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THE EXPANSION OF MEAN DISTANCE OF
BROWNIAN MOTION ON RIEMANNIAN
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ABSTRACT
We study the asymptotic expansion in small time of the mean distance of Brownian
motion on Riemannian manifolds. We compute the first four terms of the asymptotic
expansion of the mean distance by using the decomposition of Laplacian into homeo-
geneous components. This expansion can be expressed in terms of the scalar valued
curvature invariants of order 2, 4, 6.
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1. INTRODUCTION

Suppose that (M, g) is an n-dimensional connected Riemannian manifold and X, is a
Brownian motion on M starting at m € M. Let v = d(X,,m) be the radial part of
a Brownian motion on M where d is the Riemannian distance induced by a Riemannian

metric g.
Kim and Park(2002) improve the result of Liao and Zheng(1995) by using a method which
consists in normal coordinates (X', -+, X™) in a neighborhood of m. Let (X',---,X™) be

a solution of the following SDE:

dX} = ou(X,)dBF + a'(X,)dt (1.1)

’0 =Y '
where (g (x)) is the square root of (¢*(z)) in the normal coordinates, (B',---,B") is an
n-dimensional Brownian motion and a’(z) is given by a*(z) = —(1/2)g?*(z)['}, (z). By using

the SDE and Taylor development of g, @ and ¢, Kim and Park(2002) obtain the asymptotic
expansion of the mean distance up to order 3, that is,

E[,YQ(XL,m)]

= nt-— %'I’(m)t2 - 91—0 <6AT(m) + ||[R(m)||? - ||p(m)||2)t3 +o(t*) as t10. (1.2)
The previous methods, used by Kim and Park(2002), do not seem to be readily applicable to
the expansion of higher order. If we use these methods, the computation of the coefficient
of t* seems hopelessly complicated. In this paper we develop a new method to compute
the coefficients in the power series expansion of E(v2). Also this method turns out much
simpler than the previous methods for the expansion up to order 3. For the calculation of
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the coefficients of higher order of this expansion, we need to compute APy?(m), for p > 3.
In Section 2, we calculate explicitly A%y(m), A%y(m) and A*y(m) by the decomposition
of Laplacian into homogeneous components and give asymptotic expansion up to order 4
in small time. We are only interested in computing the coefficients of the power series
expansion.

Now we introduce the several curvatures. We fix a normal coordinate system {(z',... ,z™)
in a neighborhood of the point m. Let g;;, ¢ and Fék be the components of Riemannian
metric, the inverse and Christoffel symbol, respectively. R;;;; is the components of the
curvature tensor and p;; is the components of the Ricci curvature, that is, pi; = ZZ Riir;.
Also 7 = Y-, psi is the scalar curvature.

By definition a scalar valued curvature invariant is a polynomial in the components of
the curvature tensor and its covariant derivatives which does not depend on the choice of
basis of the tangent space T,, M. Such a scalar valued invariant is said to have order k if
it has a term of k-th derivatives of the metric tensor. Let I(k,n) be a space of invariants
of order 2k for Riemannian manifolds of dimension n. Then dim I(1,n) =1 for n > 2 and
dim I(2,n) = 4 for n > 4. Let ||R]| = (X (Ri,,)?)'/? and [|pl| = ( p}; J1/2 be the lengths of
the curvature tensor and the Ricci curvature, respectively. Then {T} is a basis for I(1,n)
and {72,]|pl|, ||R|*, AT} is a basis for I(2,n). Also if n > 6, I(3,n) has dimension 17.
Using the same notations as those of Gray and Vanhecke(1979) we write a basis for 1(3,n):

7, 7llpll?, TIIRIZ, B = pabbrcPear < P> R >= pasRapgr Ripgr, [[V7I> = (Var)?,
< p®p, R>= pappeaRacbas B = RabcaRedpgRpqads R = RacbaRepaq Rpaghs
VA2 = (Vapse)?s a(p) = VapreVepan, VR = (VaRbedq)?, TAT, A’r,
< Ap,p >= pasV2epab, < V27, p>=ViyTpas, < VR,R>= RabcdvppRabcd- (1.3)

