• Title/Summary/Keyword: homogeneous manifold

Search Result 43, Processing Time 0.03 seconds

THE SCHWARZIAN DERIVATIVE AND CONFORMAL TRANSFORMATION ON FINSLER MANIFOLDS

  • Bidabad, Behroz;Sedighi, Faranak
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.873-892
    • /
    • 2020
  • Thurston, in 1986, discovered that the Schwarzian derivative has mysterious properties similar to the curvature on a manifold. After his work, there are several approaches to develop this notion on Riemannian manifolds. Here, a tensor field is identified in the study of global conformal diffeomorphisms on Finsler manifolds as a natural generalization of the Schwarzian derivative. Then, a natural definition of a Mobius mapping on Finsler manifolds is given and its properties are studied. In particular, it is shown that Mobius mappings are mappings that preserve circles and vice versa. Therefore, if a forward geodesically complete Finsler manifold admits a Mobius mapping, then the indicatrix is conformally diffeomorphic to the Euclidean sphere Sn-1 in ℝn. In addition, if a forward geodesically complete absolutely homogeneous Finsler manifold of scalar flag curvature admits a non-trivial change of Mobius mapping, then it is a Riemannian manifold of constant sectional curvature.

ON THE 𝜂-PARALLELISM IN ALMOST KENMOTSU 3-MANIFOLDS

  • Jun-ichi Inoguchi;Ji-Eun Lee
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1303-1336
    • /
    • 2023
  • In this paper, we study the 𝜂-parallelism of the Ricci operator of almost Kenmotsu 3-manifolds. First, we prove that an almost Kenmotsu 3-manifold M satisfying ∇𝜉h = -2𝛼h𝜑 for some constant 𝛼 has dominantly 𝜂-parallel Ricci operator if and only if it is locally symmetric. Next, we show that if M is an H-almost Kenmotsu 3-manifold satisfying ∇𝜉h = -2𝛼h𝜑 for a constant 𝛼, then M is a Kenmotsu 3-manifold or it is locally isomorphic to certain non-unimodular Lie group equipped with a left invariant almost Kenmotsu structure. The dominantly 𝜂-parallelism of the Ricci operator is equivalent to the local symmetry on homogeneous almost Kenmotsu 3-manifolds.

R-CRITICAL WEYL STRUCTURES

  • Kim, Jong-Su
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.193-203
    • /
    • 2002
  • Weyl structure can be viewed as generalizations of Riemannian metrics. We study Weyl structures which are critical points of the squared L$^2$ norm functional of the full curvature tensor, defined on the space of Weyl structures on a compact 4-manifold. We find some relationship between these critical Weyl structures and the critical Riemannian metrics. Then in a search for homogeneous critical structures we study left-invariant metrics on some solv-manifolds and prove that they are not critical.

CR MANIFOLDS OF ARBITRARY CODIMENSION WITH A CONTRACTION

  • Kim, Sung-Yeon
    • The Pure and Applied Mathematics
    • /
    • v.17 no.2
    • /
    • pp.157-165
    • /
    • 2010
  • Let (M,p) be a germ of a $C^{\infty}$ CR manifold of CR dimension n and CR codimension d. Suppose (M,p) admits a $C^{\infty}$ contraction at p. In this paper, we show that (M,p) is CR equivalent to a generic submanifold in $\mathbb{C}^{n+d}$ defined by a vector valued weighted homogeneous polynomial.

THE EXPANSION OF MEAN DISTANCE OF BROWNIAN MOTION ON RIEMANNIAN MANIFOLD

  • Kim, Yoon-Tae;Park, Hyun-Suk;Jeon, Jong-Woo
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.37-42
    • /
    • 2003
  • We study the asymptotic expansion in small time of the mean distance of Brownian motion on Riemannian manifolds. We compute the first four terms of the asymptotic expansion of the mean distance by using the decomposition of Laplacian into homogeneous components. This expansion can he expressed in terms of the scalar valued curvature invariants of order 2, 4, 6.

