R) a weakly rigid monoid homomorphism, then R M has right Property
(4).

It is also shown that, when M is a u.p.-group and o : M — Aut(R) is a
group homomorphism such that the ring R is M-compatible and right duo,
then R is right skew M-McCoy. Also, if R« M is strongly right AB, then R
is right skew M-McCoy and R * M has right Property (A). Whenever R is
strongly right AB and skew M-Armendariz, then R x M is strongly right AB.
Moreover, if R is strongly right AB and right skew M-McCoy, then R M has
right Property (A).

Whenever R is a right duo ring and o; is a compatible automorphism of R
and 0,05 = 0;0; for each ¢, j, then R is right skew McCoy. This implies that, if
R is a right duo ring, then the rings R[zy, 2, ..., 2,] and R[z1, zo,. .., 2n, 27,
...,x,;1] have right Property (A), which also gives an answer to a question
asked in [27].

For any non-empty subset X of R, annihilators will be denoted by rr(X)
and [r(X). We write Z;(R), Z,(R) for the set of all left zero-divisors of R and
the set of all right zero-divisors of R. The set of all nilpotent elements of R are
denoted by nil(R). For any & = a191 + - - - + am@gm € R*x M (a; # 0 for each i),
we call m, the length of a and we denote by C\ the set of all coefficients of a.

2. Rings whose right annihilators are bounded

According to Jacobson [31], a right ideal of R is bounded if it contains a
non-zero ideal of R. This concept has been extended in several ways. From
Faith [13], a ring R is called strongly right (resp. left) bounded if every non-zero
right (resp. left) ideal of R contains a non-zero ideal. A ring is called strongly
bounded if it is both strongly right and strongly left bounded. Right (resp.
left) duo rings are strongly right (resp. left) bounded and semicommutative.
Birkenmeier and Tucci [7, Proposition 6] showed that a ring R is right duo if
and only if R/I is strongly right bounded for all ideals I of R.

A ring R is called right (resp. left) AB if every essential right (resp. left)
annihilator of R is bounded.

Definition 2.1 ([30]). A ring R is called strongly right (resp. left) AB if every
non-zero right (resp. left) annihilator of R is bounded; R is called strongly AB
if R is strongly right and strongly left AB.
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Obviously strongly right bounded rings and semicommutative rings are both
strongly right AB, but the converses need not be true (see [30]).

Definition 2.2. We say a ring R is nil-reversible, if for every a € R, b € nil(R),
ab=0 % ba=0.

Reversible rings are clearly nil-reversible. In [39] the authors called a ring
R nil-semicommutative if for every a,b € nil(R),ab = 0 implies aRb = 0.
Obviously, every nil-reversible ring is nil-semicommutative, so nil-reversible
rings form a proper subclass of the class of 2-primal rings, by [39, Lemma 2.7].

According to Krempa [34], an endomorphism « of a ring R is said to be
rigid if aa(a) = 0 implies @ = 0 for @ € R. A ring R is said to be a-rigid
if there exists a rigid endomorphism « of R. In [21], the authors introduced
a-compatible rings and studied their properties. A ring R is a-compatible if
for each a,b € R, ab = 0 if and only if aa(b) = 0. Basic properties of rigid and
compatible endomorphisms, proved by Hashemi and the second author in [21,
Lemmas 2.2 and 2.1].

Let R be a ring, M a monoid and ¢ : M — End(R) a monoid homomor-
phism. The ring R is called M-compatible if o4 is compatible for every g € M.

The following lemma which appeared in [21, Lemma 3.2] will be helpful in
the sequel.

Lemma 2.3. Let R be an a-compatible ring. Then we have the following:
(1) If ab =0, then aa™(b) = a™(a)b = 0 for all positive integers n.
(2) If &*(a)b = 0 for some positive integer k, then ab = 0.
(3) If ab € nil(R), then aa(b) € nil(R) for all a,b € R.

Lemma 2.4. Let R be a ring, M a u.p.-monoid and o : M — End(R) a
compatible monoid homomorphism. Then we have the following:

(1) ab € nil(R) < aoy(b) € nil(R) for all a,b € R and all g € M,

(2) abc =0 < aoy(b)e =0 for all a,b,c € R and all g € M.

Proof. The proof is similar to the proof of [44, Lemma 2.4]. O

Lemma 2.5 ([19, Theorem 4.4]). Let R be a 2-primal ring, let M be a u.p-
monoid and let o : M — End(R) be a monoid homomorphism such that the
ring R is M-compatible. Then nil(R * M) = nil(R) * M.

Theorem 2.6. Let R be a nil-reversible ring, let M be a u.p.-monoid and
let o : M — End(R) be a monoid homomorphism such that the ring R is
M -compatible. Then R M is a strongly AB ring.

Proof. We prove the right case, the proof of the left case is similar. Suppose
X C R+ M and rrepn (X) #0. Let X5 =0, for some § = bihy + boha + -+
bnhy, € R M with minimal length.

Case 1: 8 € nil(R * M). We show that Xb; = 0 for every 1 < j < n.
Assume, on the contrary, that Xb; # 0 for some 1 < k < n. Then there
exists a € X such that aby # 0, where a = a191 + -+ - + @mgm. On the
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other hand we have af = 0. Since M is a u.p.-monoid, there exist ¢, with
1 <7< mand1<j<nsuch that g;h; is uniquely presented by considering
two subsets A = {g1,...,9m} and B = {hq,...,h,} of M. We may assume
without loss of generality that ¢ = j = 1. Then a0y, (b1) = 0, as g1hy is
uniquely presented. Since R is M-compatible nil-reversible and by Lemma 2.4,
bia; = 0. Now take 3 to be Sa;. But § has n — 1 terms and a8 = 0, which
contradicts to our assumption that § has minimal length such that a8 = 0,
thus 8 = 0. By nil-reversibility of R, a;5 = 0, and from o3 = 0 we get
(agg2+- - +amgm)(b1h1+baha+- - -+byh,) = 0. Continuing in this way we can
show that a;8 = 0 for each 1 < ¢ < m, which contradicts with our assumption
that aby # 0. Thus Xb; = 0, 1 < j < n, and this implies XRb; = 0, as
nil(R « M) = nil(R) * M by Lemma 2.5 and R is M-compatible nil-reversible.
So for every v = c1li+- - -+cply, € R+ M, Xcpoy, () =0,1<j<n, 1<t <k
Therefore X (R * M)b; =0, and so R * M is strongly right AB.

