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ON THE η-PARALLELISM IN

ALMOST KENMOTSU 3-MANIFOLDS

Jun-ichi Inoguchi and Ji-Eun Lee

Abstract. In this paper, we study the η-parallelism of the Ricci operator

of almost Kenmotsu 3-manifolds. First, we prove that an almost Ken-
motsu 3-manifold M satisfying ∇ξh = −2αhφ for some constant α has

dominantly η-parallel Ricci operator if and only if it is locally symmetric.
Next, we show that if M is an H-almost Kenmotsu 3-manifold satisfying

∇ξh = −2αhφ for a constant α, then M is a Kenmotsu 3-manifold or it is

locally isomorphic to certain non-unimodular Lie group equipped with a
left invariant almost Kenmotsu structure. The dominantly η-parallelism

of the Ricci operator is equivalent to the local symmetry on homogeneous

almost Kenmotsu 3-manifolds.

1. Introduction

As is well known, local symmetry causes a strong restriction for almost
contact metric manifolds. Boeckx and Cho ([5]) proved that a locally symmetric
contact Riemannian manifold is either normal and of constant curvature 1 or
locally isometric to the product space Rn+1 × Sn(4). In particular, locally
symmetric K-contact manifolds are of constant curvature 1 ([22,31]).

On the other hand, Kenmotsu ([19]) proved that a locally symmetric Ken-
motsu manifold is of constant curvature −1 (see also [14] for Kenmotsu 3-
manifolds).

In [13], Dileo and Pastore proposed the following question:

Is a locally symmetric almost Kenmotsu manifold either Kenmotsu of constant
curvature −1 or locally isometric to the product Hn+1(−4)× Rn?

As a partial affirmative answer, they proved that locally symmetric almost
Kenmotsu manifolds of dimension greater than 3 satisfying R(X,Y )ξ = 0 for
all vector fieldsX and Y orthogonal to ξ are Kenmotsu of constant curvature−1
or locally isometric to the product Hn+1(−4)×Rn. Here ξ is the characteristic
vector field.
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Next, Wang and Liu [33] proved that locally symmetric CR-integrable al-
most Kenmotsu manifolds of dimension greater than 3 are Kenmotsu of con-
stant curvature −1 or locally isometric to the product Hn+1(−4) × Rn. Since
the associated almost CR-structure of an almost Kenmotsu 3-manifold is in-
tegrable, one might expect that the Wang-Liu’s classification result also holds
in dimension 3. As a negative answer to Dileo-Pastor’s question, the follow-
ing result was obtained: Locally symmetric almost Kenmotsu 3-manifolds are
locally isomorphic to one of the following model spaces (see [16,29]):

• the hyperbolic 3-space H3(−1) of curvature −1 equipped with a homo-
geneous Kenmotsu structure.

• the Riemannian product H2(−4) × R of the hyperbolic plane of cur-
vature −4 and the real line equipped with a homogeneous strictly H-
almost Kenmotsu structure.

• the Riemannian product H2(−4 − γ2) × R of the hyperbolic plane of
curvature −4−γ2 < −4 and the real line equipped with a homogeneous
strictly almost Kenmotsu structure.

In 3-dimensional Riemannian geometry, we know that the local symmetry (par-
allelism of the Riemannian curvature R) is equivalent to the parallelism of the
Ricci operator S. As a generalization of local symmetry from almost con-
tact geometric viewpoint, we consider almost contact metric 3-manifolds with
η-parallel Ricci operator, i.e.,

g((∇XS)Y, Z) = 0

for all vector fields X, Y and Z orthogonal to ξ ([20]). For contact metric 3-
manifolds, Cho ([9]) classified contact metric 3-manifolds with η-parallel Ricci
operator under the assumption the characteristic vector field is an eigenvector
field of the Ricci operator (so-called H-contact 3-manifolds). On the other
hand, in [11], Cho and the second named author of the present article classified
contact metric 3-manifolds with η-parallel Ricci operator under the condition
∇ξh = 2αhφ for some constant α (for the definition of the endomorphism field
h, see Subsection 2.1). In particular, they classified those 3-manifolds satisfying
∇ξh = 0.

The purpose of the present article is to study almost Kenmotsu 3-manifolds
with η-parallel Ricci operator. In this direction, the first named author of the
present article classified Kenmotsu 3-manifolds with η-parallel Ricci operator
[15]. In this article we generalize the classification obtained in [15] to almost
Kenmotsu 3-manifolds. Moreover, we study almost Kenmotsu 3-manifolds with
dominantly η-parallel Ricci operator, that is, S satisfies

g((∇XS)Y, Z) = 0

for all vector fields X and Y on M and any vector field Z on M orthogonal to
ξ. Note that the Ricci operator S is said to be strongly η-parallel if

g((∇XS)Y, Z) = 0
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holds for all vector field X on M and vector fields Y and Z on M orthogonal
to ξ ([15,21]).

First, we show the existence of almost Kenmotsu 3-manifolds with η-parallel
Ricci operator. More precisely we exhibit explicit examples of homogeneous
almost Kenmotsu 3-manifolds with η-parallel Ricci operator in Section 4. Next,
we give an example of non-homogeneous almost Kenmotsu 3-manifold with η-
parallel Ricci operator in Section 5.

We start our investigation with homogeneous almost Kenmotsu 3-manifolds.
We prove that the only homogeneous almost Kenmotsu 3-manifolds with dom-
inantly η-parallel Ricci operator are locally symmetric ones in Section 4 (The-
orem 4.3).

In Section 6, we prove that an almost Kenmotsu 3-manifold M with dom-
inantly η-parallel Ricci operator is locally symmetric under certain condition
on the endomorphism field h. In addition, we prove that if an almost Ken-
motsu 3-manifold whose characteristic vector field is an eigenvector field of S
satisfying ∇ξh = −2αhφ (for some constant α) has η-parallel Ricci operator,
then it is a Kenmotsu 3-manifold or it is locally isomorphic to certain almost
Kenmotsu Lie group.

To close Introduction we should mention the so-called local φ-symmetry (η-
parallelism of the Riemannian curvature) of almost Kenmotsu 3-manifolds. As
is well known the Riemannian curvature R of a Riemannian 3-manifold M is
explicitly described by the Ricci operator S. As a consequence, the parallelism
of S is equivalent to the parallelism of R (local symmetry). More generally,
the semi-parallelism (resp. pseudo-parallelism) of S is equivalent to the semi-
parallelism (resp. pseudo-parallelism) of the Riemannian curvature.

However, for almost contact metric 3-manifolds, the η-parallelism of R (local
φ-symmetry) is not equivalent to that of S. Indeed, on an almost contact metric
3-manifoldM , if the Ricci operator S and scalar curvature r are η-parallel, then
so is the Riemannian curvature R (Proposition 2.2). This phenomena means
that the η-parallelism of S has own interest.

The authors would like to acknowledge to the anonymous reviewer for point-
ing out several issues of the first version of this article.

2. Almost contact metric manifolds

In this section, we recall fundamental ingredients of almost contact metric
geometry. For general information on almost contact metric geometry, we refer
to Blair’s monograph [2].

2.1. Almost contact structures

An almost contact metric structure of a (2n + 1)-manifold M is a quartet
(φ, ξ, η, g) of structure tensor fields which satisfies:

η(ξ) = 1, dη(ξ, ·) = 0,

φ2 = −I + η ⊗ ξ, φξ = 0,
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g(φX,φY ) = g(X,Y )− η(X)η(Y ).

A (2n + 1)-manifold M = (M,φ, ξ, η, g) equipped with an almost contact
metric structure is called an almost contact metric manifold. The vector field
ξ is called the characteristic vector field of M . The 2-form

Φ(X,Y ) = g(X,φY )

is called the fundamental 2-form of M . On an almost contact metric manifold
M , we introduce an endomorphism field h which plays a prominent role in this
study by

h =
1

2
£ξφ,

where £ξ denotes the Lie differentiation by ξ.

Definition. Let (M,φ, ξ, η, g) be an almost contact metric manifold. A tan-
gent plane Πp at p ∈ M is said to be holomorphic if it is invariant under
φp.

It is easy to see that a tangent plane Πp is holomorphic if and only if ξp is
orthogonal to Πp. The sectional curvature K(Πp) of a holomorphic plane Πp is
called the holomorphic sectional curvature (also called φ-sectional curvature) of
Πp. In case dimM = 3, the holomorphic sectional curvature K(Πp) is denoted
by Hp and called the holomorphic sectional curvature at p.

Here we introduce the η-parallelism for endomorphism fields and scalar fields:

Definition. An endomorphism field F on an almost contact metric manifold
M is said to be

• η-parallel if it satisfies g((∇XF )Y,Z) = 0 for all vector fields X, Y and
Z on M orthogonal to ξ.

• strongly η-parallel if it satisfies g((∇XF )Y, Z) = 0 for all vector field
X on M and any vector fields Y and Z on M orthogonal to ξ.

• dominantly η-parallel if it satisfies g((∇XF )Y,Z) = 0 for all vector
fields X and Y on M and any vector field Z on M orthogonal to ξ.

Definition. A scalar field f on an almost contact metric manifold M is said
to be η-parallel if it satisfies

df(X) = g(grad f,X) = 0

for all vector field X orthogonal to ξ.

Here we mention a notion which is related to the η-parallelism. According
to Blair [1], an endomorphism field F on an almost contact metric manifold M
is said to be Killing if it satisfies (∇XF )X = 0 for all vector field on M . More
generally F is said to be transversally Killing if (∇XF )Y + (∇Y F )X = 0 for
all vector fields X and Y on M orthogonal to ξ [8]. In [24, Remark 1.2], the
authors claimed that the transversal Killing property for the Ricci operator S
of an almost contact metric 3-manifold is much weaker than the η-parallelism
of S. However we shall see after (Remark 6.11), “transversal-Killing S” is
stronger than “η-parallel S”.
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2.2. The local symmetry and the η-parallelism

Let us denote by R the Riemannian curvature of a Riemannian m-manifold
(M, g) defined by

R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ], X, Y ∈ X(M).

Here ∇ is the Levi-Civita connection and X(M) is the Lie algebra of all smooth
vector fields on M . The Ricci tensor field ρ is defined as the contraction of R
of the type

ρ(X,Y ) = C(R)(X,Y ) =

m∑
i=1

g(R(ei, X)Y, ei),

where C is the contraction operator and {e1, e2, . . . , em} is a local orthonormal
frame field. The Ricci operator S is a self-adjoint endomorphism field defined
by

ρ(X,Y ) = g(SX, Y ).

The scalar curvature r is defined as r = tr ρ = trS. One can see that

(∇Xρ)(Y, Z) = g((∇XS)Y, Z) = g(Y, (∇XS)Z).

The covariant derivative ∇ρ defined by

(∇ρ)(Y,Z;X) := (∇Xρ)(Y,Z)

satisfies
(∇ρ)(Y, Z;X) = (∇ρ)(Z, Y ;X),

but not totally symmetric, in general. A Riemannian manifold (M, g) is said
to be a space of harmonic curvature if ∇ρ is totally symmetric.