Qur main result is
E[’YQ (Xl’m)]
= = grm)? — o (Gr(m) — Il + P )

1 \ , , ]
80x 24\ - - v 30
+84O = 24< 270A%7 — 45||VT||* = 96 < V7, p > +30(|Vp||
1268 664
+148 < Ap,p > +60a(p) + ——p— 5~ <p®p,R>~180<ARR>
+¥ <p B> _@R - EQ—O'R - 135”VRH2)t4 +o(t') as tl10. (1.4)

In this paper we will use the summation convention, that is, we will omit the summation
sign over repeated indices. Also we omit the argument m € M if there is no room for
confusion, for example, [|R(m)]| = ||R||.

2. PRELIMINARIES

By Gray and Pinsky(1983), for any smooth function f defined in a neighborhood of m,
we have

Af=ALsf+Y Anf. (2.1)

h=0

Here Ay, is a second-order differential operator on M near m which maps k-th polynomials
into (k + h)-th degree polynomials. We write the first few terms A,. For any system of
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normal coordinates (zi,...,Z,) at m which is identified with 0 = (0,...,0) € R™;
Ay = 00,

1 2

Ay = SRiajbznxbaiaj - gpiamnah (2.2)
1 1

A, = évaRibjcmaxbzcaiaj + ﬁ(vipab — 6V opib)TaTh0i,
1

Ay = _(3V2bRicjd + 4Raibp Rejap) Tazyzo240;0;

+I§6(9vmpbc - 36vszic - 14pappric - lGRapbqRipcq)zazbzcaia (23)

In order to calculate the coefficients of ¢2, t3 and t*, we need the decompositions of A2, A3
and A*. Tt follows from (2.1) that

oo [o0]
A = AL+ Z A_2Bpf + Z Al(AS), (24)
h=0 =0
A = A%+ ) A2 ARf+ ) A aMALF+Y Y AANALS
h=0 1=0 1=0 h=0
£ Ax(a%g), (2.5)
k=0
A'f = ALY A ARf+) ALAALf+ Y D AL AALS
h=0 =0 =0 h=0
+3 ALAALf + ZZA 2AKABRf+ Y D AANA
k=0 k=0 h=0 k=0 1=0
Z SOS T ALAAALS + ZAQ(A“f). (2.6)
k=01=0 h=0 =0
The general formula A? is given by
[ee] ! o] !
AP — A2‘3+Z Z Dgy - Dy A, + Z By Dy oDy oAy,
h=0s;=h lL,h=0s,=h,s,=]
ot Z Do Ay, - A,
81,...,8p=0
where
1]
Z Doy Dy Dy, = ApA_g- A g+ A A A5 A g+ Ay - Ay,
sp=h
!
Z By Dy Dy oo Ny, = NARA 5 Ag + A A_GARA 5 A+
sp=h,s.=1

+A_2 e A_QA[A}“
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In particular, if f(z) = d*(z,m), then A_sf = 2n. From (2.1), we have

Af = Z A_sAnf + Z A(Af), (2.7)
Alf = ZA_QAhf SN T ALAALF+ Y AARS), (2.8)
h=0 [=0 h=0 k=0
A'f = A AR+ S ALAAF YD AAA LALS
h=0 =0 h=0 k=0 h=0
ZEZ 2 ARDARS + Y B, (A%f). (2.9)
k=0 =0 h=0 9=0

Using the above formulas, we compute APy?(m) for p = 2,3,4 in the next section.

3. GEOMETRIC LEMMAS

We give some formulas which are used to calculate A2y%(m), A3y%(m) and A*y%(m).
All of the formulas are the consequences of the symmetries of the curvature operator includ-
ing the two Bianchi’s identities and the Ricci’s identity, which can be found in Gray and
Vanhecke(1979), and also in Sakai(1971).

We establish the following Lemma for calculating A2v%(m).