Case 2: 8 ¢ nil(R x M). Then we have two subcases:

(i) pCx # 0 (we denote by Cx the set of all coefficients of elements of
X). In this case there exists a € Cx such that Sa # 0. Then there exists
vy=cli+- - +clp € X with a € C,. From X =0, we get 75 = 0. Since
nil(R) is an ideal of R, it is easy to see that ¢;b; € nil(R), 1 <i<k,1<j<n.
Hence bja € nil(R) and that Sa € nil(R * M). As X = 0, we have Xfa =0
and reduce to the previous case.

(ii) BCx = 0. When XRb; = 0 for some 1 < j < n, there is nothing to
prove. Now assume that X Rb; # 0 for all 1 < j < n. Then for some o = a191+
coFamGm € X, aRb; # 0. So apgrrp # 0 for some r € Rand 1 < k < m. Since
BCx = 0, we have apgrr8Cx = 0. On the other hand Bax = 0, as fCx = 0.
So apog, (rCg) € nil(R), and hence by nil-reversibility CxargrrCp = 0. Thus
CxRaprCg = 0, by nil-reversibility and M-compatibility of R. So for every
vy=cili+--+cgly € Rx M, Cxcior,(aprCp) = 0, 1 <t < k. This shows that
X (R x M)agr =0 and we are done. O

Clearly every nil-reversible ring is strongly AB.

Corollary 2.7. Let R be a nil-reversible ring and let o; be a compatible endo-

morphism of R. Assume that 0,05 = o0, for each i, j. Then the skew polyno-
—1.

mial rings R[x1,T2,...,Tn;01,...,0,] and Rlxi,@a, ... 2n, 27 ... 20 01,
..., 0n] are strongly AB.
Corollary 2.8. If R is a nil-reversible ring, then the rings R[xi,xa,...,%y)

and Rl[x1,22,..., o0, 27", ..., 2, ] are strongly AB.

rn

Corollary 2.9. Let R be a reversible ring, let M be a u.p.-monoid and let
o : M — End(R) be a monoid homomorphism such that the ring R is M-
compatible. Then Rx M is a strongly AB ring.

Right (resp. left) duo rings are both strongly right (resp. left) bounded and
semicommutative. By M. P. Darzin [12] a ring R is a C' N-ring whenever every
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nilpotent element of R is central. D. Khurana et al. [33], introduced the notion
of unit-central rings (i.e., every invertible element of it lies in center), and
show that each unit-central ring is a C'N-ring. It is clear that C'N-rings and
reversible rings are nil-reversible.

Corollary 2.10. Let R be a CN-ring, let M be a u.p.-monoid and let o : M —
End(R) be a monoid homomorphism such that the ring R is M -compatible.
Then R M is a strongly AB ring.

Corollary 2.11. Let R be a CN-ring, let o; be a compatible endomorphism of
R such that o,0; = ojo; for each i,j. Then the rings Rl[x1,%2,...,Tn;01,. ..,
—1.

-1
on] and Rlx1, T2, ..., Tn, T] ..., &, ;01,...,04,] are strongly AB.

Corollary 2.12. If R is a CN-ring, then the polynomial rings R[x1,xa,. .., Ty)
and R[xy, T2, ..., T 27 ... 2 Y] are strongly AB.

A ring R is called Armendariz if whenever polynomials f(z) = .1 a;2’,

glx) = Z;":O bjaz’ satisfy f(z)g(z) =0, then a;b; = 0 for each 4, j. This defini-
tion was given by Rege and Chhawchharia in [46] using the name Armendariz
since E. Armendariz had proved in [2] that reduced rings satisfied this condi-
tion. Also, by Anderson and Camillo [1, Theorem 4], a ring R is Armendariz
if and only if so is R|x].

Definition 2.13 ([19, Definition 3.1]). Let R be a ring, let M be a monoid
and let 0 : M — End(R) be a monoid homomorphism. A ring R is called
skew M -Armendariz, if whenever elements o = a191 + asgo + -+ + angn, B =
bih1 +baho + -+ - + bihim € R * M satisfy o = 0, then a,;0,,(b;) = 0 for each
i,].

Proposition 2.14. Let R be a skew M-Armendariz ring, let M be a u.p.-
monoid and let o : M — End(R) be a monoid homomorphism. Then R is
reversible and M -compatible if and only if R+ M is reversible.

Proof. Let a = a191 + asgs + -+ + angn and B = bihy + bohs + - - - + by hy be
non-zero elements of R x M, such that o = 0. Since R is M-Armendariz, we
have a;04,(b;) = 0. By M-compatibility of R, a;b; = 0. Since R is reversible
and M-compatible, b;joy,(a;) = 0. So fa = 0 and R * M is reversible. The
converse is clear since reversible rings are closed under subring. It follows from
[37, Lemma 4.4(ii)] that if R * M is reversible, then R is M-compatible. O

Corollary 2.15. Let R be a 0;-skew Armendariz ring and let o; be a compati-
ble endomorphism of R for each i. Assume that o;0; = 0j0; for each i,j. Then

R is reversible if and only if the skew polynomial ring Rlx1,xa,...,Tn;01,. ..,
. . . . -1 _ .

on] is reversible if and only if Rlx1, @2, ..., Tn, @] .. 2yt 01,0, 00] i Te-

versible.

Definition 2.16. Let R be a ring, let M be a monoid and let ¢ : M — End(R)
be a monoid homomorphism. We say a ring R is right skew M-McCoy if
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whenever 0 £ o = a1g1 + -+ + angn,0# B =brhy1 + -+ + bphy € R+ M with
gishj € M, a;,b; € R satisfy af = 0, then ar = 0 for some nonzero r € R.
Left skew M -McCoy rings are defined similarly. If R is both left and right skew
M-McCoy, then we say R is skew M -McCoy.

Theorem 2.17. Let R be a ring, let M be a u.p.-monoid and let o : M —
Aut(R) be a monoid homomorphism. If S = Rx M is strongly right AB and
rs(Y) #0, then rp(Y) #0 for any Y C S.

Proof. Suppose Y C R+ M and rrep(Y) # 0. Let Y’ be the right ideal of
R x M generated by Y. Since R x M is strongly right AB and rgr.«(Y) # 0; it
follows that rr.as(Y”) # 0. Hence by [26, Theorem 3] we have rr(Y’) # 0 and
thus rr(Y) # 0. O

Corollary 2.18. Let R be a ring and let o; be an automorphism of R such
that o,0; = ojo; for each i,j. Let S be either Rlx1,x2,...,2Zn;01,...,04]
or Rlxy,xa, ..., xp, 2] . x5 00, .. 00]. If S is strongly right AB and

rs(Y) #0, then rr(Y) #0 for any Y C S.