Since the contraction operator C commutes with the covariant differentiation
∇X , we get

g((∇WS)Y,Z) = (∇W ρ)(Y,Z) =

m∑
i=1

g((∇WR)(ei, Y )Z, ei)

= g(trg(∇WR)(·, Y )Z, ·).
Obviously, the local symmetry (∇R = 0) implies the parallelism of S (∇S = 0).

Now let us concentrate our attention to Riemannian 3-manifolds. On a
Riemannian 3-manifold M = (M, g), the Riemannian curvature R is described
as

R(X,Y )Z = ρ(Y, Z)X − ρ(Z,X)Y + g(Y, Z)SX − g(Z,X)Y − r

2
R1(X,Y )Z.

Here the curvature-like tensor field R1 is defined by

R1(X,Y )Z = (X ∧ Y )Z = g(Y,Z)X − g(Z,X)Y.

The covariant derivative ∇R is computed as

(∇WR)(X,Y )Z = (∇W ρ)(Y,Z)X−(∇W ρ)(Z,X)Y

+ g(Y, Z)(∇WS)X−g(Z,X)(∇WS)Y − dr

2
(W )R1(X,Y )Z.
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Hence the covariant derivative ∇R satisfies the following formula:

g((∇WR)(X,Y )Z, V ) = g((∇WS)Y,Z)g(X,V )− g((∇WS)Z,X)g(Y, V )

+ g(Y,Z)g((∇WS)X,V )− g(Z,X)g((∇WS)Y, V )(1)

− dr

2
(W )g(R1(X,Y )Z, V ).

We know that the local symmetry (∇R = 0) implies the constancy of the scalar
curvature, thus we confirm the following well-known fact:

Proposition 2.1. A Riemannian 3-manifold M is locally symmetric if and
only if its Ricci operator is parallel.

Now let us consider almost contact metric manifold M of arbitrary odd-
dimension. We introduce the η-parallelism of the Riemannian curvature in the
following manner:

Definition. The Riemannian curvatureR of an almost contact metric manifold
M is said to be η-parallel if R satisfies

g((∇WR)(X,Y )Z, V ) = 0

for all vector fields X, Y , Z, W and V orthogonal to ξ.

Definition. The Riemannian curvatureR of an almost contact metric manifold
M is said to be strongly η-parallel if R satisfies

g((∇WR)(X,Y )Z, V ) = 0

for all vector fields X, Y , Z and V orthogonal to ξ and any vector field W on
M .

Definition. The Riemannian curvatureR of an almost contact metric manifold
M is said to be dominantly η-parallel if R satisfies

g((∇WR)(X,Y )Z, V ) = 0

for all vector fields X, Y , Z and W on M and V orthogonal to ξ.

According to these definitions we deduce the following fact:

Proposition 2.2. On an almost contact metric 3-manifold M , if the Ricci
operator S and scalar curvature r are η-parallel, then so is the Riemannian
curvature R.

Conversely, if the Riemannian curvature R is η-parallel, then the Ricci op-
erator S is η-parallel if and only if

(2) η((∇WR)(ξ,X)Y ) = 0

holds for all vector fields W , X and Y orthogonal to ξ.
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Proof. (⇒) Assume that S and r are η-parallel, then from (1) R is η-parallel.
(⇐) Conversely, take a local orthonormal frame field of the form {e1, e2 =

φe1, e3 = ξ}, then under the assumption R is η-parallel, from (1), we obtain

g((∇WS)X,Y ) = η((∇WR)(ξ,X)Y )

for all W , X and Y orthogonal to ξ. Thus the η-parallelism of S is equivalent
to (2). □

Remark 2.3. Obviously, η-parallelism of R together with the η-parallelism of
S implies that of r.

While the local symmetry is equivalent to the parallelism of the Ricci op-
erator on arbitrary Riemannian 3-manifolds, especially almost contact metric
3-manifolds, the η-parallelism of R is not equivalent to that of S on almost
contact metric 3-manifolds.

We investigate η-parallelism of R on almost Kenmotsu 3-manifold in the
final section. We shall show that the η-parallelism of R is equivalent to that of
S on every Kenmotsu 3-manifold.

The η-parallelism of the Riemannian curvature was investigated first by
Takahashi [30] for Sasakian manifolds. Precisely speaking, Takahashi consid-
ered Sasakian manifolds satisfying

(3) φ2{(∇WR)(X,Y )Z} = 0

for all vector fields X, Y , Z and W orthogonal to ξ. Obviously this conditions
is equivalent to the η-parallelism of R.

Buken and Vanhecke pointed out that if a K-contact manifold M has η-
parallel Riemannian curvature, then M is Sasakian [7]. A K-contact manifold
M is said to be a (Sasakian) φ-symmetric space (in the sense of Takahashi) if
its Riemannian curvature R is η-parallel. A K-contact manifold M is locally
φ-symmetric if and only if all the characteristic reflections are isometric [7,30].
There are two directions to generalize the local φ-symmetry to general almost
contact metric manifolds. Blair, Koufogiorgos and Sharma [3] introduced the
notion of local φ-symmetry for general contact metric manifolds by the η-
parallelism of R. On the other hand, Boeckx and Vanhecke [6] defined the local
φ-symmetry of contact metric manifolds by the property “all the characteristic
reflections are isometric”. To distinguish these two classes, Boeckx, Buken and
Vanhecke [4] proposed the terminologies “strongly locally φ-symmetric space”
and “weakly locally φ-symmetric space”. According to [4], a contact metric
manifold is said to be a weakly locally φ-symmetric space if its Riemannian
curvature R is η-parallel. On the other hand, a contact metric manifold is said
to be a strongly locally φ-symmetric space if all the characteristic reflections are
isometric. They showed that strongly locally φ-symmetric spaces are weakly
locally φ-symmetric. For more information on weakly locally φ-symmetric
contact metric 3-manifolds, we refer to [26].
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2.3. Normality

On an almost contact metric manifold M , we define a torsion tensor field N
by

N(X,Y ) := [φ,φ](X,Y ) + 2dη(X,Y )ξ, X, Y ∈ X(M).

Here [φ,φ] is the Nijenhuis torsion of φ. An almost contact metric manifold
M is said to be normal if N(X,Y ) = 0 for all X, Y ∈ X(M).

2.4. Almost Kenmotsu structure

Definition ([18]). An almost contact metric manifold M is said to be almost
Kenmotsu if dη = 0 and dΦ = 2η ∧ Φ. An almost Kenmotsu manifold is said
to be Kenmotsu if it is normal. An almost Kenmotsu manifold is said to be
strictly almost Kenmotsu if it is non-normal.

It should be remarked that every almost Kenmotsu manifold satisfies divξ =
2n. Hence almost Kenmotsu manifolds can not be compact.

Proposition 2.4 ([13]). If an almost Kenmotsu manifold is of constant cur-
vature, then it is a Kenmotsu manifold of constant curvature −1.

In the class of Sasakian manifolds (resp. cosymplectic manifolds), there is a
particularly nice subclass, the class of Sasakian space forms (resp. cosymplectic
space forms). In the class of Kenmotsu manifolds, constancy of holomorphic
sectional curvature is a too strong restriction. In fact, Kenmotsu [19] showed:

Proposition 2.5. Let M be a Kenmotsu manifold of dimension greater than
3. Then M is of constant holomorphic sectional curvature if and only if it is
of constant curvature −1.

Three dimensional case will be discussed in the next subsection. To close
this subsection we introduce the following notion.

Definition. An almost Kenmotsu manifold whose characteristic vector field ξ
is a harmonic unit vector field is called an H-almost Kenmotsu manifold.

Perrone showed the following fundamental fact ([27, Theorem 4.1], [28,
Proposition 7]).

Proposition 2.6. An almost Kenmotsu manifold M is H-almost Kenmotsu
if and only if ξ is an eigenvector field of S.

2.5. Kenmotsu 3-manifolds

Here we recall curvature properties of Kenmotsu 3-manifolds.

Proposition 2.7. The Riemannian curvature R of a Kenmotsu 3-manifold M
has the form

R(X,Y )Z =
r + 4

2
(X ∧ Y )Z +

r + 6

2
[ξ ∧ {(X ∧ Y )ξ}]Z.
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The Ricci operator S has the form

S =
r + 2

2
I− r + 6

2
η ⊗ ξ.

The principal Ricci curvatures are (r + 2)/2, (r + 2)/2 and −2. The Ricci
operator S commutes with φ. For a unit vector X ∈ TM orthogonal to ξ, the
sectional curvatures of planes X ∧ φX and X ∧ ξ are given by

H = K(X ∧ φX) =
r

2
+ 2, K(X ∧ ξ) = −1.

Note that every Kenmotsu 3-manifold is H-almost Kenmotsu. Thus the
notion of H-almost Kenmotsu is intermediate notion between Kenmotsu and
almost Kenmotsu.

Proposition 2.8 ([14]). The following three properties for a Kenmotsu 3-
manifold M are mutually equivalent.

• M has constant holomorphic sectional curvature.
• M has constant scalar curvature.
• M is of constant curvature −1.

3. Almost Kenmotsu 3-manifolds

3.1. Fundamental formulas

Let M be an almost Kenmotsu 3-manifold. Denote by U1 the open subset
of M consisting of points p such that h ̸= 0 around p. Next, let U0 be the open
subset of M consisting of points p ∈ M such that h = 0 around p. Since h is
smooth, U = U1 ∪ U0 is an open dense subset of M . So any property satisfied
in U is also satisfied in whole M . For any point p ∈ U , there exists a local
orthonormal frame field E = {e1, e2 = φe1, e3 = ξ} around p, where e1 is an
eigenvector field of h.

Lemma 3.1 (cf. [10]). Let M be an almost Kenmotsu 3-manifold. Then there
exists a local orthonormal frame field E = {e1, e2, e3} on U such that

he1 = λe1, e2 = φe1, e3 = ξ

for some locally defined smooth function λ. The Levi-Civita connection ∇ is
described as

∇e1e1 = −be2 − ξ, ∇e1e2 = be1 + λξ, ∇e1e3 = e1 − λe2,

∇e2e1 = ce2 + λξ, ∇e2e2 = −ce1 − ξ, ∇e2e3 = −λe1 + e2,

∇e3e1 = αe2, ∇e3e2 = −αe1, ∇e3e3 = 0,

where

b = − 1

2λ
(e2(λ) + σ(e1)), c = − 1

2λ
(e1(λ) + σ(e2)),

and σ is the 1-form metrically equivalent to Sξ, that is,

σ = g(Sξ, ·) = ρ(ξ, ·).
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The covariant derivative ∇ξh of h by ξ is given by

∇ξh = −2αhφ+
ξ(λ)

λ
h

for h ̸= 0 on the open subset U .
The commutation relations are

[e1, e2] = be1 − ce2, [e2, e3] = (α− λ)e1 + e2, [e3, e1] = −e1 + (α+ λ)e2.

The Jacobi identity is described as

e1(α− λ) + ξ(b) + c(α− λ) + b = 0, e2(α+ λ)− ξ(c) + b(α+ λ)− c = 0.

