DOI QR코드

DOI QR Code

ON THE 𝜂-PARALLELISM IN ALMOST KENMOTSU 3-MANIFOLDS

  • Jun-ichi Inoguchi (Department of Mathematics Hokkaido University) ;
  • Ji-Eun Lee (Department of Mathematics Chonnam National University)
  • Received : 2023.02.27
  • Accepted : 2023.09.05
  • Published : 2023.11.01

Abstract

In this paper, we study the 𝜂-parallelism of the Ricci operator of almost Kenmotsu 3-manifolds. First, we prove that an almost Kenmotsu 3-manifold M satisfying ∇𝜉h = -2𝛼h𝜑 for some constant 𝛼 has dominantly 𝜂-parallel Ricci operator if and only if it is locally symmetric. Next, we show that if M is an H-almost Kenmotsu 3-manifold satisfying ∇𝜉h = -2𝛼h𝜑 for a constant 𝛼, then M is a Kenmotsu 3-manifold or it is locally isomorphic to certain non-unimodular Lie group equipped with a left invariant almost Kenmotsu structure. The dominantly 𝜂-parallelism of the Ricci operator is equivalent to the local symmetry on homogeneous almost Kenmotsu 3-manifolds.

Keywords

References

  1. D. E. Blair, Almost contact manifolds with Killing structure tensors, Pacific J. Math. 39 (1971), 285-292. http://projecteuclid.org/euclid.pjm/1102969563 102969563
  2. D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, second edition, Progress in Mathematics, 203, Birkhauser Boston, Ltd., Boston, MA, 2010. https://doi.org/10.1007/978-0-8176-4959-3
  3. D. E. Blair, T. Koufogiorgos, and R. Sharma, A classification of 3-dimensional contact metric manifolds with Qϕ = ϕQ, Kodai Math. J. 13 (1990), no. 3, 391-401. https://doi.org/10.2996/kmj/1138039284
  4. E. Boeckx, P. Bueken, and L. Vanhecke, ϕ-symmetric contact metric spaces, Glasg. Math. J. 41 (1999), no. 3, 409-416. https://doi.org/10.1017/S0017089599000579
  5. E. Boeckx and J. T. Cho, Locally symmetric contact metric manifolds, Monatsh. Math. 148 (2006), no. 4, 269-281. https://doi.org/10.1007/s00605-005-0366-4
  6. E. Boeckx and L. Vanhecke, Characteristic reflections on unit tangent sphere bundles, Houston J. Math. 23 (1997), no. 3, 427-448.
  7. P. Bueken and L. Vanhecke, Reflections in K-contact geometry, Math. Rep. Toyama Univ. 12 (1989), 41-49.
  8. J. T. Cho, Notes on real hypersurfaces in a complex space form, Bull. Korean Math. Soc. 52 (2015), no. 1, 335-344. https://doi.org/10.4134/BKMS.2015.52.1.335
  9. J. T. Cho, η-parallel H-contact 3-manifolds, Bull. Korean Math. Soc. 55 (2018), no. 4, 1013-1022. https://doi.org/10.4134/BKMS.b170479
  10. J. T. Cho and M. Kimura, Reeb flow symmetry on almost contact three-manifolds, Differential Geom. Appl. 35 (2014), suppl., 266-273. https://doi.org/10.1016/j.difgeo.2014.05.002
  11. J. T. Cho and J.-E. Lee, η-parallel contact 3-manifolds, Bull. Korean Math. Soc. 46 (2009), no. 3, 577-589. https://doi.org/10.4134/BKMS.2009.46.3.577
  12. U. C. De, On Φ-symmetric Kenmotsu manifolds, Int. Elect. J. Geom. 1 (2008), no.1, 33-38. https://dergipark.org.tr/en/pub/iejg/issue/46277/581499
  13. G. Dileo and A. M. Pastore, Almost Kenmotsu manifolds and local symmetry, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), no. 2, 343-354. http://projecteuclid.org/euclid.bbms/1179839227