Corollary 2.19. Let R be a ring, let M be a u.p.-monoid and let o : M —
Aut(R) be a monoid homomorphism. If S = RxM is nil-reversible and rg(Y') #
0, then rr(Y) #0 for any Y C S.

Corollary 2.20. Let R be a ring, let M be a u.p.-monoid and let o : M —
Aut(R) be a monoid homomorphism. If S = Rx M is a reversible ring and
rs(Y) #0, then rr(Y) #0 for any Y C S.

Corollary 2.21. Let R be a ring and let M be a u.p.-monoid and let o : M —
Aut(R) be a monoid homomorphism. If R x M is a strongly right AB ring,
then R is a right skew M-McCoy ring.

Corollary 2.22. If the polynomial ring R[x] is strongly right AB, then R is a
right McCoy ring.

Corollary 2.23. The class of McCoy rings includes nil-reversible rings and
all rings R such that R[z] is strongly right AB.

Therefore, we conclude that, nil-reversible rings is a larger class of rings
which satisfy the conditions asked by Nielsen [42]. Indeed, nil-reversible rings
is a natural class of McCoy rings which includes reversible rings, C'N rings, all
rings R such that R[z] is strongly right (or left) AB (and hence all rings R
such that R[z] is semicommutative).

Lemma 2.24. Let M be a u.p.-monoid, |M| > 2 and oy, sz, ..., 0, € Rx M.
Then there exist ki, ko, ..., k, € M such that arky,...,a,k, are distinct.

PTOOf. Let ;= Q41 hgz) +a12h§) + - +azmh7(;) and put Az = {h,gz), hg), ceey h’ﬁ:z)}
for 1 <i <mn. Let 1 <t <n be maximal number such that Ay, As, ..., A; are
disjoint. In this case we take, k1 = ko = --- = k; = epy. We need to assume that
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|A;| > 2 for each i. Now take ep; # hgtﬂ) € Apy1,1 <s<n(t+1). We claim

that there exists a positive integer m;,1 such that A, Ag,. .., At+1(hgt+1))mt+1

are disjoint, otherwise for some h;”l) € Ayq we get hg-tﬂ) (hgtﬂ))k € Ule A;,
for all positive integers k. This follows a contradiction, since by [6, Lemma 1.1],
u.p.-monoids are cancellative. So hl(.Hl)(hgtH))pli ¢ Uf.zl A; for some positive
integers [; and each p € N, 1 < i < n(t+1). Therefore Ay, As, ..., At, Arp1kei1

are disjoint, where ki1 = (hgtﬂ))mt+1 with myp1 = lila--lp41)- By a
similar method as above there exist k12, ..., &k, € M such that a1 k;,...,ak,
are distinct. O

Lemma 2.25. Let R be a semicommutative ring, let M be a u.p.-group and
o : M — End(R) be a monoid homomorphism such that the ring R is M-
compatible. Assume that « = a1g1+asgs+- -+ amgm and 5 = brhy+---+bphy,
are non-zero elements of R M such that a8 = 0. Then there exists a; € Cy
such that ai! 8 = 0.

Proof. Let a = a191+- - -+amgm and 8 = byhy+- - -+b,h, be non-zero elements
of R M. Since M is a u.p.-group, there exist i, j,¢,k with 1 < i < m and
1 <t,75,k < n such that gihthj_lhk is uniquely presented by considering two
subsets A = {g1,...,9m} and B = {hthj_lhk :1<t,5,k <n} of M. We may
assume without loss of generality that i = j = k =t = 1. Hence a0y, (b1) = 0.
Since R is M-compatible, we have a1b; = 0. By semicommutativity of R, 0 =
araf = (a2g1+- -+ a1amgm)(brh1+- - -+byhy) = (a2g1+- - -+ a1amGm)(b2ha+
-o+ + byhy). Since M is u.p.-group, 0 = (a%g1 + -+ + a1amgm)(b2ha + - +
bohn)hythy = (a3g1 + -+ 4 a1amGm)(bahy + - -+ + byhyhy thy). Since gihy is
uniquely presented, a?by = 0. Then by a similar argument as above and since
R is semicommutative, we have 0 = afa8 = (ajg1 + -+ a?amgm)(br1h1 +- -+
buhn) = (a3g1 + -+ a2amgm)(bshs + - - - + byhy, ). Continuing this process, we
can deduce that a8 = 0. We consider ¢ = 1, so there exist a; € C, such that
a8 =0. O

Corollary 2.26. Let R be a semicommutative ring and o be an automorphism
of R. Assume that R is a-compatible. Also let f(x) = ap + a1z + -+ + ana™
and g(z) = bo+ b1z - -+ ama™ be non-zero elements of Rlx,x~1;a] or Rlx;al,
such that f(x)g(x) = 0. Then there exists a; € Cy such that a]*g(z) = 0.

In [27], Hong, Kim and Lee, asked a question that, if R is a right duo ring
does R[z] have right Property (A)? In Corollary 3.12, we show that, if R is
a right duo ring, then the rings R[z1,z2,...,2,] and R[z1,2a,..., 20,27, ..,
x,; '] have right Property (A). We need the following result which is a general-
ization of [8, Theorem 8.2] to the more general setting:

Theorem 2.27. Let R be a ring, let M be a u.p.-group and let o : M — Aut(R)
be a group homomorphism such that the ring R is M -compatible. If R is a right
duo ring, then R is right skew M -McCoy.
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Proof. We apply the method of Camillo and Nielsen in the proof of [8, Theorem
8.2]. For every v € R+ M we let I, denote the right ideal generated by the
coefficients of 7. Suppose o, € R* M with af = 0 and S # 0. We will
prove, by induction on the length of «, that there is some non-zero element in
I which annihilates a on the right. Write o = 327" a;9; and 8 = 3_7_, bjh;.
First, if & = a191, then
(algl)(blhl + bohg + -+ - 4+ bphy) = 0.