Remark 3.2. On an almost Kenmotsu 3-manifold M with h ̸= 0,

α = g(∇ξW,φW )

is independent of the choice of unit eigenvector W of h.

The Riemannian curvature R is computed by the table of Levi-Civita con-
nection in Lemma 3.1:

R(e1, e2)e1 = −He2 − σ(e2)ξ, R(e1, e2)e2 = He1 + σ(e1)ξ,

R(e1, e2)e3 = σ(e2)e1 − σ(e1)e2, R(e2, e3)e1 = σ(e1)e2 − {ξ(λ) + 2λ} ξ,
R(e2, e3)e2 = −σ(e1)e1 −K23ξ, R(e2, e3)e3 = {ξ(λ) + 2λ} e1 +K23e2,

R(e3, e1)e1 = σ(e2)e2 +K13ξ, R(e3, e1)e2 = −σ(e2)e1 + {ξ(λ) + 2λ} ξ,
R(e3, e1)e3 = −K13e1 − {ξ(λ) + 2λ} e2.

Here the sectional curvatures Kij = K(ei ∧ ej) are given by

H = K12 =
r

2
+2(λ2+1), K13 = −(λ2+2αλ+1), K23 = −(λ2−2αλ+1).

Next, the Ricci operator S of an almost Kenmotsu 3-manifold M is described
as:

Se1 =
(r
2
+ λ2 − 2αλ+ 1

)
e1 + {ξ(λ) + 2λ}e2 + σ(e1)ξ,

Se2 = {ξ(λ) + 2λ}e1 +
(r
2
+ λ2 + 2αλ+ 1

)
e2 + σ(e2)ξ,

Se3 = σ(e1)e1 + σ(e2)e2 − 2(λ2 + 1)ξ.

Note that the scalar curvature r is computed as

r = −2{e1(c) + e2(b) + b2 + c2 + λ2 + 3}

and

σ(e1) = −e2(λ)− 2λb, σ(e2) = −e1(λ)− 2λc.

Remark 3.3. Since M is 3-dimensional, we have the relations

ρ11 = H +K13, ρ22 = H +K23, ρ33 = K13 +K23.
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4. Homogeneous almost Kenmotsu 3-manifolds

As we proclaimed in Introduction, the principal purpose of this article is to
investigate almost Kenmotsu 3-manifolds with η-parallel Ricci operator. To
show this purpose is not worthless, we provide explicit examples of those man-
ifolds. In this section, we exhibit homogeneous examples. Non-homogeneous
examples will be exhibited in the next section.

4.1. Two classes

Perrone ([28]) proved that every simply connected homogeneous almost
Kenmotsu 3-manifold is a 3-dimensional non-unimodular Lie group equipped
with a left invariant almost Kenmotsu structure. There are two classes of
3-dimensional almost Kenmotsu Lie groups.

• The characteristic vector field ξ is orthogonal to the unimodular kernel
(Type II Lie groups).

• The characteristic vector field ξ is transversal to the unimodular kernel
but not orthogonal (Type IV Lie groups).

After performing normalization procedure, those Lie group has the Lie algebra
determined by the following commutation relations:

• The type II Lie algebra g = g(λ, α) is generated by

[e1, e2] = 0, [e2, e3] = (α− λ)e1 + e2, [e3, e1] = −e1 + (α+ λ)e2,

where λ, α ∈ R.
• The type IV Lie algebra g = g[α, γ] is generated by

[e1, e2] = γe1, [e2, e3] = 2αe1, [e3, e1] = −2e1,

where α, γ ∈ R and γ ̸= 0.

In this section, we exhibit these Lie groups in detail. For more information
on these examples, we refer to [16,17].

4.2. Type II Lie groups

Let G(λ, α) be a 3-dimensional non-unimodular Lie group with Lie alge-
bra g(λ, α) generated by the orthonormal basis {e1, e2, e3} with commutation
relations

[e1, e2] = 0, [e2, e3] = (α− λ)e1 + e2, [e3, e1] = −e1 + (α+ λ)e2.

Then a left invariant almost contact structure (φ, ξ, η) compatible to the left
invariant metric g is defined by

φe1 = e2, φe2 = −e1, φe3 = 0, ξ = e3, η = g(e3, ·).
Then (φ, ξ, η, g) is a left invariant almost Kenmotsu structure. Note that
{e1, e2, e3} is regarded as a global orthonormal frame field as in Lemma 3.1
under the choice b = c = 0. The Levi-Civita connection is described as

∇e1e1 = −e3, ∇e1e2 = λe3, ∇e1e3 = e1 − λe2,
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∇e2e1 = λe3, ∇e2e2 = −e3, ∇e2e3 = −λe1 + e2,

∇e3e1 = αe2, ∇e3e2 = −αe1, ∇e3e3 = 0.

The Riemannian curvature R of G(λ, α) is given by

R(e1, e2)e1 = −K12e2, R(e1, e2)e2 = K12e1, R(e1, e2)e3 = 0,

R(e2, e3)e1 = −2λξ, R(e2, e3)e2 = −K23ξ, R(e2, e3)e3 = 2λe1 +K23e2,

R(e3, e1)e1 = K13ξ, R(e3, e1)e2 = 2λξ, R(e3, e1)e3 = −K13e1 − 2λe2,

where

K12 = −(1− λ2), K13 = −(λ2 + 2λα+ 1), K23 = −(λ2 − 2λα+ 1).

The Ricci operator S is given by

Se1 = −2(1+λα)e1 +2λe2, Se2 = 2λe1 − 2(1−λα)e2, Se3 = −2(1+λ2)ξ.

Thus every G(λ, α) is H-almost Kenmotsu. The scalar curvature r is computed
as

r = −2(3 + λ2).

The principal Ricci curvatures are

ρ1 = −2 + 2λ
√
1 + α2, ρ2 = −2− 2λ

√
1 + α2, ρ3 = −2(1 + λ2).

Direct computation show that

(∇e1S)e1 = 2αλξ, (∇e1S)e2 = 2λ(λ2 + αλ− 1)ξ,

(∇e1S)e3 = 2αλe1 + 2λ(λ2 + αλ− 1)e2, (∇e2S)e1 = 2λ(λ2 − αλ− 1)ξ,

(∇e2S)e2 = −2αλξ, (∇e2S)e3 = 2λ(λ2 − αλ− 1)e1 − 2αλe2,

(∇e3S)e1 = −4αλe1− 4α2λe2, (∇e3S)e2 = −4α2λe1+4αλe2, (∇e3S)e3 = 0.

From this table, one can see that the locally symmetric Lie group G(λ, α) of
type II are

• G(0, α) for any α. The Lie group G(0, α) is isometric to the hyperbolic
3-space H3(−1) of constant curvature equipped with a left invariant
Kenmotsu structure.

• G(±1, 0) which is isometric to H2(−4)×R equipped with a left invariant
strictly H-almost Kenmotsu structure.

Note that the transversally Killing property for S is equivalent to the local
symmetry.

The Lie derivative £ξS is given by

(£ξS)e1 = −4λα(e1+(λ+α)e2), (£ξS)e2 = 4λα((λ−α)e1+e2), (£ξS)e3 = 0.

Hence
£ξS = 0 ⇐⇒ ∇ξS = 0 ⇐⇒ λ = 0 or α = 0.

Moreover we obtain the following classification:

Proposition 4.1. Every almost Kenmotsu Lie group G(λ, α) has η-parallel
Ricci operator. Moreover
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• The Ricci operator S is strongly η-parallel when and only when λ = 0 or
α = 0. In the former case G(0, α) is isometric to the hyperbolic 3-space
H3(−1) equipped with a left invariant Kenmotsu structure. Among the
latter case G(±1, 0) is isometric to H2(−4) × R equipped with a left
invariant strictly H-almost Kenmotsu structure.

• The Ricci operator S is dominantly η-parallel when and only when λ =
0 or α = λ2 − 1 = 0. Thus S is dominantly η-parallel if and only if
G(λ, α) is locally symmetric.

Remark 4.2. Every G(λ, α) has η-parallel Riemannian curvature (see Example
7.2).

4.3. Type IV Lie groups

Let us consider a 3-dimensional non-unimodular Lie group G = G[α, γ] of
type IV equipped with a left invariant almost Kenmotsu structure. The Lie
algebra g = g[α, γ] is determined by the commutation relations:

[e1, e2] = γe1, [e2, e3] = 2αe1, [e3, e1] = −2e1, α ∈ R, γ ̸= 0.

Then the Levi-Civita connection is described as

∇e1e1 = −γe2 − 2e3, ∇e1e2 = γe1 − αe3, ∇e1e3 = 2e1 + αe2,

∇e2e1 = −αe3, ∇e2e2 = 0, ∇e2e3 = αe1,

∇e3e1 = αe2, ∇e3e2 = −αe1, ∇e3e3 = 0.

The Lie group is strictly almost Kenmotsu. The unimodular kernel is spanned
by

e1, ξ +
2

γ
(e1 − e2).

The operators h and h′ are given by

he1 = −αe1 + e2, he2 = e1 + αe2, h′e1 = e1 + αe2, h′e2 = αe1 − e2.

The eigenvalues of h are 0, λ and −λ where

λ =
√
α2 + 1.

The covariant derivative ∇ξh is computed as

∇ξh = −2αhφ.

Hence ∇ξh = 0 holds when and only when α = 0.
The Riemannian curvature R and the Ricci operator S are described as

R(e1, e2)e1 =
(
γ2 − α2

)
e2 + 2γe3, R(e1, e2)e2 =

(
α2 − γ2

)
e1 + 2αγe3,

R(e1, e2)e3 = −2γ(e1 + αe2), R(e1, e3)e1 = 2γe2 +
(
4− α2

)
e3,

R(e1, e3)e2 = −2γe1 + 4αe3, R(e1, e3)e3 =
(
α2 − 4

)
e1 − 4αe2,

R(e2, e3)e1 = 2αγe2 + 4αe3, R(e2, e3)e2 = −2αγe1 + 3α2e3,

R(e2, e3)e3 = −4αe1 − 3α2e2.
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ρ11 = 2α2 − γ2 − 4, ρ12 = −4α, ρ13 = 2αγ,

ρ22 = −2α2 − γ2, ρ23 = −2γ, ρ33 = −2α2 − 4.

The principal Ricci curvatures are

−4− 2α2 − γ2, −4− 2α2 − γ2, 2α2.

Direct computation show that

(∇e1S)e1 = −4α2

{
1

2
γe2 + e3

}
,

(∇e1S)e2 = 2α

{
−αγe1 + 2γe2 − (

1

2
γ2 − 2)e3

}
,

(∇e1S)e3 = 2α

{
(−2α)e1 + (2− 1

2
γ2)e2 − 2γe3

}
,

(∇e2S)e1 = −2α

{
(−2α)γe1 + γe2 +

1

2
(4α2 − γ2)e3

}
,

(∇e2S)e2 = −2α(γe2 − 2αe3),

(∇e2S)e3 = −2α

{
1

2
(4α2 − γ2)e1 − 2αe2 + 2αγe3)

}
,

(∇e3S)e1 = −2α
{
−4αe1 − 2(α2 − 1)e2 − γe3

}
,

(∇e3S)e2 = 2α
{
2(α2 − 1)e1 − 4αe2 + αγe3

}
,

(∇e3S)e3 = 2αγ(e1 + αe2).