  14. J. Inoguchi, A note on almost contact Riemannian 3-manifolds, Bull. Yamagata Univ. Natur. Sci. 17 (2010), no. 1, 1-6.
  15. J. Inoguchi, A note on almost contact Riemannian 3-manifolds II, Bull. Korean Math. Soc. 54 (2017), no. 1, 85-97. https://doi.org/10.4134/BKMS.b150772
  16. J. Inoguchi, Characteristic Jacobi operator on almost Kenmotsu 3-manifolds, Int. Electron. J. Geom. 16 (2023), no. 2, 464-525. https://doi.org/10.36890/iejg.1300339
  17. J. Inoguchi and J.-E. Lee, Pseudo-symmetric almost Kenmotsu 3-manifolds, submitted.
  18. D. E. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J. 4 (1981), no. 1, 1-27. http://projecteuclid.org/euclid.kmj/1138036310
  19. K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. (2) 24 (1972), 93-103. https://doi.org/10.2748/tmj/1178241594
  20. M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space, Math. Z. 202 (1989), no. 3, 299-311. https://doi.org/10.1007/BF01159962
  21. M. Kon, Invariant submanifolds in Sasakian manifolds, Math. Ann. 219 (1976), no. 3, 277-290. https://doi.org/10.1007/BF01354288
  22. M. Okumura, Some remarks on space with a certain contact structure, Tohoku Math. J. (2) 14 (1962), 135-145. https://doi.org/10.2748/tmj/1178244168
  23. H. Ozturk, On almost alpha-cosymplectic manifolds with some nullity distributions, Honam Math. J. 41 (2019), no. 2, 269-284.
  24. Q. X. Pan, H. Wu, and Y. Wang, Almost Kenmotsu 3-h-manifolds with transversely Killing-type Ricci operators, Open Math. 18 (2020), no. 1, 1056-1063. https://doi.org/10.1515/math-2020-0057
  25. A. M. Pastore and V. Saltarelli, Generalized nullity distributions on almost Kenmotsu manifolds, Int. Electron. J. Geom. 4 (2011), no. 2, 168-183. https://dergipark.org.tr/en/pub/iejg/issue/47488/599509
  26. D. Perrone, Weakly ϕ-symmetric contact metric spaces, Balkan J. Geom. Appl. 7 (2002), no. 2, 67-77.
  27. D. Perrone, Almost contact metric manifolds whose Reeb vector field is a harmonic section, Acta Math. Hungar. 138 (2013), no. 1-2, 102-126. https://doi.org/10.1007/s10474-012-0228-1
  28. D. Perrone, Left-invariant almost α-coKahler structures on 3D semidirect product Lie groups, Int. J. Geom. Methods Mod. Phys. 16 (2019), no. 1, 1950011, 18 pp. https://doi.org/10.1142/S0219887819500117
  29. D. Perrone, Almost contact Riemannian three-manifolds with Reeb flow symmetry, Differential Geom. Appl. 75 (2021), Paper No. 101736, 11 pp. https://doi.org/10.1016/j.difgeo.2021.101736
  30. T. Takahashi, Sasakian ϕ-symmetric spaces, Tohoku Math. J. (2) 29 (1977), no. 1, 91-113. https://doi.org/10.2748/tmj/1178240699
  31. S. Tanno, Locally symmetric K-contact Riemannian manifolds, Proc. Japan Acad. 43 (1967), 581-583. http://projecteuclid.org/euclid.pja/1195521511
  32. Y. Wang, Three-dimensional almost Kenmotsu manifolds with η-parallel Ricci tensor, J. Korean Math. Soc. 54 (2017), no. 3, 793-805. https://doi.org/10.4134/JKMS.j160252
  33. Y. Wang and X. Liu, Locally symmetric CR-integrable almost Kenmotsu manifolds, Mediterr. J. Math. 12 (2015), no. 1, 159-171. https://doi.org/10.1007/s00009-014-0388-z