Since M is a u.p.-group, there exist ¢, 7, k, such that glhihjflhk is uniquely
presented by considering two subsets A = {g1} and B = {hihjflhk 11 <
i,7,k <n} of M. We may assume without loss of generality that i = j = k = 1.
Hence 4104, (bl) =0.S00= (algl)(blhl + b2h2 + -4 bnhn) = (algl)(bghg +
-+ 4+ bphy). Since M is a u.p.-group, 0 = (a1¢1)(b2h2 + -+ + bnhn)hglhl =
(a191)(bahi+- - -+bnhnh2_1h1). Since g1 b1 is uniquely presented, a0y, (b2) = 0.
Continuing this process and since R is M-compatible, we have ab; = 0, for
each j. Let length(a) > 2.

Since duo rings are semicommutative, there exists 1 < [ < m satisfying
a?flbj # 0 = a]'b; by Lemma 2.25. We then have the following.

Case (i): Suppose ;8 = 0. This implies a;Ig = 0. In this case we set
a1 = a— aig; and find a8 = 0. But length(a;) < length(a), and hence by
induction there exists a non-zero element b € Ig satisfying ayb = 0, whence
ab=0.

Case (ii): Suppose a;8 # 0. Then a;b; = 0 for some b, € Cp. Let a;b; # 0.
Since R is right duo, there exists »r € R with a?‘lbj = bjr. If we let 31 =
ﬁag_jl(r), then clearly a8; = 0, and (0) # I, C Ig. This means we can replace
B by By without any loss of generality. By construction, a; annihilates the first
7 coefficients of 31, so after repeating this process a finite number of times we

reduce to the previous case. 1
Let S be either the skew polynomial ring R[z1,...,%n;01,...,0,] or the
skew Laurent polynomial ring R[z1,...,2n, 27", ... 25, 01,...,0,]. We say

the ring R is skew McCoy, when the equation f(x)g(z) = 0 over S, where
f(x),g(x) # 0 implies there exists a nonzero r € R with f(z)r = 0.

Corollary 2.28. Let R be a right duo ring, let o; be a compatible automorphism
of R such that 0,05 = 00, for each i,j. Then R is skew McCoy.

Corollary 2.29 ([8, Theorem 8.2]). Every right duo ring is right McCoy.

Theorem 2.30. Let R be a M-compatible ring, let M be a u.p.-monoid and
let 0 : M — End(R) be a monoid homomorphism. If R is skew M -Armendariz
and strongly right AB, then R M is strongly right AB.

Proof. We adopt the proof of [30, Proposition 4.6]. Assume R is strongly right
AB and X C R* M with rr.p(X) # 0 and let C' be the set of all coefficients
of the elements of X. Take non-zero & = a1g1 + a2g2 + - - + angn € rrem (X).
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Then for any 8 = bihy + bohy + -+ 4+ byhy, € X, Ba = 0. Since R is skew
M-Armendariz and M-compatible, b;a; = 0 for all ¢,5. Thus a; € rg(C),
1 < j < n, entailing rg(C) # 0. Since R is strongly right AB, there exists a
non-zero ideal I of R such that rg(C) 2 I. So CRt = 0 for each 0 # ¢t € I.
By M-compatibility of R, X(R + M)t = 0. Therefore R * M is strongly right
AB. O

Proposition 2.31. Let R be a ring, let M be a u.p.-monoid and let o : M —
End(R) be a monoid homomorphism such that the ring R is M -compatible. If
R« M is strongly right AB, then R is right skew M-McCoy and strongly right
AB.

Proof. We adopt the proof of [30, Proposition 4.6]. Suppose that S = R M is
strongly right AB. Let X C R with (X)) # 0. Note that rp(X) = rg(X)NR.
Since rr(X) # 0, we get rg(X) # 0. But S is strongly right AB, so there is a
non-zero ideal L of S such that rg(X) D L. For every v = c1ly+cala+- - +cly €
L, SyS C L. So XRy C XSy =0. This implies that X Rec;, = 0,1 < k <t. So
rr(X) 2 RexR. Therefore R is strongly right AB. O

Corollary 2.32. Let R be a 0;-skew Armendariz ring for each i and let o; be
a compatible endomorphism of R such that 0,0; = 00, for each i,j. Then R is
strongly right AB if and only if R[x1,...,%n;01,...,0,] s strongly right AB
if and only if R[x1,. .., xn, 27", ... 25  01,...,04] is strongly right AB.

sbn

Corollary 2.33 ([30, Proposition 4.6]). Let R be an Armendariz ring. Then
R is strongly right AB if and only if R[x] is strongly right AB.

Let R be a ring and o denotes an endomorphism of R with o(1) = 1. We
denote the identity matrix and unit matrices in the full matrix ring M, (R), by
I, and E;j, respectively. In [35], T. K. Lee and Y. Zhou introduced a subring of
the skew triangular matriz ring as a set of all triangular matrices T,,(R), with
addition pointwise and a new multiplication subject to the condition F;;r =
UJfZ(T).Eij. So (a”)(b”) = (Cij); where Cij = aiibij + ai7i+1o(bi+11j) + -+
a;jo? 7" (bj;) for each i < j and denoted it, by T, (R, o).

Let R be a ring with an endomorphism ¢. Consider the following subset of
triangular matrices T, (R, o), denoted by

ay a2 as ... QA
0 a1 az ... ap-1
T(R,TL,O’) — 0 0 a ... Qapn—2 |ai cR
0O 0 0 ... a
with n > 2. It is easy to see that T'(R,n,o) is a ring with matrix addition
and multiplication. We can denote elements of T' (R, n;o) by (a1, as,...,a,),

then T'(R,n;o) is a ring with addition pointwise and multiplication given by
(ao, ceey an_l)(bo, ceey bn—l) = (aobo, ap*br1+ay*bg, ..., ag*kby,_1+- - -+an_1*b0),
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with a;xb; = a;0"(b;) for each i and j. In the special case, when o = idg, we use
T(R,n) instead of T(R,n, o). On the other hand, there is a ring isomorphism
¢ : Rlz;0]/(x™) = T(R,n,0), given by @(Z?;Ol a;z') = (ag,a,...,a,—1). So
T(R,n,0) = Rlz;0]/(x™), where (z™) is the ideal generated by z™.

Lemma 2.34. Let R be a ring and 0 # a € R. Then a is right (resp. left)
regular if and only if (a,a1,a2,...,an—1) € T(R,n,0) is right (resp. left)
regular.

Proof. We adopt the proof of [30, Lemma 2.1]. Suppose that a € R is right
regular, and let

A= (a,a1,a2,...,an-1) € T(R,n,0).
We proceed by induction on n. Put (a,a1)(b,b1) = 0 for some (b,b1) €
T(R,n,0). Then ab = 0 and ab; + a;o(b) = 0. Since a is right regular,
b =0, and so b; = 0; hence (a,ay) is right regular. Next let

AB = 0,B = (b,bl,bQ,. .. ,bnfl) S T(R,TL,O’).