One can see that £ξS = 0 holds when and only when α = 0. From these we
obtain

∇S = 0 ⇐⇒ (∇ξS)ξ = 0 ⇐⇒ £ξS = 0 ⇐⇒ α = 0.

Hence G[α, γ] has η-parallel Ricci operator when and only when α = 0. More-
over, the η-parallelism of S is equivalent to the local symmetry of G[α, γ]. The
strictly almost Kenmotsu Lie group G[0, γ] is not H-almost Kenmotsu. More-
over G[0, γ] is isometric to H2(−4− γ2)×R and satisfying ∇ξh = 0. The Ricci
operator S is transversally Killing if and only if ∇S = 0.

Theorem 4.3. For a homogeneous almost Kenmotsu 3-manifold M , the dom-
inantly η-parallelism of the Ricci operator is equivalent to the local symmetry
of M .

5. Generalized almost Kenmotsu (κ, µ, ν)-spaces

Here we give some examples of non-homogeneous almost Kenmotsu 3-mani-
folds with η-parallel Ricci operator.

Definition. An almost Kenmotsu 3-manifold M is said to be a generalized
almost Kenmotsu (κ, µ, ν)-space if there exist three functions κ, µ and ν such
that

R(X,Y )ξ = κ{η(Y )X − η(X)Y }+ µ{η(Y )hX − η(X)hY }
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+ ν{η(Y )φhX − η(X)φhY }

for all vector fields X and Y on M . In particular, M is said to be an almost
Kenmotsu (κ, µ, ν)-space if it is a generalized almost Kenmotsu (κ, µ, ν)-space
all of κ, µ and ν are constant.

Definition. Let M be a generalized almost Kenmotsu (κ, µ, ν)-space. If all
the functions κ, µ and ν are constants, then M is called an almost Kenmotsu
(κ, µ, ν)-space. A generalized almost Kenmotsu (κ, µ, ν)-space is said to be
proper if |dκ|2 + |dµ|2 + |dν|2 ̸= 0.

Theorem 5.1 ([17, 23]). Let M be an almost Kenmotsu 3-manifold. If M is
a generalized almost Kenmotsu (κ, µ, ν)-space, then M is an H-almost Ken-
motsu manifold. Conversely if M is an H-almost Kenmotsu manifold, then M
satisfies the generalized (κ, µ, ν)-condition on an open dense subset. In such a
case we have

κ = −(λ2 + 1), µ = −2α, λν = 2λ+ ξ(λ).

The Ricci operator has the form

S =
(r
2
− κ

)
I−

(r
2
− 3κ

)
η ⊗ ξ + µh+ νφh.

Moreover, we have

Sξ = 2κξ, tr (h2) = −2(κ+ 1).

Example 5.2 (The strictly almost Kenmotsu Lie group G(λ, 0)). For any
λ ̸= 0, the strictly almost Kenmotsu Lie group G(λ, 0) is an almost Kenmotsu
(−1 − λ2, 0, 2)-space. As we saw before G(±1, 0) = H2(−4) × R are locally
symmetric.

Example 5.3 ([25]). Let M = {(x, y, z) ∈ R3 | z > 0} be the upper half space.
We introduce an almost contact Riemannian structure on M by

ξ =
∂

∂z
, η = dz, g = ze2zdx2 +

e2z

z
dy2 + dz2,

φ
∂

∂x
= z

∂

∂y
, φ

∂

∂y
= −1

z

∂

∂x
, φ

∂

∂z
= 0.

Then M = (M,φ, ξ, η, g) is a strictly almost Kenmotsu 3-manifold. We can
take a global orthonormal frame field

e1 =
e−z

√
2

(
1√
z

∂

∂x
+
√
z
∂

∂y

)
, e2 = −e−z

√
2

(
1√
z

∂

∂x
−

√
z
∂

∂y

)
, e3 = ξ.

Then {e1, e2, e3} satisfies

[e1, e2] = 0, [e2, e3] = −λ e1 + e2, [e3, e1] = −e1 + λ e2.

Thus {e1, e2, e3} is a global orthonormal frame field as in Lemma 3.1 satisfying
b = c = 0, α = 0 and λ = 1/(2z). Note that the coordinate vector fields ∂x
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and ∂y are eigenvector fields of h′ = hφ corresponding to λ = 1/(2z) and −λ,
respectively. The sectional curvatures are given by

H = −(1− λ2), K13 = K23 = −(1 + λ2).

The Ricci tensor field and the scalar curvature are computed as

ρ =− e2z(4z2 + 2z − 1)

2z
dx2 − e2z(4z2 − 2z + 1)

2z3
dy2 − 4z2 + 1

2z2
dz2,

r =− 12z2 + 1

2z2
= −2(λ2 + 3) = 2(κ− 2).

The components of S relative to {e1, e2, e3} are given by

S =

 −2 2λ(1− λ) 0
2λ(1− λ) −2 0

0 0 −2(1 + λ2)


=

 −2 1/z − 1/(2z2) 0
1/z − 1/(2z2) −2 0

0 0 −2(1 + 1/(2z)2)

 .

One can check that (M,φ, ξ, η, g) is a generalized almost Kenmotsu (κ, 0, ν)-
space with

κ = −1− 1

4z2
< −1, ν = 2− 1

z
.

In particular κ and ν satisfy dκ ∧ η = dν ∧ η = 0. Moreover ∇ξh has the form

∇ξh = (ν − 2)h = −1

z
h.

The generalized almost Kenmotsu (κ, 0, ν)-space M has principal Ricci curva-
tures

ρ1 = −2 +
2z − 1

2z2
, ρ2 = −2− 2z − 1

2z2
, ρ3 = −2− 1

2z2
.

Hence the Ricci operator is η-parallel, but not strongly η-parallel.

6. The η-parallelism

In this section we investigate almost Kenmotsu 3-manifolds with η-parallel
Ricci operator. Before investigating the η-parallelism of the Ricci operator, we
study η-parallelism of the operator h.

6.1. The η-parallelism of the operator h

The normality of an almost Kenmotsu 3-manifold M is characterized by
the vanishing of the operator h. This fact motivates us to characterize H-
almost property in terms of the operator h. Here we give the characterization
of H-almost Kenmotsu property in terms of h.

Proposition 6.1. Let M be an almost Kenmotsu 3-manifold.

(i) If the operator h is η-parallel, then M is H-almost Kenmotsu and the
scalar field α is η-parallel.
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(ii) The operator h is strongly η-parallel if and only if M is Kenmotsu or
locally isomorphic to one of the strictly H-almost Kenmotsu Lie group
G(λ, 0) with λ ̸= 0.

(iii) The operator h is dominantly η-parallel if and only if it vanishes.

Proof. Let M be an almost Kenmotsu 3-manifold. On an open set U0, h van-
ishes. Hereafter we work on the open set U1. Take a local orthonormal frame
field {e1, e2, e3} as in Lemma 3.1, then the covariant derivative ∇h is computed
as

(∇e1h)e1 = e1(λ)e1 − 2bλe2 − λξ, (∇e1h)e2 = −2bλe1 − e1(λ)e2 − λ2ξ,

(∇e1h)e3 = −λe1 − λ2e2,

(∇e2h)e1 = e2(λ)e1 + 2cλe2 + λ2ξ, (∇e2h)e2 = 2cλe1 − e2(λ)e2 + λξ,

(∇e2h)e3 = λ2e1 + λe2,

(∇e3h)e1 = ξ(λ)e1 + 2αλe2, (∇e3h)e2 = 2αλe1 − ξ(λ)e2,

(∇e3h)e3 = 0.

Thus h is η-parallel if and only if

e1(λ) = e2(λ) = 0, b = c = 0.

These conditions implies ρ13 = ρ23 = 0. Hence U1 satisfies H-almost Kenmotsu
condition. Since H-almost Kenmotsu condition is satisfied on U0, we conclude
that the whole M is H-almost Kenmotsu. Note that from the Jacobi identity,
e1(α) = e2(α) = 0 holds on U1. This means that the scalar field α is η-parallel.
Moreover, one can see that h is η-parallel then M is H-almost Kenmostu and
the scalar field α is η-parallel.

Next, on U1, h is strongly η-parallel if and only if h is η-parallel and ξ(λ) =
α = 0. Thus if M has strongly η-parallel h, then λ is non-zero constant and
the frame field {e1, e2, e3} satisfies the commutation relations

[e1, e2] = 0, [e2, e3] = −λ e1 + e2, [e3, e1] = −e1 + λ e2.

This shows that U1 is locally isomorphic to the Lie group G(λ, 0) of type II.
Note that G(0, 0) is isometric to H3(−1) and has vanishing h. Conversely if M
is Kenmotsu or locally isomorphic to G(λ, 0) with λ ̸= 0, then M has strongly
η-parallel S.

Finally, h is dominantly η-parallel on U1 if and only if λ = 0. □

6.2. The system of local symmetry

Now we start our study on the η-parallelism of the Ricci operator. First of
all we recall the table of covariant derivative ∇S over U1 obtained in [16,17].

Take a local orthonormal frame field {e1, e2, e3} as in Lemma 3.1, then direct
computation shows the following results.

(∇e1S)e1 = {e1(ρ11) + 2bρ12 + 2ρ13}e1
+ {e1(ρ12)− b(ρ11 − ρ22)− λρ13 + ρ23}e2
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+ {e1(ρ13)− (ρ11 − ρ33) + λρ12 + bρ23}e3,
(∇e1S)e2 = {e1(ρ12)− b(ρ11 − ρ22)− λρ13 + ρ23}e1

+ {e1(ρ22)− 2bρ12 − 2λρ23}e2
+ {e1(ρ23)− ρ12 − bρ13 + λ(ρ22 − ρ33)}e3,

(∇e1S)e3 = {e1(ρ13)− (ρ11 − ρ33) + λρ12 + bρ23}e1
+ {e1(ρ23)− ρ12 − bρ13 + λ(ρ22 − ρ33)}e2
+ {e1(ρ33)− 2ρ13 + 2λρ23}e3.