Lemma 3.1, Let y(z) = d(z,m) for fited m € M. Then we have

4 ’
) [ =27(m) for h=0,
A_QAh'7 (m) = { ()3 f()r all h > l,

A AR (m) =0, for all h,0> 0.
Now we compute the terms in A3y%(m).

Lemma 3.2. We have the following:

(- 18870m) - 20l - SIRI) for h=2
0 forall h#2,
811 1|2
2 _J §lioll> for 1 =0 and h=0,
A2 BBy (m) ‘{ 0 for 1>0 or A>0,
AIA_ Apy*(m) =0 forall 1,h >0,
MDA ARY (m) =0 for ol k,1,h > 0.

A2_2Ah")/2 (m) = {

Finally we compute the terms that are needed to calculate A%~y%(m).
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Lemma 3.3. We have the following formulas:

(
105

+36 < Ap, p > —150a(p) — %3/3+ 264<p® o R>
A%, ApyA(m)={ -180 < AR, R>+24<p,R> -40f  220p

—135|[VR||2) for h =4,
0 forall h#4,

2 ( —~ 270A%r — 150]|V7||? — 432 < V37,0 > —75||Vp|[?

\
( -

= (54< V2rp> —64<p®@p, R >
+72ﬁ+12<p,R>+18<Ap,p>) for 1=0,h=2,

A2, A ARy (m) = s <27 <Vip> -10<p&p,R>

+134,3+6<p,R>+9<Ap,p>> for 1=2,h=0,

& (60l + 319017 + 20971 for 1=1h=1
0 for 1+h#2,

\

%5<9<AM>—32<p®p,R>+27<v2T,p>

A_gAA_Apy(m) =4 +36p+6<p,R> | for I=0,h=2,

VTl for 1=1,h=1,
0 otherwise,

16 5 .
_f #5(<p®p,R>-2p) forall k=l=h=0
A2 BkAiBpy(m) = { 0 otherwise,

Using (2.7)- (2.9) and Lemma 3.1--3.3, we obtain the following Theorem.
Theorem 3.1. For fired m € M, we have

AP = —grm)

8%5m) = =g (6ar(m) = ol + I1RI?),

Ay (m) = 1—(2)5 < — 270A%r — 45||VT|2 - 96 < V21, p > +.30||Vp]|2
+148 < Ap, p > +60a(p) + 1—2;—%- -6—2—4 <p&p,R>-180< AR,R>
+¥ <pR> —?R - QTQOR - 135[|VR||'2>.

4. THE MAIN THEOREM

Applying Ito’s formula to v, = d(X;, m), we have

1/t
72(XL/\T.,m) = 1”!/\7}'*‘5/ I{s<T‘)A72()\’s/\T}am)dsa
0
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where M, is a martingale. Hence

EV(Xiar,m)] = t E[AY* (Xsnt,m)lds — El(t — (¢ AT.)) A (X, ,m)] o
2 0

Again applying Ito’s formula to Ay?2 = Av?(X,, m), we obtain
1 s .
E[AY*(Xsar,m)] = 2n+ 5{ / B[N (Xuat,,m)]du — E[(s — (s A Te))AQ'yQ(Xq;,m)]}.
0

By successive applications of Ito’s formula to A%y2 = A242(X,,m) and A%+2 = A3~42(X,,m),
we obtain E[A2y2(Xyat,,m)] and E[A3y2(Xya7,,m)]. From this and Theorem 3.1, we have

E[’YE (Xl/\Tz ’ m)]

=t Zr(m) = o (6r(m) — olP + IRIP)

1
— | —270A%r — 4 2_96 2 2
+840 = 24< 70A%7 — 45|V 7| < Ver,p > +30]| V|
1268 664 _
+148 < Ap,p > +60a(p)+——3—ﬁ—T <p&p,R>-180< AR, R >
+¥ <p B> —43&}? - 339}? - 135||VR“2) £ 4 o(th). (4.1)

Under some global bounded conditions on M, we obtain (1.4) from (4.1).
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