Then we get
(a, a1,a, ..., an,g)(b, bl, bg, ey bn,Q) =0.

By the induction hypothesis we obtain b = 0 and b; = 0 for 1 < j < n —2;
hence ab,_1 + a10(bp_2) + -+ + an_20""2(b1) + an_10""1(b) = 0,ab,_o +
a10(bp—3) + -+ + an—20""2(b) = 0,...,ab = 0. Inductively we obtain b = 0
and b; =0 for j =1,2,...,n — 1, concluding that A is right regular.

Conversely assume that A is right regular, and let ab = 0 for some b € R.
Then from A(bE;(,—1)) = 0 we have b = 0. Thus a is regular. The proof of left
case is similar. O

Proposition 2.35. A ring R is strongly right (resp. left) AB if and only if
T(R,n, o) is strongly right (resp. left) AB for any n > 2.

Proof. We apply the method of Hwang et al. in the proof of [30, Theorem 2.2].
Let R be strongly right AB and X C T(R,n,0) with rp(gpn,0)(X) # 0. Then
any diagonal in matrices in X is not right regular by Lemma 2.34. Let Y be
the set of all elements in R, which occur as diagonal entries of elements in X.
If Y = 0, then 77 (g n,0)(X) contains a non-zero ideal RE;,_1y of T(R,n,o0).
Next we suppose Y # 0 and let @ be in Y. Take

0 7& (bv bl; cee ;bnfl) € TT(R,n,0) (X)

We will show rr(Y) # 0. If b # 0, then rr(Y) # 0. Assume b = 0, since
(b,b1,...,bp—1) # 0, there exist b; # 0, 1 < j < n—1 and ab; = 0. So
ra(Y) #0.

Now since R is strongly right AB, there is a non-zero ideal I of R with
I € rr(Y). Then rp(gp,e) contains a non-zero ideal IFE;(,—_1) of T(R,n,o0).
Thus T(R,n, o) is strongly right AB.

Conversely suppose that T'(R,n, o) is strongly right AB and V' C R with
rr(V)#0. Let W ={al,|a €V} CT(R,n,o), where I, is the n x n identity
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matrix. Then 77 (g n,0) (W) # 0 because WU = 0 for any non-zero matrix
U in T(R,n, o) with entries in rr(V). Since T(R,n,o) is strongly right AB,
there exists a non-zero ideal .J of T'(R, n, o) such that rp (g ,.0)(W) 2 J. Now
set K = {c € R|c is an entry of a matrix in JJ}. Then K is a non-zero ideal
of R from the computations (al,)(rI,)C =0 for a € V, r € R and C € J.
Moreover aK = 0 for all @ € V from (al,)J = 0, entailing rg(X) 2 K. Thus
R is strongly right AB. The proof of the left case is similar. O

Example 2.36. Let R be a ring. Assume « and o are rigid endomorphisms
such that ac = oa. Since R is reduced, T(R,n,o) is strongly right AB by
Proposition 2.35 and by [20, Theorem 2.8 and Corollary 2.5], T(R,n, o) is
skew Armendariz and @-compatible. So T'(R,n,o)[z;@] is strongly right AB,
by Corollary 2.32.

Definition 2.37 ([9]). A ring R is said to have the right finite intersection
property (simply, right FIP) if, for any subset X of R, there exists a finite
subset Xy of X such that r(X) = rr(Xo).

Proposition 2.38. Let R be a ring, let M be a u.p.-group with |M| > 2 and
let 0 : M — Aut(R) be a group homomorphism such that the ring R is M-
compatible. If R is right duo and R * M has right FIP, then R * M 1is strongly
right AB.

Proof. Assume that X C Rx M and rg.pm(X) # 0. Then there exists a
finite subset X of X such that rr.ar(X) = rremr(Xo), as R *+ M has right
FIP. Assume that XO = {Oél, A,y ..., Oék}, where ; = 51041 + a;243:2 + -+
Gin,Gin;, 1 < % < k with positive integers n;. By Proposition 2.24, there
exist hy,...,hx € M such that ajhi,ashs,...,arhy, are distinct. Take a =
athy + ashs + -+ + aihg. Then for some 0 # 8 € R * M we have a8 = 0.
By Theorem 2.27, right duo rings are right skew M-McCoy, so there exists
0 # c € R such that a;jc =0,1 <i <k, 1 <5 <n, as Ris M-compatible.
Since R is strongly right AB, there exists an ideal J such that a;;J = 0. For
each 0 # d € J, we have a;;Rd =0, 1 <i <k, 1 <j <n;. Thus we have
Xo(R+M)d = 0, by M-compatibility of R. So 0 # (RxM)d(R+M) C rg.«n (Xo)
and hence R * M is strongly right AB. O

Corollary 2.39. Let R be a right duo ring and let o; be a compatible automor-
phism of R with 0,0; = ojo; for each i,j. Let S be either R[x1,...,Tp;01,. ..,
on] or Rlxy,...,xn,x7t . x5 00, ... 00]. If S has right IFP, then S is
strongly right AB.

Faith [15] called a ring R right zip provided that if the right annihilator
rr(X) of a subset X of R is zero, then there exists a finite subset Y C X such
that rr(Y) = 0. The concept of zip rings was initiated by Zelmanowitz [50]
and appeared in various papers. Zelmanowitz stated that any ring satisfying
the descending chain condition on right annihilators is a right zip ring, but
the converse does not hold. Extensions of zip rings were studied by several
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authors. Beachy and Blair [4] showed that if R is a commutative zip ring, then
the polynomial ring R[z] over R is a zip ring. In [47, Theorem 2.4], Singh and
et al., show that, R is right zip if and only if R *x M is right zip.

Proposition 2.40. Let R be a right skew M-McCoy ring, let M be a u.p.-
monoid with |M| > 2 and let 0 : M — End(R) be a monoid homomorphism
such that the ring R is M-compatible. If R is strongly right AB and R * M is
right zip, then R x M 1is strongly right AB.