Hence ∇e1S = 0 if and only if

e1(ρ11) + 2bρ12 + 2ρ13 = 0,(4)

e1(ρ12)− b(ρ11 − ρ22)− λρ13 + ρ23 = 0,(5)

e1(ρ13)− (ρ11 − ρ33) + λρ12 + bρ23 = 0,(6)

e1(ρ22)− 2bρ12 − 2λρ23 = 0,(7)

e1(ρ23)− ρ12 − bρ13 + λ(ρ22 − ρ33) = 0,(8)

e1(ρ33)− 2ρ13 + 2λρ23 = 0.(9)

(∇e2S)e1 = {e2(ρ11)− 2cρ12 − 2λρ13}e1
+ {e2(ρ12) + c(ρ11 − ρ22) + ρ13 − λρ23}e2
+ {e2(ρ13) + λ(ρ11 − ρ33)− ρ12 − cρ23}e3,

(∇e2S)e2 = {e2(ρ12) + c(ρ11 − ρ22) + ρ13 − λρ23}e1
+ {e2(ρ22) + 2cρ12 + 2ρ23}e2
+ {e2(ρ23) + λρ12 + cρ13 − (ρ22 − ρ33)}e3,

(∇e2S)e3 = {e2(ρ13) + λ(ρ11 − ρ33)− ρ12 − cρ23}e1
+ {e2(ρ23) + λρ12 + cρ13 − (ρ22 − ρ33)}e2
+ {e2(ρ33) + 2λρ13 − 2ρ23}e3.

Hence ∇e2S = 0 if and only if

e2(ρ11)− 2cρ12 − 2λρ13 = 0,(10)

e2(ρ12) + c(ρ11 − ρ22) + ρ13 − λρ23 = 0,(11)

e2(ρ13) + λ(ρ11 − ρ33)− ρ12 − cρ23 = 0,(12)

e2(ρ22) + 2cρ12 + 2ρ23 = 0,(13)

e2(ρ23) + λρ12 + cρ13 − (ρ22 − ρ33) = 0,(14)

e2(ρ33) + 2λρ13 − 2ρ23 = 0.(15)

(∇e3S)e1 = {e3(ρ11)− 2αρ12}e1 + {e3(ρ12) + α(ρ11 − ρ22)}e2
+ {e3(ρ13)− αρ23}e3,

(∇e3S)e2 = {e3(ρ12) + α(ρ11 − ρ22)}e1 + {e3(ρ22) + 2αρ12)}e2
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+ {e3(ρ23) + αρ13}e3,
(∇e3S)e3 = {e3(ρ13)− αρ23}e1 + {e3(ρ23) + αρ13}e2 + e3(ρ33)e3.

Thus ∇ξS = 0 if and only if

e3(ρ11)− 2αρ12 = 0,(16)

e3(ρ12) + α(ρ11 − ρ22) = 0,(17)

e3(ρ13)− αρ23 = 0,(18)

e3(ρ22) + 2αρ12 = 0,(19)

e3(ρ23) + αρ13 = 0,(20)

e3(ρ33) = 0.(21)

6.3. Locally symmetric spaces

Now let us assume that M is a locally symmetric almost Kenmotsu 3-
manifold. Then the scalar curvature r is constant on M . If M = U0, then
M is a Kenmotsu manifold of constant curvature −1. Hence M is locally iso-
metric to H3(−1). Moreover M is locally isomorphic to G(0, α) for some α as
a Kenmotsu 3-manifold.

Hereafter we assume that U1 is non-empty. On U we take a local orthonormal
frame field {e1, e2, e3} as in Lemma 3.1.

From g((∇e3S)e3, e3) = 0, that is, (21), we get ξ(λ) = 0. Thus we have
ρ12 = 2λ. Thus we obtain

g((∇e3S)e1, e2) = α(ρ11 − ρ22) = 0,

and since ρ11 − ρ22 = −4αλ, we get α2λ = 0. Thus α = 0 on U1. This implies
that ∇ξh = 0 on U1. Moreover

ρ11 = ρ22 =
r

2
+ 1 + λ2

holds on U1.

Proposition 6.2. If an almost Kenmotsu 3-manifold M is locally symmetric,
then M satisfies ∇ξh = 0 holds on M .

The converse statement of this proposition does not hold. In fact, the Lie
group G(λ, 0) with λ2 ̸= 1 in Type ll Lie groups satisfies ∇ξh = 0 but it is not
locally symmetric.

Locally symmetric almost Kenmotsu 3-manifolds are classified as follows:

Theorem 6.3 ([16,29]). Let M be an almost Kenmotsu 3-manifold. Then M
is locally symmetric if and only if M is one of the following spaces:

(i) If M is H-almost Kenmotsu, then M is a Kenmotsu manifold of con-
stant curvature −1 or locally isomorphic to H2(−4)× R or

(ii) If M is non H-almost Kenmotsu, then M is locally isomorphic to
H2(−4− γ2)× R for some γ ̸= 0.
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Corollary 6.4. Every complete locally symmetric almost Kenmotsu 3-manifold
is realized as a Lie group equipped with a left invariant almost Kenmotsu struc-
ture.

From Theorem 6.3, the following corollary is deduced.

Corollary 6.5. Let M be an almost Kenmotsu 3-manifold satisfying ∇ξh = 0.
Then M has harmonic curvature, that is,

(∇XS)Y = (∇Y S)X

for all vector fields on X and Y if and only if M is one of the following spaces:

(i) If M is H-almost Kenmotsu, then M is a Kenmotsu manifold of con-
stant curvature −1 or locally isomorphic to H2(−4)× R or

(ii) If M is non H-almost Kenmotsu, then M is locally isomorphic to
H2(−4− γ2)× R for some γ ̸= 0.

6.4. Dominantly η-parallel Ricci operator

In this subsection, we study almost Kenmotsu 3-manifolds with dominantly
or strongly η-parallel Ricci operator. The first named author obtained the
following classification.

Theorem 6.6 ([15]). A Kenmotsu 3-manifold M has η-parallel Ricci operator
if and only if it is locally isomorphic to the warped product I×cet M , where I is
an open interval with coordinate t, M is a Riemannian 2-manifold of constant
curvature and c is a positive constant.

From Theorem 6.6, we know that

R×cet S2(k2), R×cet H2(−k2), R×cet R2 = H3(−1)

are Kenmotsu 3-manifolds with η-parallel Ricci operator. The scalar curvature
of these warped products are

−6 +
2k2

c2
e−2t, −6− 2k2

c2
e−2t, −6,

respectively. It should be remarked that the scalar curvature of a Kenmotsu 3-
manifold with η-parallel Ricci operator is η-parallel. Combining this fact with
Proposition 2.2, we obtain the following:

Corollary 6.7. If a Kenmotsu 3-manifold M has η-parallel Ricci operator,
then its Riemannian curvature is η-parallel.

Kenmotsu 3-manifolds with η-parallel Riemannian curvature will be dis-
cussed again in the final section.

On the other hand, strong η-parallelism of the Ricci operator implies the
local symmetry.

Theorem 6.8 ([15]). A Kenmotsu 3-manifold M has strongly η-parallel Ricci
operator if and only if it is of constant curvature −1.



ON THE η-PARALLELISM IN ALMOST KENMOTSU 3-MANIFOLDS 1323

Now let us investigate almost Kenmotsu 3-manifolds with dominantly η-
parallel Ricci operator. First we study those 3-manifolds under certain addi-
tional condition on the operator h:

Proposition 6.9. An almost Kenmotsu 3-manifold M has dominantly η-
parallel Ricci operator with ξ(tr h2) = 0 if and only if it is locally symmetric.

Proof. Let us work on the open set U = U0 ∪ U1. Then from Theorem 6.8, the
open set U0 is locally isomorphic to H3(−1) and hence U0 is locally symmetric.

Now let us investigate the open set U1 and take a local orthonormal frame
field {e1, e2, e3} as in Lemma 3.1. Then one can see that

• M has η-parallel Ricci operator if and only if M satisfies the system of
equations (4), (5), (7), (10), (11) and (13).

• M has strongly η-parallel Ricci operator if and only if S is η-parallel
and in addition satisfies (16), (17) and (19).

• M has dominantly η-parallel Ricci operator if and only if S is strongly
η-parallel and in addition satisfies (6), (8), (12), (14), (18) and (20).

From the additional assumption ξ(trh2) = 0, we have ρ12 = 2λ and hence
ξ(ρ12) = 0. The operator h satisfies ∇ξh = −2αhφ. The strong η-parallelism
implies g((∇ξS)e1, e2) = 0. From this we have α2λ = 0. Since λ does not
vanish on U1, α = 0 holds on U1. This implies that ∇ξh = 0. Moreover, from
g((∇ξS)e2, e2) = 0, we have ξ(r) = 0 on U1.

Here we recall the divergence formula for S:

(22) div S =
1

2
grad r.

The left hand side is computed as

div S = tr(∇S) = (∇e1S)e1 + (∇e2S)e2 + (∇e3S)e3.

If S is strongly η-parallel, then (∇e1S)e1, (∇e2S)e2 have only e3-components.
Since we assumed that S is dominantly η-parallel, we have

g((∇e1S)e1, e3) = g((∇e1S)e3, e1) = 0, g((∇e2S)e2, e3) = g((∇e2S)e3, e2) = 0.

Hence divS is parallel to ξ and has the expression divS=(∇ξS)ξ=η((∇ξS)ξ)ξ.
On the other hand, the right hand side of the divergence formula is

1

2
grad r =

1

2
(e1(r)e1 + e2(r)e2 + e3(r)e3) .

Hence we have e1(r) = e2(r) = 0 and the scalar curvature r is a constant on
U1.

From the assumption ξ(tr(h2)) = 0, the equation (21) holds on U1. This
together with the dominantly η-parallelism of S, we have ∇ξS = 0 on U1. On
the open set U1

α = 0, dr = 0, ξ(λ) = 0

hold. In addition, from η-parallelism, (4) and (7) hold. From these two equa-
tions one can verify that (9) holds on U1. Analogously, from (10) and (13), one
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can deduce (15). Henceforth we proved that S is parallel on U1. Thus M is
locally symmetric.

Conversely, whenM is locally symmetric, it has always dominantly η-parallel
Ricci operator and satisfies ∇ξh = 0. □

Thus we have the following partial classification.

Corollary 6.10. For an almost Kenmotsu 3-manifold M satisfying ∇ξh = 0,
the dominantly η-parallelism of the Ricci operator S is equivalent to the local
symmetry of M .

Thus an almost Kenmotsu 3-manifold M with dominantly η-parallel Ricci
operator and satisfying ∇ξh = 0 is locally isomorphic to one of the following
spaces:

(i) the hyperbolic 3-space H3(−1) equipped with a homogeneous Kenmotsu
structure,

(ii) the Riemannian product H2(−4) × R equipped with a homogeneous
strictly Kenmotsu structure, or

(iii) the Riemannian product H2(−4−γ2)×R equipped with a homogeneous
strictly Kenmotsu structure for some γ ̸= 0.

Remark 6.11. The system of transversal Killing Ricci operator on the open
set U1 of an almost Kenmotsu 3-manifold M is the system (4)–(7), (10), (11),
(13), (14), and g((∇e1S)e2, e3)+g((∇e2S)e1, e3) = 0. Thus clearly, transversal
Killing property of S is strictly stronger than the η-parallelism of S. On the
other hand, the strong η-parallelism and the transversal Killing property have
no inclusion relations. The dominant η-parallelism of S is stronger than the
transversal Killing property of S.

