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R-CRITICAL WEYL STRUCTURES
JONGSU KiM

ABSTRACT. Weyl structures can be viewed as generalizations of
Riemannian metrics. We study Weyl structures which are criti-
cal points of the squared L? norm functional of the full curvature
tensor, defined on the space of Weyl structures on a compact 4-
manifold. We find some relationship between these critical Weyl
structures and the critical Riemannian metrics. Then in a search
for homogeneous critical structures we study left-invariant metrics
on some solv-manifolds and prove that they are not critical.

1. Introduction

In this paper we study the critical points of the squared L? norm
functional of the full curvature tensor, denoted by RY, defined on the
space W of Weyl structures on a 4-dimensional oriented compact mani-
fold. This is a continuation of the work initiated in [7] where we defined
two Weyl functionals related to scalar curvature and discussed about its
critical points.

Let us recall that a Weyl structure on a smooth manifold M consists of
a conformal class [g] of Riemannian metrics and a torsion-free connection
D preserving [g]; i.e., for any metric g in [g], Dg = w® g for a I-form w.
This structure may be viewed as a generalization of a Riemannian metric
becausc given a Riemannian metric one can associate its conformal class
and Levi-Civita connection. More precisely, the space of Riemannian
metrics of unit volume is canonically embedded in the space of Weyl
structures, see Section 2.

The study of Weyl structures stemmed from E. Cartan’s work on
3-dimensional Einstein- Weyl structures [3]. Weyl geometry has been
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explored much to understand Einstein-Weyl structures [4-6, 10-13] re-
cently. In [11], Pedersen-Poon-Swann observed two classes of Weyl struc-
tures which are absolute minima of R™. These two clagses are gener-
alizations of the corresponding two classes of metrics: Einstein metrics
and half-conformally-flat zero scalar curved metrics.

This motivated us to study in this paper on critical points of R%.
One should be aware that their classification might be very hard as in
Riemannian case. What we do for now is to set up for the equation of
critical points and then clarify some relationship between the R*-critical
points and the critical points of the corresponding functional, to be
denoted by R, defined on the space of Riemannian metrics. This is done
in Section 3. We prove in particular that any R"-critical Weyl structure
is locally conformally a metric, that if the first deRham cohomology of
M vanishes then every R*-critical Weyl structure is a (global) R-critical
metric, and that if the scalar curvature of the Gauduchon metric of the
critical Weyl structure is non-positive, then the structure is a R-critical
metric.

In order to search for 4-dimensional R-critical metrics or R*-Weyl
structures, one naturally looks for compact (quotients of) homogeneous
manifolds. Among the list of 4-dimensional geometric structures, the
solvable cases remain most elusive after Lamontagne’s work [9] where he
proved that a 4-dimensional left-invariant metric on a unimodular, sim-
ply connected Lie group with non-trivial center is Einstein if it satisfies
the R-critical equation. So in Section 4, we study a class of left-invariant
metrics on solvable Lie groups with frivial center and show that they are
not R-critical metrics and furthermore are not a Gauduchon metric of
any RY-Weyl structure. We hope this computational argument can be
extended to prove the general case in near future.

2. Preliminaries

In this section we shall review on curvatures of Weyl structures [11]
and explain some properties of the R* functional.

On an n-dimensional manifold M with a Weyl structure ([g], D), a
choice of a metric g in [g] induces a 1-form w from the equation Dg =
w ® g. Under a conformal change g — f2g, we have w — w + 2dIn(f).
So ([g], D) may well be called closed if dw = 0 and exact if w is exact.
If ([¢], D) is exact, then D is the Levi-Civita connection of some metric
in [g] and if closed, then D is locally a Levi-Civita connection of a
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metric. We will simply say that a structure ([g], D) is a metric or locally
conformally a metric when it is exact or closed, respectively.

Any one-form w together with the Levi-Civita connection V9 of a
metric g determines a torsion-free connection D by DxY = V95V —
LHw(X)Y +w(Y)X — g(X,Y)w™), which preserves [g], where w™ is the
dual vector field to w with respect to g.

A Weyl structure ([g], D) on a compact manifold has a unique, up
to homothety, metric g in the conformal class such that its associated
1-form is co-closed [4]; i.e., dyw = 0, where 6, is the formal adjoint
operator of d. We call this metric the Gauduchon metric of ([g], D).

From above discussion we may identify a Weyl structure ([g], D) with
a pair (g,w) of a metric g of unit volume and its co-closed 1-form w. We
shall use both expressions in this paper as convenient.

One can define the curvature tensors of a Weyl structure ([g], D)
similarly to a Riemannian metric. The curvature R” can be defined:
RQ!YZ = Dixv)Z — [Dx,Dy|Z, for X,Y,Z € TM. And the Ricci
curvature 7 is defined as r?(X,Y) = —g(RE Y, e;) for a metric g €
[¢] and g-orthonormal frame e;, i = 1, 2, ---, n. This definition is
well defined independent of the choice of a metric in [g] but »” is not
necessarily symmetric. The conformal scalar curvature s? is defined as
the trace of 7 with respect to [g]. So s is so-called of conformal weight
—2, which means that if one denotes the trace of 7 with respect to g
by s?, then Sijgg = f‘%f holds.