Proof. Let rr«p(X) # 0, where X C R+ M. Assume, on the contrary, that
rrep (X (R+M)) = 0. Since R* M is right zip there exists a finite subset X, =
{171, @272, ...y} © X (R+x M), where «; = ;1951 +aingio++ -+ in, Gin; €
X, vi € R * M, 1< < k/’, such that TR*]M(XQ) = 0. Since {al, .. .,ak} - X,

we have 0 # rrep(X) C rramr ({1, ..., ax}). So {aq,...,ax}B = 0 for some
0 # 8 € R+ M. By Proposition 2.24, there exist hy,...,hr € M such that
arhi,ashs, ..., aihg are distinct. Put a = ajh; + ashs + -+ + aghg. Since

;8 =0 for every 1 <1i < k, we have af = 0. Since R is right skew M-McCoy,
there exists 0 # ¢ € R such that ac = 0. Therefore a;;c = 0, 1 < ¢ < k,
1 < j < mny, as Ris M-compatible. Since R is strongly right AB, there exists
an ideal J such that a;;J = 0 for every 4, j. For every 0 # d € J, a;;Rd = 0,
1<i<k,0<j<mn,; Since R is M-compatible, a;(R * M)d = 0. But this is
a contradiction as we assumed 7. (Xo) = 0. O

Corollary 2.41. Let R be a skew McCoy, right zip and strongly right AB ring
and let o; be a compatible endomorphism of R with o0,0; = oj0; for each i,j.
Then the rings R[xy, ..., Tp;01,...,0,] and Rx1, ... xp, 27 . 25

y Ly, 301y,
on] are strongly right AB.

Corollary 2.42. Let R be a right McCoy, right zip and strongly right AB ring.
Then the rings Rlxy,...,x,] and Rlxy, ..., zn, 27", ..., 2 ] are strongly right
AB.

By Proposition 2.35, a ring R is strongly right (resp. left) AB if and only
it T(R,n,o) is strongly right (resp. left) AB for any n > 2. Now we provide
more examples of noncommutative zip rings.

Proposition 2.43. Let R be a commutative ring with an endomorphisms o
and let n > 2. Then R is a zip ring if and only if T(R,n, o) is a zip ring.

Proof. Assume that R is a zip ring and X C T'(R, n,0) with rp(g n,0)(X) = 0.
Let Y be the set of all elements in R, which occur as main diagonal entries
of elements in X. If Y = 0, then rp(g n.»)(X) contains 1, which contradicts
to our assumption. So Y # 0. We then have rr(Y) = 0, as a € rg(Y)
implies YaFE;, = 0. Since R is right zip, there exists a finite subset Yy =
{r1,r2,...,rn} C Y, such that rg(Yy) = 0. For each 1 < i < n, put U; to be the
set of matrices whose main diagonal entries are r;. Take A; € U;, 1 < i < n.
Clearly U = {A1, ..., An}, "0 (Rin,0) (U) = 0. So T'(R, n, o) is right zip. For the
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Converse we adopt the proof of [25, Proposition 3]. Suppose that T'(R,n,0) is a
right zip ring and X C R with rg(X) =0. Let Y ={al|a € X} CT(R,n,0),
where I is the n x n identity matrix. If B = (b1,b2,...,bn) € Tr(Rn,0)(Y),
then al.B =0 for all @ € X. Thus ab; = 0 for all j. Therefore b; € rr(X) =0
and so b; = 0 for all j. Since T'(R,n,o) is right zip, there exists a finite
subset Yo = {a1l,az2l,...,a,I} CY such that rpg e (Yo) = 0. Let Xo =
{a1,az2,...,am} C X. It b € rr(Xop), then arI(0,0,...,0,b) = 0 for all k =
1,2,...,m. Thus, (0,0,...,0,b) € rg(Yy) = 0, so b = 0. Hence rr(Xp) =0
and therefore R is right zip. Moreover, R is zip because R is commutative. [

By Proposition 2.35, a ring R is strongly right (resp. left) AB if and only if
T(R,n,o) is strongly right (resp. left) AB for any n > 2. Also by Proposition
2.43, for each commutative ring R with an endomorphisms ¢ and for n > 2,
R is a zip ring if and only if T(R,n, o) is a zip ring. We can provide more
examples of strongly right AB rings.

Example 2.44. For any commutative domain R with endomorphisms o, «
such that oo = ao, the ring T(R,n, o) is a-compatible and skew McCoy, by
[20, Theorem 2.8 and Corollary 2.5]. Since R is zip and strongly right AB,
T(R,n,o) is zip and strongly right AB. So the ring T(R,n,o)[z, @] is also
strongly right AB.

Theorem 2.45. Let R be a skew M-Armendariz ring, let M be a u.p.-monoid
and let o : M — End(R) be a monoid homomorphism such that the ring R is
M -compatible. Then R is nil-reversible if and only if R M is nil-reversible.

Proof. Let R be nil-reversible. Let v = 31" ; a;g; € RxM and 8 =37 bjh; €
nil(R * M) with a8 = 0. By Lemma 2.5, each b; € nil(R),0 < j <m, as R is
2-primal. Since R is skew M-Armendariz and M-compatible, a;b; = 0 for every
0<i<mn,0<j<m. Therefore bjahj (a;) = 0, since R is nil-reversible and R
is M-compatible. Consequently we have fa = 0. So R+ M is nil-reversible. [J

Corollary 2.46. Let R be a 0;-skew Armendariz ring and let o; be a compatible
endomorphism of R for each i. Assume that o;0; = oj0; for each i,j. Then
R is nil-reversible if and only if the ring R[x1,xa,...,&n;01,...,04] is nil-
reversible if and only if the ring R[x1,To,. .., Tn, 2] ..., 20 01, .. 00 is
nil-reversible.

Corollary 2.47. Let R be an Armendariz ring. Then R is nil-reversible if
and only if the ring R[x1,x2,...,xy,] is nil-reversible if and only if the ring
Rlx1, T2, ..., &, 2y ... 2, Y] ds nil-reversible.

3. Rings with Property (A)

Huckaba and Keller [29] introduced the following: a commutative ring R
has Property (A) if every finitely generated ideal of R consisting entirely of
zero-divisors has a nonzero annihilator. Property (A) was originally studied by
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Quentel [45]. Quentel used the term Condition (C) for Property (A). The class
of commutative rings with Property (A) is quite large. For example, Noetherian
rings ([32], p. 56), rings whose prime ideals are maximal [22], the polynomial
ring R[x] and rings whose classical ring of quotients are von Neumann regular
[22], are examples of rings with Property (A). Using Property (A), Hinkle
and Huckaba [23] extend the concept Kronecker function rings from integral
domains to rings with zero divisors. Many authors have studied commutative
rings with Property (A), and have obtained several results which are useful
studying commutative rings with zero-divisors. C. Y. Hong, N. K. Kim, Y. Lee
and S. J. Ryu [27] extended the notion of Property (A) to noncommutative
rings:

Definition 3.1 ([27]). A ring R has right (left) Property (A) if for every finitely
generated two-sided ideal I C Z;(R) (resp. Z.(R)), there exists nonzero a € R
(resp. b € R) such that Ia = 0 (resp. bl = 0). A ring R is said to have Property
(A) if R has the right and left Property (A).