6.5. Almost Kenmotsu 3-manifolds with η-parallel Ricci operator

In this subsection, we classify almost Kenmotsu 3-manifolds with η-parallel
Ricci operator. However, unfortunately, to classify all almost Kenmotsu 3-
manifolds with η-parallel Ricci operator is a true challenging issue. We demand
some adequate conditions. For this direction, Proposition 6.2 motivates us to
study almost Kenmotsu 3-manifold satisfying ∇ξh = 0 which has η-parallel
Ricci operator.

Theorem 6.12. Let M be an almost Kenmotsu 3-manifold satisfying ∇ξh = 0.
Assume that both the Ricci operator and the scalar curvature r are η-parallel.
Then it is locally isomorphic to one of the following spaces:

(i) the warped products R ×cet S2(k2), R ×cet H2(−k2) or the hyperbolic
3-space H3(−1).

(ii) the type II Lie group G(λ, 0) for some constant λ ̸= ±1, 0.
(iii) a strictly almost Kenmotsu 3-manifold of constant scalar curvature sat-

isfying α = 0, tr(h2) = 2 whose Ricci operator is strongly η-parallel and
satisfies ∇ξS = £ξS = 0.



ON THE η-PARALLELISM IN ALMOST KENMOTSU 3-MANIFOLDS 1325

The third class includes the type II Lie groups G(±1, 0) and type IV Lie group
G[0, γ] = H2(−4− γ2)× R for some constant γ ̸= 0.

Proof. Let M be an almost Kenmotsu 3-manifold satisfying ∇ξh = 0 and has
η-parallel Ricci operator S. Let us work on the open set U = U0 ∪ U1. Then
from Theorem 6.6, the open set U0 is locally isomorphic to the warped product
I ×cet M , where I is an open interval with coordinate t, M is a Riemannian
2-manifold of constant curvature and c is a positive constant. Note that the
scalar curvature of the warped product is η-parallel.

Now let us investigate the open set U1 and take a local orthonormal frame
field {e1, e2, e3} as in Lemma 3.1. From the additional assumption ∇ξh = 0 on
U1, we have that ξ(λ) = 0 and α = 0.

Then from η-parallel condition (4), (5), (7), (10), (11) and (13), we deduce

(23) λe1(λ) + e2(λ) = 2λ(b− cλ), e1(λ) + λe2(λ) = 2λ(c− bλ),

and

(24)
1

4
e1(r) = −λe1(λ) + e2(λ),

1

4
e2(r) = e1(λ)− λe2(λ).

Now, we assume that the scalar curvature r is η-parallel, then

e1(r) = e2(r) = 0.

From (24) and the above equations, we have

(25) e1(λ) = λ e2(λ), e2(λ) = λ e1(λ).

From (25) we deduce that

(26) (1− λ2)e1(λ) = 0, (1− λ2)e2(λ) = 0.

On the other hand, from (23) and (25), on U1, we obtain

(27) e1(λ) = b− cλ, e2(λ) = c− bλ.

By applying (27) to (25), we have

b(1 + λ2) = 2cλ, c(1 + λ2) = 2bλ.

Hence we get

b2(1 + λ2)2 + c2(1 + λ2)2 = 4λ2(b2 + c2).

This is rewritten as

(28) (b2 + c2)(1− λ2)2 = 0.

The equations (26) and (28) suggest us to introduce open sets

U8 = {p ∈ U1 | λ2 − 1 = 0 in a neighborhood of p},
U9 = {p ∈ U1 | λ2 − 1 ̸= 0 in a neighborhood of p}

in U1. One can see that U8 ∪ U9 is open and dense in U1.
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On the open set U8, we have λ = 1 or λ = −1. It suffices to investigate the
case λ = 1. The case λ = −1 is investigated in much the same way to the case
λ = 1. From the Jacobi identity,

(29) ξ(b)− c+ b = 0, −ξ(c) + b− c = 0.

From (27) and (29), we have

(30) ξ(b) = ξ(c) = 0, c = b ̸= 0.

Hence the commutation relations of {e1, e2, e3} are

[e1, e2] = c(e1 − e2), [e2, e3] = −e1 + e2, [e3, e1] = −e1 + e2.

The scalar curvature is given by

r = −2{e1(c) + e2(b) + b2 + c2 + 4} = −2{e1(b) + e2(b) + 2b2 + 4}.

By using the commutation relations we get

ξ(r) = −2{e3e1(b) + e3e2(b) + 4be3(b)}
= −2{e1e3(b)− e1(b) + e2(b) + e2e3(b) + e1(b)− e2(b) + 4be3(b)}
= 0,

thus the scalar curvature r is a constant.
The components of S are given by

ρ11 = ρ22 =
r

2
+ 2 = −e1(b)− e2(b)− 2b2 − 2,

ρ12 = 2, ρ13 = ρ23 = −2b, ρ33 = −4.

Moreover one can check that the Ricci operator S satisfies (9), (15), (16)-(21).
Thus ∇ξS = 0. From the table of ∇S, except (6), (8), (12) and (14), other
equations of the system of local symmetry are satisfied. Direct computation
shows that

g((∇e1S)e1, e3) = g((∇e1S)e3, e1) = −e1(b) + e2(b),

g((∇e1S)e2, e3) = g((∇e1S)e3, e2) = −3e1(b)− e2(b),

g((∇e2S)e1, e3) = g((∇e2S)e3, e1) = −e1(b)− 3e2(b),

g((∇e2S)e2, e3) = g((∇e2S)e3, e2) = e1(b)− e2(b).

Thus if both σ(e1) = ρ13 and σ(e2) = ρ23 are constant on U8, then U8 is locally
symmetric. In particular, if b = 0 on U8, then U8 is H-almost Kenmotsu. One
can see that U8 is locally isomorphic to H2(−4) × R = G(1, 0). Note that
if S is transversally Killing, then g((∇e1S)e1, e3) = g((∇e2S)e2, e3) = 0 and
g((∇e1S)e2, e3) + g((∇e2S)e1, e3) = 0. Hence, on U8, b is a constant and U8 is
locally symmetric.

Let us compute the Lie derivative £ξS. For any vector field X, we have

(£ξS)X = [ξ, SX]−S[ξ,X] = (∇ξS)X−∇SXξ+S(∇Xξ) = −∇SXξ+S(∇Xξ)
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on U8. By using this we get

(£ξS)e1 = (£ξS)e2 = (£ξS)e3 = 0.

Now we rotate the orthonormal frame field and get a new one {E1, E2, E3}
as

E1 =
1√
2
(e1 − e2), E2 =

1√
2
(e1 + e2), E3 = e3.

Then we get

(31) [E1, E2] =
√
2bE1, [E2, E3] = 0, [E3, E1] = −2E1.

In case b is a non-zero constant on U8, (31) implies that U8 is locally isomorphic

to the Lie group G[0, γ] = H2(−4− γ2)× R of type IV with γ =
√
2b ̸= 0.

Next, on the open set U9, from (26), e1(λ) = e2(λ) = 0. Hence λ is a
constant. Moreover form (28), we have b = c = 0. Thus λ is a nonzero-constant
on U9 such that λ2 ̸= 1. Hence commutation relations

[e1, e2] = 0, [e2, e3] = −λ e1 + e2, [e3, e1] = −e1 + λ e2

hold. Thus U9 is locally isomorphic to the type II Lie group G(λ, 0) for some
constant λ ̸= ±1, 0. □

Note that as pointed out by Perrone [29, Remark 4.2], the classification of
almost Kenmotsu 3-manifolds satisfying £ξS = 0 is still an open question.

For an almost Kenmotsu 3-manifold M , M has strongly η-parallel Ricci
operator if and only if S is η-parallel and in addition satisfies (16), (17) and
(19). In particular, for an almost Kenmotsu 3-manifold M satisfying ∇ξh = 0,
(16), (17) and (19) are equivalent to ξ(r) = 0. Hence we have:

Corollary 6.13. Let M be an almost Kenmotsu 3-manifold satisfying ∇ξh =
0. Assume that the scalar curvature r is a constant. Then M has η-parallel
Ricci operator if and only if it has strongly η-parallel Ricci operator.

The Ricci operator S is transversally Killing if and only if it is η-parallel
and, in addition, satisfies (6), (14), and g((∇e1S)e2 + (∇e2S)e1, e3) = 0, i.e.,

e1(ρ23) + e2(ρ13) + λ(ρ11 + ρ22 − 2ρ33)− 2ρ12 − bρ13 − cρ23 = 0.

Theorem 6.12 implies the following corollary.

Corollary 6.14. Let M be a strictly almost Kenmotsu 3-manifold with η-
parallel scalar curvature which satisfies ∇ξh = 0. Then the Ricci operator S
is transversally Killing if and only if M is locally isomorphic to one of the
following spaces:

(i) the type II Lie group G(λ, 0) for some constant λ ̸= 0.
(ii) the type IV Lie group G[0, γ] = H2(−4 − γ2) × R for some constant

γ ̸= 0.
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6.6. H-almost Kenmotsu 3-manifolds with η-parallel Ricci operator

Another adequate assumption is the H-almost Kenmotsu property. Note
that not all of locally symmetric almost Kenmotsu 3-manifolds are H-almost
Kenmotsu. Indeed, the product space H2(−4 − γ2) × R is locally symmetric,
but not H-almost Kenmotsu.

In this subsection, we demand both “H-almost Kenmotsu” and “∇ξh =
−2αhφ” for some constant α (including the case α = 0, i.e., ∇ξh = 0) for
almost Kenmotsu 3-manifolds.

Theorem 6.15. Let M be an H-almost Kenmotsu 3-manifold satisfying ∇ξh =
−2αhφ for some constant α. Then M is a Kenmotsu 3-manifold or it is locally
isomorphic to one of the type II Lie group G(λ, α) for some λ and α.

Proof. Let us work on the open set U = U0 ∪ U1. On U0, we have h = 0 and
hence both H-almost Kenmotsu condition and ∇ξh = 0 are trivially satisfied.

Now let us investigate the open set U1 and take a local orthonormal frame
field {e1, e2, e3} as in Lemma 3.1. From the additional assumption ∇ξh =
−2αhφ for some constant α, ξ(λ) = 0 holds on U1. Thus we have

ρ11 =
r

2
+ λ2 − 2αλ+ 1, ρ22 =

r

2
+ λ2 + 2αλ+ 1,

ρ12 = 2λ, ρ13 = ρ23 = 0, ρ33 = −2(1 + λ2)

on U1. Since M is H-almost Kenmotsu, the condition ρ13 = ρ23 = 0 implies

(32) e1(λ) = −2λc, e2(λ) = −2λb.

Then from the divergence formula (22), we have

g(div S, e1) =
1

2
e1(r).

Let us compute the left hand side:

g(div S, e1) = g((∇e1S)e1, e1) + g((∇e2S)e2, e1) + g((∇e3S)e3, e1)

= (e1(ρ11) + 2bρ12 + 2ρ13) + (e2(ρ12) + c(ρ11 − ρ22) + ρ13 − λρ23)

+ (e3(ρ13)− αρ23)

=
1

2
e1(r) + 2λe1(λ)− 2αe1(λ) + 4bλ+ 2e2(λ)− 4αλc

=
1

2
e1(r)− 4cλ2.