  • PDF

A DECOMPOSITION OF THE CURVATURE TENSOR ON SU(3)=T (k, l) WITH A SU(3)-INVARIANT METRIC

  • Son, Heui-Sang;Park, Joon-Sik;Pyo, Yong-Soo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.229-241
    • /
    • 2015
  • In this paper, we decompose the curvature tensor (field) on the homogeneous Riemannian manifold SU(3)=T (k, l) with an arbitrarily given SU(3)-invariant Riemannian metric into three curvature-like tensor fields, and investigate geometric properties.

HYPERSURFACES IN A 6-DIMENSIONAL SPHERE

  • Hashimoto, Hideya;Funabashi, Shoichi
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.23-42
    • /
    • 1997
  • A 6-dimensional sphere considered as a homogeneous space $G_2/SU(3)$ where $G_2$ is the group of automorphism of the octonians O. From this representation, we can define an almost comlex structure on a 6-dimensional sphere by making use of the vector cross product of the octonians. Also it is known that a homogeneous space $G_2/U(2)$ coincides with the Grassmann manifold of oriented 2-planes of a 7-dimensional Euclidean space.

  • PDF

MODULI SPACES OF ORIENTED TYPE ${\mathcal{A}}$ MANIFOLDS OF DIMENSION AT LEAST 3

  • Gilkey, Peter;Park, JeongHyeong
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1759-1786
    • /
    • 2017
  • We examine the moduli space of oriented locally homogeneous manifolds of Type ${\mathcal{A}}$ which have non-degenerate symmetric Ricci tensor both in the setting of manifolds with torsion and also in the torsion free setting where the dimension is at least 3. These exhibit phenomena that is very different than in the case of surfaces. In dimension 3, we determine all the possible symmetry groups in the torsion free setting.

NEHARI MANIFOLD AND MULTIPLICITY RESULTS FOR A CLASS OF FRACTIONAL BOUNDARY VALUE PROBLEMS WITH p-LAPLACIAN

  • Ghanmi, Abdeljabbar;Zhang, Ziheng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1297-1314
    • /
    • 2019
  • In this work, we investigate the following fractional boundary value problems $$\{_tD^{\alpha}_T({\mid}_0D^{\alpha}_t(u(t)){\mid}^{p-2}_0D^{\alpha}_tu(t))\\={\nabla}W(t,u(t))+{\lambda}g(t){\mid}u(t){\mid}^{q-2}u(t),\;t{\in}(0,T),\\u(0)=u(T)=0,$$ where ${\nabla}W(t,u)$ is the gradient of W(t, u) at u and $W{\in}C([0,T]{\times}{\mathbb{R}}^n,{\mathbb{R}})$ is homogeneous of degree r, ${\lambda}$ is a positive parameter, $g{\in}C([0,T])$, 1 < r < p < q and ${\frac{1}{p}}<{\alpha}<1$. Using the Fibering map and Nehari manifold, for some positive constant ${\lambda}_0$ such that $0<{\lambda}<{\lambda}_0$, we prove the existence of at least two non-trivial solutions

A Study on the Emissions of Homogeneous Charge Compression Ignition Engine (균질혼합압축점화기관의 배출가스특성에 관한 연구)

  • Han, Sung-Bin;Choi, Gyeung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.324-329
    • /
    • 2004
  • As a new concept in engines and a power source for future automotive applications, the HCCI(Homogeneous Charge Compression Ignition) engine has been introduced. Essentially a combination of spark ignition and compression ignition engines, the HCCI engine exhibits low NO$_x$ and PM emissions as well as high efficiency under part load. In this research, a 4 cylinder diesel engine was converted into a HCCI engine, and propane was used as the fuel. The main parameters for this research are fuel flow rate and the temperature of the intake manifold, and the effects of such on a HCCI engine's performance and exhaust was investigated.