According to [41], a ring R with a monomorphism « is called a-weakly rigid
if for each a,b € R, aRb = 0 if and only if aa(Rb) = 0. For any positive
integer n, a ring R is a-weakly rigid if and only if, the n-by-n upper triangular
matrix ring T, (R) is @-weakly rigid if and only if, the matrix ring M, (R) is
a-weakly rigid, where @((a;;)) = (a(aij;)) for each (a;;) € My (R). Alsoif Risa
semiprime a-weakly rigid ring, then the polynomial ring R[] is a semiprime @-
weakly rigid ring, where @(}.]_,riz’) = .., a(r;)a’. For every prime ring R
and any automorphism «, the rings M, (R), T, (R), R[X] and the power series
ring R[[X]], for X an arbitrary nonempty set of indeterminates, are weakly
rigid rings.

Definition 3.2. Let R be a ring, let M be a monoid and let ¢ : M — End(R)
be a monoid homomorphism. We say R is M-weakly rigid if o, is weakly rigid
for every g € M.

Lemma 3.3. Let R be a ring, let M be a monoid and let o : M — End(R)
be a monoid homomorphism such that the ring R is M -weakly rigid. Then for
every a,b € R and g;,g; € M, aRb = 0 if and only if 04,(a)Ro,, (b) = 0.

Proof. Suppose that aRb = 0, so o4, (aRb) = 0, and hence oy, (a)ogy, (Rb) = 0.
Since R is M-weakly rigid, o, (a)Rb = 0. So for each r € R, oy, (a)rRb = 0,
and hence oy, (a)rog, (Rb) = 0. Thus oy, (a)roy;(b) = 0, and for each 4,7,
og4,(a)Roy,(b) = 0. Now assume that oy, (a)Ro,,;(b) = 0, for each 4, j. Since
R is M-weakly rigid, oy, (a)og, (Rog; (b)) = 0, so gy, (aR(oy; (b)) = 0. Since
oy, is injective, aRoy; (b) = 0. This implies that aRb = 0, as R is M-weakly
rigid. (]

Hirano in [24, Theorem 2.2], proved that, when 7z, (f(z)R[x]) # 0 then
TRz (f(2)R[z]) "R # 0 for f(z) € R[z].
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Proposition 3.4. Let R be a ring, let M be a u.p.-monoid and let o : M —
End(R) be a monoid homomorphism such that the ring R is M -weakly rigid.
Forae S=RxM, if rs(aS) #0, then rs(aS) N R # 0.

Proof. We apply the method of Hirano in the proof of [24, Theorem 2.2]. Let
a =aig1 +asga+ -+ angn. When a = 0 or length(a) = 1, then the assertion
is clear. So, let length(a) = n, n > 1. Assume, to the contrary, that rp(aS) =
0 and let 8 = b1hy +bsha+ - - -+ by h.y, € S be a nonzero element with minimal
length in rg(aS). Since aSB = 0, aRB = 0. Since M is a u.p.-monoid, there
exist 4,7 with 1 <¢ <nand 1 < j < m such that g;h; is uniquely presented by
considering two subsets A = {¢1,...,9,} and B = {h1,..., hy} of M. We may
assume, without loss of generality, that i = n, j = m. Then anoy, (Rbyn) =0,
as gnhm, is uniquely presented. Since R is M-weakly rigid, a, Rb,, = 0. This
implies
anSﬂ = anS(bmflhmfl +-- 4+ blhl)
and
0=aSB 2 aS(a,SB) = aS(anS(bm-19m-1+ -+ + b1g1))-

S0 anR(by—1gm—1 + -+ + bihy) C rs(aS). Now take 8 to be a,RS. Since
1ength(ﬁ) =n—1, and «SB = 0 this contradicts with the assumption that 3 has
minimal length such that S8 = 0. Thus B = 0 and we have a,S(by—1hm-1+
-+ 4 bih1) = 0. Therefore a,Rb; = 0,1 < j < m. Hence (@n—1gn—1+ -+
a191)S(bmhm + -+ + brhy) = 0. Since M is a u.p.-monoid there exist i, j
with 1 < ¢ <nmn—-1and 1 < j < m such that g;h; is uniquely presented
by considering two subsets A = {g1,...,9n—1} and B = {hy,..., hpm} of M.
We may assume without loss of generality that ¢ = n — 1, j = m, and so
an-10g, ,(Rbn) = 0. Thus we have aS(an—1S(bm-1hm—1+ -+ +bih1)) =
a(San—15)B = 0. Since B is a nonzero element with minimal length in rg(a.S),
we have an,—15(byp—1hm—1 + -+ + b1h1) = 0. Therefore a,—1Rb; = 0, 1 <
j < m. Repeating this process, we have a;Rb; = 0 for all 4,j. So a;g;Rb; =0
and a;RIxb; = 0,9;,lr € M, since R is M-weakly rigid. This implies that
bi,...,bm € rr(aS). This is also a contradiction and hence the result follows.

O

Corollary 3.5. Let R be a ring and let o; be a weakly rigid endomorphism
of R such that 0,0; = o;0; for each i,j. Assume that S is either the skew
polynomial ring R[x1,...,Tn;01,...,0,] or the skew Laurent polynomial ring
Rlx1, ..., xn a7t xy b on, .00 Ifrs(£S) # 0, then rs(fS)NR # 0 for
each f € S.

Proposition 3.6. Let R be a ring, let M be a u.p.-monoid with |M| > 2 and
let o : M — End(R) be a monoid homomorphism such that the ring R is M-
weakly rigid. Then S = R+ M has right Property (A) if and only if whenever
aS C Zi(S), rs(aS) # 0.
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Proof. We adopt the proof of [27, Lemma 2.8]. Let I = Zle Sa;S C Zi(9),
where a; = a;19i1 + @i2gi2 + - -+ + @in, Gin,- By Proposition 2.24, there exist
li,...,lp € M such that aqly,asls, ..., arl; are distinct. Put 8 = aily +
agla + -+ agly € I. Thus BS C I. By hypothesis, rg(8S5) = rs(58S5) # 0. So
rs(SBS)N R # 0, by Theorem 3.4. Thus for some nonzero r € R, SBSr = 0.
Since RGR C SBS and R is M-weakly rigid, we have Ra;; Rr = 0. Thus
Rtraijgi Rhymr = 0 for iy, gj, hm € M. So Ir = (Zle Sa;S)r = 0. Therefore
S has right Property (A). The converse is clear. O

Corollary 3.7. Let R be a ring and let o; be a weakly rigid endomorphism
of the ring R such that o;0; = ojo; for each i,j. Assume that S is the
ring Ry, 2o, ..., Tn;01,. .., 00] oF R[x1, 20, .. xn, 27"y o 2y 500, 0p).