Analogously, we consider

g(div S, e2) =
1

2
e2(r).

Let us compute the left hand side:

g(div S, e2) = g((∇e1S)e1, e2) + g((∇e2S)e2, e2) + g((∇e3S)e3, e2)

= (e1(ρ12)− b(ρ11 − ρ22)− λρ13 + ρ23) + (e2(ρ22) + 2cρ12 + 2ρ23)
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+ (e3(ρ23) + αρ13)

=
1

2
e2(r) + 2e1(λ) + 2λe2(λ) + 4cλ+ 2αe2(λ) + 4αλb

=
1

2
e2(r)− 4bλ2.

Hence we have b = c = 0 on U1. Moreover, since M is an H-almost Kenmotsu
3-manifold, from (32) we have e1(λ) = e2(λ) = 0. Since we know that ξ(λ) =
0, hence λ is a constant on U1. Hence {e1, e2, e3} satisfies the commutation
relations

[e1, e2] = 0, [e2, e3] = (α− λ) e1 + e2, [e3, e1] = −e1 + (α+ λ) e2.

Thus U1 is locally isomorphic to one of the type II Lie group G(λ, α) for
some λ. The family {G(λ, α)} of Lie groups includes locally symmetric spaces
G(±1, 0) = H2(−4)× R. □

From Proposition 6.1 and Theorem 6.15, we obtain:

Corollary 6.16. Let M be an almost Kenmotsu 3-manifold satisfying ∇ξh =
−2αhφ for some constant α. If the operator h is η-parallel, then M is a Ken-
motsu 3-manifold or it is locally isomorphic to the type II Lie group G(λ, α)
for some λ and α.

Proof. It suffices to work on the open set U1. From Proposition 6.1, the η-
parallelism of h implies

e1(λ) = e2(λ) = 0, b = c = 0

and U1 is H-almost Kenmotsu. Thus the result follows from Theorem 6.15. □

Now let us consider almost Kenmotsu 3-manifolds with η-parallel Ricci op-
erator satisfying ∇ξh = −2αhφ for some constant α. From Theorem 6.6 and
Theorem 6.15 we have the following partial classification:

Theorem 6.17. Let M be an H-almost Kenmotsu 3-manifold satisfying ∇ξh =
−2αhφ for some α. Then M has η-parallel Ricci operator if and only if it is
locally isomorphic to one of the following spaces:

(i) the warped product I×cetM . Here I is an open interval with coordinate
t, M is a Riemannian 2-manifold of constant curvature, c is a positive
constant, or

(ii) the type II Lie group G(λ, α) for some λ and α.

From Proposition 4.1 and Theorem 6.15, we have:

Corollary 6.18. Let M be a strictly H-almost Kenmotsu 3-manifold satisfying
∇ξh = −2αhφ for some constant α. Then

(i) the Ricci operator S is strongly η-parallel when and only when λ = 0 or
α = 0. In the former case G(0, α) is isometric to the hyperbolic 3-space
H3(−1) equipped with a left invariant Kenmotsu structure. Among the
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latter case G(±1, 0) is isometric to H2(−4) × R equipped with a left
invariant strictly H-almost Kenmotsu structure.

(ii) the Ricci operator S is dominantly η-parallel if and only if G(λ, α) is
locally symmetric.

It should be remarked that the condition ∇ξh = −2αhφ can not be removed
for this classification stated in Theorem 6.17. In fact the example exhibited
in Example 5.3 due to Pastore and Saltarelli is a strictly H-almost Kenmotsu
3-manifold with η-parallel Ricci operator but does not satisfy ∇ξh = −2αhφ.
Next, in [32, Theorem 3.1], Wang claimed that a strictly almost Kenmotsu
3-manifold M satisfying ∇ξh = 0 has η-parallel Ricci operator if and only if
it is locally isomorphic to H2(−4) × R or a certain non-unimodular Lie group
equipped with a left invariant strictly almost Kenmotsu structure. Namely,
in [32, Theorem 3.1], Wang does not assume that M is H-almost Kenmotsu.
However [32, Theorem 3.1] is correct under the additional assumption “H-
almost Kenmotsu” (see [10, Theorem C] and [29, Remark 4.1]). Our Theorem
6.17 corrects as well as improves [32, Theorem 3.1]. Indeed we give a detailed
expression of the Lie group stated in [32, Theorem 3.1].

7. The η-parallelism of the Riemannian curvature

In this section we discuss the η-parallelism of the Riemannian curvature R
on almost Kenmotsu 3-manifolds. First we prove the following:

Proposition 7.1. An almost Kenmotsu 3-manifold M has η-parallel Riemann-
ian curvature if and only if

(33) dH(X) + 2ρ(X, ξ) + 2ρ(hφX, ξ) = 0

for all vector field X orthogonal to ξ.
Moreover M has strongly η-parallel Riemannian curvature if R is η-parallel

and dH(ξ) = 0 holds.
In particular if M is H-almost Kenmotsu, then R is η-parallel if and only if

the holomorphic sectional curvature H is η-parallel. In addition, an H-almost
Kenmotsu 3-manifold M has strongly η-parallel Riemannian curvature if and
only if H is constant.

Proof. With respect to the local orthonormal frame field {e1, e2, e3} as in
Lemma 3.1, the covariant derivative ∇R is described as

(∇e1R)(e1, e2)e1 = − {e1(H) + 2σ(e1)− 2λσ(e2)}e2
− {e1(σ(e2)) + λ(H −K13)− (ξ(λ) + 2λ)− bσ(e1)}ξ,

(∇e1R)(e1, e2)e2 = {e1(H) + 2σ(e1)− 2λσ(e2)}e1
+ {e1(σ(e1))− (H −K23) + λ(ξ(λ) + 2λ) + bσ(e2)}ξ,

(∇e2R)(e1, e2)e1 = − {e2(H) + 2σ(e2)− 2λσ(e1)}e2
− {e2(σ(e2))− (H −K13) + λ(ξ(λ) + 2λ) + cσ(e1)}ξ,
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(∇e2R)(e1, e2)e2 = {e2(H) + 2σ(e2)− 2λσ(e1)}e1
+ {e2(σ(e1)) + λ(H −K23)− (ξ(λ) + 2λ)− cσ(e2)}ξ.

From this table, the system of η-parallelism of R is

(34) e1(H) + 2σ(e1)− 2λσ(e2) = 0, e2(H) + 2σ(e2)− 2λσ(e1) = 0.

This system is equivalent to (33). Next, from the formulas:

(∇e3R)(e1, e2)e1 = −ξ(H)e2 − {ξ(σ(e2)) + ασ(e1)}ξ,
(∇e3R)(e1, e2)e2 = ξ(H)e1 + {ξ(σ(e1))− ασ(e2)}ξ.

We conclude that R is strongly η-parallel if and only if R is η-parallel and
dH(ξ) = 0. □

Example 7.2 (Homogeneous almost Kenmotsu 3-manifolds). The H-almost
Kenmotsu Lie group G(λ, α) of type II has constant holomorphic sectional
curvature H = −(1 − λ2) and hence it has η-parallel Riemannian curvature.
As we saw in Proposition 4.1, every G(λ, α) has η-parallel Ricci operator as
well as η-parallel Riemannian curvature (see Remark 4.2).

On the other hand, the almost Kenmotsu Lie group G[α, γ] of type IV has
η-parallel Ricci operator when and only when α = 0, i.e., it is locally symmetric
(and hence R is dominantly η-parallel).

Example 7.3 (H-almost Kenmotsu 3-manifolds). The H-almost Kenmotsu
3-manifold M exhibited in Example 5.3 has η-parallel Ricci operator. On the
other hand, the holomorphic sectional curvature

H = −1 +
1

4z2

is η-parallel but dH(ξ) ̸= 0. Note that the scalar curvature r is η-parallel.
Hence R is η-parallel but not strongly η-parallel.

In Proposition 2.2, we proved that on an almost contact metric 3-manifold
M with η-parallel Riemannian curvature, the Ricci operator S is η-parallel if
and only if S satisfies the equation (2). Here we compute the equation (2) on
an almost Kenmotsu 3-manifold M .

(∇e1R)(e2, e3)e1 = {e1(σ(e1))− (H −K23) + λ(ξ(λ) + 2λ) + bσ(e2)}e2
− {e1(ξ(λ) + 2λ)− b(K13 −K23)− λσ(e1) + σ(e2)}ξ,

(∇e1R)(e2, e3)e2 = − {e1(σ(e1))− (H −K23) + λ(ξ(λ) + 2λ) + bσ(e2)}e2
− {e1(K23)− 2b(ξ(λ) + 2λ)− 2σ(e1)}ξ,

(∇e1R)(e3, e1)e1 = {e1(σ(e2)) + λ(H −K13)− (ξ(λ) + 2λ)− bσ(e1)}e2
+ {e1(K13) + 2b(ξ(λ) + 2λ) + 2λσ(e2)}ξ,

(∇e1R)(e3, e1)e2 = − {e1(σ(e2)) + λ(H −K13)− (ξ(λ) + 2λ)− bσ(e1)}e1
+ {e1(ξ(λ) + 2λ)− b(K13 −K23)− λσ(e1) + σ(e2)}ξ,

(∇e2R)(e2, e3)e1 = {e2(σ(e1)) + λ(H −K23)− (ξ(λ) + 2λ)− cσ(e2)}e2
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− {e2(ξ(λ) + 2λ) + c(K13 −K23)− λσ(e2) + σ(e1)}ξ,
(∇e2R)(e2, e3)e2 = − {e2(σ(e1)) + λ(H −K23)− (ξ(λ) + 2λ)− cσ(e2)}e1

− {e2(K23) + 2c(ξ(λ) + 2λ) + 2λσ(e1)}ξ,
(∇e2R)(e3, e1)e1 = {e2(σ(e2))− (H −K13) + λ(ξ(λ) + 2λ) + cσ(e1)}e2

+ {e2(K13)− 2c(ξ(λ) + 2λ)− 2σ(e2)}ξ,
(∇e2R)(e3, e1)e2 = − {e2(σ(e2)) + λ(ξ(λ) + 2λ)− (H −K13) + cσ(e1)}e1

+ {e2(ξ(λ) + 2λ) + c(K13 −K23)− λσ(e2) + σ(e1)}ξ.
From this table we obtain the following proposition.

Proposition 7.4. Let M be an almost Kenmotsu 3-manifold with η-parallel
Riemannian curvature. Take a local orthonormal frame field {e1, e2, e3} as in
Lemma 3.1. Then the Ricci operator S is η-parallel if and only if the following
system of equations is satisfied.

e1(ξ(λ) + 2λ)− b(K13 −K23)− λσ(e1) + σ(e2) = 0,(35)

e1(K13) + 2b(ξ(λ) + 2λ) + 2λσ(e2) = 0,(36)

e1(K23)− 2b(ξ(λ) + 2λ)− 2σ(e1) = 0,(37)

e2(ξ(λ) + 2λ) + c(K13 −K23)− λσ(e2) + σ(e1) = 0,(38)

e2(K13)− 2c(ξ(λ) + 2λ)− 2σ(e2) = 0,(39)

e2(K23) + 2c(ξ(λ) + 2λ) + 2λσ(e1) = 0.(40)

One can verify that the above system (35)–(40) together with (34) is equiv-
alent to the system (4), (5), (7), (10), (11) and (13) of η-parallelism for S.

In case M is H-almost Kenmotsu, the system (35)–(40) is reduced to the
following one.

Corollary 7.5. Let M be an H-almost Kenmotsu 3-manifold with η-parallel
Riemannian curvature. Take a local orthonormal frame field {e1, e2, e3} as in
Lemma 3.1. Then the Ricci operator S is η-parallel if and only if the following
system of equations is satisfied.

e1(ξ(λ) + 2λ)− b(K13 −K23) = 0,(41)

e1(K13) + 2b(ξ(λ) + 2λ) = 0,(42)

e1(K23)− 2b(ξ(λ) + 2λ) = 0,(43)

e2(ξ(λ) + 2λ) + c(K13 −K23) = 0,(44)

e2(K13)− 2c(ξ(λ) + 2λ) = 0,(45)

e2(K23) + 2c(ξ(λ) + 2λ) = 0.(46)

Note that from (42), (43), (44) and (45) imply that ρ33 is η-parallel.
Proposition 2.2 says that the η-parallelism of S and that of R are not equiv-

alent, in general. Let us look for a class of almost Kenmotsu 3-manifolds on
which the η-parallelism of S is equivalent to that of R.
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From Theorem 6.17, an H-almost Kenmotsu 3-manifold M satisfying ∇ξh =
0 has η-parallel Ricci operator if and only if M is locally isomorphic to either

(i) the warped products R ×cet M , where M is a Riemannian 2-manifold
of constant curvature or

(ii) the type II Lie group G(λ, 0) for some constant λ.

Note that M is a Kenmotsu 3-manifold of constant curvature −1 in the first
item with flat M and the type II Lie group G(0, 0). One can see that on the
all examples in this list the equivalence of η-parallelism and that of R holds.
In other words, these spaces have η-parallel Ricci operator as well as η-parallel
Riemannian curvature.

However up to now the classification of almost Kenmotsu 3-manifolds on
which η-parallelisms of S and R are equivalent is not yet obtained. As a
partial classification, we determine almost Kenmotsu 3-manifolds on which
two η-parallelisms are equivalent under an additional condition ∇ξh = 0. More

precisely we show that warped products R×cetM and type II Lie groups locally
exhaust the class of almost Kenmotsu 3-manifolds satisfying ∇ξh = 0 on which
η-parallelisms of S and R are equivalent.

Corollary 7.6. Let M be an H-almost Kenmotsu 3-manifold satisfying ∇ξh =
0. Assume that both the Ricci operator S and the Riemannian curvature R are
η-parallel. Then it is locally isomorphic to one of the following spaces:

(i) the warped products R ×cet S2(k2), R ×cet H2(−k2) or the hyperbolic
3-space H3(−1).

(ii) the type II Lie group G(λ, 0) for some constant λ ̸= 0.

Proof. Since we assumed that M is an H-almost Kenmotsu 3-manifold with
η-parallel Ricci operator S under the assumption ∇ξh = 0, M is locally isomor-
phic to either the warped products with constant curvature fiber or a type II
Lie group G(λ, 0) by Theorem 6.17. One can check that these warped products
and G(λ, 0) has η-parallel Riemannian curvature. □

Finally, let us pick up Kenmotsu 3-manifolds. A Kenmotsu 3-manifold M
has η-parallel Riemannian curvature if and only if H is η-parallel. Since r =
2(H − 2), the η-parallelism of R is equivalent to that of r. Here we prove the
following:

Theorem 7.7. Let M be a Kenmotsu 3-manifold. Then M has η-parallel Rie-
mannian curvature if and only if it is locally isomorphic to the warped product
I ×cet M , where I is an open interval with coordinate t, M is a Riemannian
2-manifold of constant curvature and c is a positive constant. In particular,
the η-parallelism of R is equivalent to that of S on Kenmotsu 3-manifolds.

Proof. Take a point p ∈ M , there exists a neighborhood Up of p such that U

is a warped product Up = (−ε, ε)×cet U , where ε is a positive constant, t is a

coordinate of the interval (−ε, ε) and U = (U, ḡ, J) is a Riemannian 2-manifold
equipped with a Kähler structure. The characteristic vector field is expressed
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locally as ξ = ∂/∂t. The holomorphic sectional curvature H is locally expressed
as

H =
1

c2e2t
(
K − c2e2t

)
,

where K is the Gaussian curvature of U . This formula implies that the η-
parallelism of H is equivalent to the constancy of K. From Theorem 6.6, we
conclude that the η-parallelism of R is equivalent to that of S. □

Here we should give a remark concerning on Theorem 7.7 and Theorem 6.8.
In [12, Theorem 4.1], De claimed that if a Kenmotsu 3-manifold M satisfies (3)
for all vector fields X, Y , Z and W orthogonal to ξ if and only if the scalar
curvature is constant. In our terminology, he claimed that if a Kenmotsu 3-
manifold M has η-parallel Riemannian curvature, then M is of constant scalar
curvature. However the conclusion of [12, Theorem 4.1] should be corrected
as “M has η-parallel scalar curvature”. One can see that the conclusion of
[12, Theorem 4.1] is true under the assumption R is strongly η-parallel. Hence
we obtain the following result.

Proposition 7.8. A Kenmotsu 3-manifold satisfies the condition

φ2{(∇WR)(X,Y )Z} = 0

for all vector fields X, Y , Z orthogonal to ξ and any vector field W on M if
and only if M is of constant curvature −1.

This proposition corrects [14, Corollary 4] and [15, Corollary 2.2].
It should be remarked that every G(λ, α) of type II has η-parallel Ricci

operator as well as η-parallel Riemannian curvature. The additional condition
∇ξh = 0 forces α to be 0 and λ to be constant for almost Kenmotsu 3-manifolds
discussed in Corollary 7.6. On the other hand, the H-almost Kenmotsu 3-
manifold discussed in Example 5.3 and Example 7.3 has η-parallel S, η-parallel
R and satisfies α = 0 but not ∇ξh = 0. Since the condition ∇ξh = 0 is
equivalent to α = ξ(λ) = 0, to relax the assumption ∇ξh = 0 to α = 0 in
Corollary 7.6 seems to be an interesting problem.
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Progress in Mathematics, 203, Birkhäuser Boston, Ltd., Boston, MA, 2010. https:

//doi.org/10.1007/978-0-8176-4959-3

[3] D. E. Blair, T. Koufogiorgos, and R. Sharma, A classification of 3-dimensional contact

metric manifolds with Qϕ = ϕQ, Kodai Math. J. 13 (1990), no. 3, 391–401. https:
//doi.org/10.2996/kmj/1138039284

[4] E. Boeckx, P. Bueken, and L. Vanhecke, ϕ-symmetric contact metric spaces, Glasg.

Math. J. 41 (1999), no. 3, 409–416. https://doi.org/10.1017/S0017089599000579

[5] E. Boeckx and J. T. Cho, Locally symmetric contact metric manifolds, Monatsh. Math.
148 (2006), no. 4, 269–281. https://doi.org/10.1007/s00605-005-0366-4

http://projecteuclid.org/euclid.pjm/1102969563
https://doi.org/10.1007/978-0-8176-4959-3
https://doi.org/10.1007/978-0-8176-4959-3
https://doi.org/10.2996/kmj/1138039284
https://doi.org/10.2996/kmj/1138039284
https://doi.org/10.1017/S0017089599000579
https://doi.org/10.1007/s00605-005-0366-4


ON THE η-PARALLELISM IN ALMOST KENMOTSU 3-MANIFOLDS 1335

[6] E. Boeckx and L. Vanhecke, Characteristic reflections on unit tangent sphere bundles,

Houston J. Math. 23 (1997), no. 3, 427–448.

[7] P. Bueken and L. Vanhecke, Reflections in K-contact geometry, Math. Rep. Toyama
Univ. 12 (1989), 41–49.

[8] J. T. Cho, Notes on real hypersurfaces in a complex space form, Bull. Korean Math.
Soc. 52 (2015), no. 1, 335–344. https://doi.org/10.4134/BKMS.2015.52.1.335

[9] J. T. Cho, η-parallel H-contact 3-manifolds, Bull. Korean Math. Soc. 55 (2018), no. 4,

1013–1022. https://doi.org/10.4134/BKMS.b170479
[10] J. T. Cho and M. Kimura, Reeb flow symmetry on almost contact three-manifolds, Dif-

ferential Geom. Appl. 35 (2014), suppl., 266–273. https://doi.org/10.1016/j.difgeo.

2014.05.002

[11] J. T. Cho and J.-E. Lee, η-parallel contact 3-manifolds, Bull. Korean Math. Soc. 46

(2009), no. 3, 577–589. https://doi.org/10.4134/BKMS.2009.46.3.577

[12] U. C. De, On Φ-symmetric Kenmotsu manifolds, Int. Elect. J. Geom. 1 (2008), no.1,
33–38. https://dergipark.org.tr/en/pub/iejg/issue/46277/581499

[13] G. Dileo and A. M. Pastore, Almost Kenmotsu manifolds and local symmetry, Bull.

Belg. Math. Soc. Simon Stevin 14 (2007), no. 2, 343–354. http://projecteuclid.org/
euclid.bbms/1179839227

[14] J. Inoguchi, A note on almost contact Riemannian 3-manifolds, Bull. Yamagata Univ.
Natur. Sci. 17 (2010), no. 1, 1–6.

[15] J. Inoguchi, A note on almost contact Riemannian 3-manifolds II, Bull. Korean Math.

Soc. 54 (2017), no. 1, 85–97. https://doi.org/10.4134/BKMS.b150772
[16] J. Inoguchi, Characteristic Jacobi operator on almost Kenmotsu 3-manifolds, Int. Elec-

tron. J. Geom. 16 (2023), no. 2, 464–525. https://doi.org/10.36890/iejg.1300339

[17] J. Inoguchi and J.-E. Lee, Pseudo-symmetric almost Kenmotsu 3-manifolds, submitted.
[18] D. E. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, Kodai

Math. J. 4 (1981), no. 1, 1–27. http://projecteuclid.org/euclid.kmj/1138036310

[19] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. (2)
24 (1972), 93–103. https://doi.org/10.2748/tmj/1178241594

[20] M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space, Math.

Z. 202 (1989), no. 3, 299–311. https://doi.org/10.1007/BF01159962
[21] M. Kon, Invariant submanifolds in Sasakian manifolds, Math. Ann. 219 (1976), no. 3,

277–290. https://doi.org/10.1007/BF01354288

[22] M. Okumura, Some remarks on space with a certain contact structure, Tohoku Math.
J. (2) 14 (1962), 135–145. https://doi.org/10.2748/tmj/1178244168
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