Then S has right Property (A) if and only if whenever fS C Z;(S), rs(fS) #0
for each f € S.

Corollary 3.8 ([27, Lemma 2.8)). For a ring R, R[x] has right Property (A)
if and only if whenever f(x)R[x] C Zi(R[z]), rris)(f(z)R[x]) # 0.

There exists a ring R which does not have Property (A) whose the poly-
nomial ring R[z] has Property (A). For, the polynomial ring R[z] over any
commutative ring R has Property (A) [29, Theorem 1], and there is a commu-
tative ring R which does not have Property (A).

Theorem 3.9. Let R be a ring, let M be a u.p.-monoid and let ¢ : M —
End(R) be a monoid homomorphism such that the ring R is M-compatible. If
R is strongly right AB and right skew M -McCoy, then RxM has right Property
(4).

Proof. Put S = R+« M and let X = oS C Z;(5), where a = aggo + a191 +
-+ 4+ angn. By hypothesis, there exists § € R * M such that af = 0. Since R
is M-compatible and right skew M-McCoy, there exists 0 £ ¢ € R such that
a;c = 0 for each ¢. Since R is strongly right AB, there exists an ideal J such
that a;J = 0 for each i. So for every 0 # d € J, a; Rd = 0 for each 4. Since R is
M-compatible, we have aeSd = 0. This implies that R * M has right Property
(A), by Proposition 3.6. O

Corollary 3.10. Let R be a strongly right AB, skew McCoy ring and let
o; be a compatible endomorphism of R for each 1 < i < n. Assume that
oi0; = 0jo; for each 1 < 1,5 < n. Then the rings R[x1,Z2,...,Zn;01,...,05)]
and R[xy, T2, ..., T 27,2t 01,. .., 0] have right Property (A).

ytn

Corollary 3.11. Let R be a right duo ring, let M be a u.p.-group and let o :
M — Aut(R) be a group homomorphism such that the ring R is M -compatible.
Then R+ M has right Property (A).

Proof. 1t is clear that the right duo ring R is strongly right AB. Moreover, R
is right skew M-McCoy by Theorem 2.27. So the result follows from Theorem
3.9. O
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Corollary 3.12. Let R be a right duo ring and let o; be a compatible endo-
morphism of R such that o;0; = ojo; for each 1 < 4,5 < n. Then the rings
R[x1,T2,...,%0;01,...,00] and R[x1, T2, ..., T 27 .. 2 00, .., 0] have

right Property (A).

Corollary 3.13. If R is a right duo ring, then the rings R[x1, 2, ..., Ty] and
Rlx1,29,..., 00,27 ", ..., 2 ] have right Property (A).

Corollary 3.14. Let R be a CN-ring and let o; be a compatible endomorphism
of R such that 0,05 = 00, for each i, j. Then the rings R[z1, %2, ..., Tn;01,. ..,
on] and Rlxy, o, ..., Tn 2y ... 2t 01, .., 0] have Tight Property (A).

s tn

Corollary 3.15. Let R be a semicommutative and right skew M-McCoy ring,
let M be a u.p.-monoid and let o : M — End(R) be a monoid homomorphism
such that the ring R is M-compatible. Then R x M has right Property (A).

Corollary 3.16. Let R be a semicommutative skew McCoy ring and let o; be
a compatible endomorphism of R with o;0; = oj0; for each i, j. Then the rings
Rlx1, %2, ..., &0;01,...,0,] and R[x1, %o, ..., &, 27, 2 00, ..., 0] have
right Property (A).

Corollary 3.17. If R is a semicommutative right McCoy ring, then the rings

Rlx1, %, ..., 2] and Rlx1, 20, ..., &, 27", ..., 2, ] have right Property (A).

rrn

Corollary 3.18 ([27, Proposition 2.10]). If R is a semicommutative and right
McCoy ring, then Rlx] has right Property (A).

Corollary 3.19. Let R be a reversible ring, let M be a u.p.-monoid and let
o : M — End(R) be a monoid homomorphism such that R is M -compatible.
Then R+ M has right Property (A).

Corollary 3.20. Let R be a reversible ring and let o; be a compatible endo-
morphism of R such that 0,0; = o;0; for each 1 < i,5 < n. Then the rings
Rlx1,%2,...,%0;01,...,0,) and R[x1, T2, ..., xp, 27 .. 2 00, ..., 0] have

right Property (A).

Corollary 3.21 ([27, Corollary 2.11]). If R is a reversible ring, then R[z] has
right Property (A).

Theorem 3.22. Let R be a ring, let M be a u.p.-monoid and let o : M —
Aut(R) be a monoid homomorphism such that the ring R is M -compatible. If
R« M is strongly right AB, then Rx M has right Property (A).

Proof. Let X = aS C Z;(S), where a = aggo+a191+- - -+angn. By hypothesis,
there exists § € R * M such that a8 = 0. Since R is M-compatible and right
skew M-McCoy, there exists 0 # ¢ € R such that a;c = 0 for each i. Since
R x M is strongly right AB, by 2.30, R is strongly right AB, so there exists
an ideal J such that a;J = 0. So for every 0 # d € J, a;Rd = 0 for each 1.
Since R is M-compatible, we have a.Sd = 0. This implies that R+ M has right
Property (A), by Proposition 3.6. O
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Corollary 3.23. Let S be either the ring R[x1,2a,...,2Zn;01,...,0,] or the
ring Rlx1, @2, ..., Tp, 2y . xn 00, ., 0] with 0i0; = 0gj0; for each 1 <
1,7 < n. Assume that S is a strongly right AB ring and o; is a compatible
automorphism of R, 1 < i <n. Then S has right Property (A).

Corollary 3.24. If either R[x] or R[x,x1] is a strongly right AB ring, then
R[z] and Rlx,z~'] have right Property (A).
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