From now on we will consider only 4-dimensional oriented compact
smooth manifolds. We denote the symmetric part of a 2-tensor ¢ by
S(¢) and the trace-free part of a symmetric 2-tensor ¢ by Sp(2). Let 7,
§,2:=r— %sg, W and dv denote respectively the Ricci, scalar, trace-free
Ricci, Weyl curvature tensor and volume form of a metric g.

Recall that there is a decomposition of Riemannian curvature tensor

[2];

S 1
2.1 = — —z (= W,
(2.1) R=90g+5209+W,

where for 2-tensors & and g, o © ¢ is the 4-tensor defined by

a® gy, 2z t) =a(z, 2)g(y, t) + aly, t)g(z, 2) ~ al(z,t)g(y, 2)
- Gf(y, z)_g(:r, t)
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For a given metric g in [g], its associated 1-form w and its Levi-
Civita connection V, the curvature tensor R” of ([g], D) can be similarly
decomposed as follows [11];

1 1 1 1
(22) RP =W + §SO(TD) ©g+ ﬂsng®g+ (74w © g+ 5dw ® g).

We shall need that for a Gauduchon metric g, the following holds;

1
S(’I"D) =rg+ —(CU@(.U - |L¢J|zg-{-2Vuj —du_))7
(2.3) 2

3
5, = 85— §(w|2.

Recall the following functional, which played an important role in
Riemannian geometry and geometric analysis [2], defined on the space
of all smooth Riemannian metrics on M;

R(g) = /M IR, [2dv.

This squared L? norm functional of the full curvature tensor can still
be defined on the space of Weyl structures;

R*(lg], D) = /M RP|2dv,

where we consider R” as a (3,1) tensor.

These two functionals has much to do with 4-dimensional topology via
the generalized Gauss-Bonnet and the signature formulas which express
the Euler characteristic y and signature o respectively as follows;

1 1 1 4o _
X / (82 = L1224 (W2 + W [?)dv,
M 2

)
(2.4) 87; . .24
— +12 -2
o= 1305 | (WP =W,

where W+ and W™ are the positive and the negative, respectively, part
of the Weyl curvature tensor.

A consequence of formulas (2.4) is that for R functional, Einstein
metrics or half-conformally-flat metrics with zero-scalar-curvature are
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absolute minima and that similarly for the R* functional [11] closed
Einstein-Weyl structures or closed half-conformally-flat, zero conformal
scalar curved Weyl structures are absolute minima.

Finally, recall [7] that a smooth metric [or a smooth Weyl structure]
(9,w) is a critical point of F functional (F is either R or RY) if it
satisfies (F(g¢,w:)) (0) = 0 for any smooth curve of metrics [or Weyl
structures| (g, w;) such that (gg,wo) = (g,w).

3. R¥-critical structures

In this section we set up and compute the equation for critical points
of the R* functional and discuss its consequences. First we recall from
[7] that the space W := {(g,w)|6qw = 0} of Weyl structures on M is a
Banach submanifold of M; x Q! with W*? Banach norm, where M,
is the space of Riemannian metrics on M with unit volume and Q! the
space of one-forms and in particular that for any pair (h,7n) of a smooth
symetric 2-tensor h and a 1-form 7 satisfying d,{n+h(w)+ #w} =0,
ie., (h,n) € T(g.u)WV, there exists a one-parameter family of smooth
curve (g¢,w) in W with (gg,wp) = (h,n)-

As a function defined on the Banach manifold of W*? Weyl struc-
tures, RY may have its derivative;

LEMMA 3.1. The functional RY is differentiable and the derivative
is as follows;

(R*)g,0 )
= (h, 26Vd"r, — 2'%925, — AWz, + %|dwlzg — dw o dw

1 1

+ ﬁ{2VdsD +2(AsP)g + E(SD)zg —2sPr, —3sPweuw}
1 1.

— E{QVdsg +2(Asg)g + 5552’9 — 2s8474})

+(n, 286,dw — %SDUJ>,
where (h,n) satisfies ,{n + h(w) + @w} =0.

In the above (dw o dw);; = (dw);x(dw)y; for g-orthonormal frame e;,
i =1, .-+, 4 and the differential operator dv acts on symmetric 2-
tensors v in local coordinates by (dV4)i;x = Vithjr — Vjtbse. 0V is the
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dual operator of dV and so in local coordinates (6V¢),5 = —2Vig; -
(Wz)ij = WipjqazP9. Also, A denotes the Laplace operator.

Proof. From (2.2), being careful that RP is a (3,1) tensor, we compute

. . . 1
R (g,w) = /|RD]2dv _ /4|W|2 +2So(rD) + 2 (sP)? + 3ldwfdv.

We also have from [11]

/IRD|2dv = /4\SO(TD)|2d'U+/2]dw|2dv+327rgx.
From these two formulas and (2.4), we deduce
61 [IRPPw = IR+ ol + PP - ()P,

Denoting the Riemannian functional [ |Ry|*dv by R(g), we have [2,
p-134]:

Ry (k) = (26¥d"ry ~ z%gzg — AWz, h).

Derivative of [, (s”)%dv is [7, Lemma 5.1]:

1 2
~(sP)’g = 25Pr, — 35w @ w, h).

(—65Pw,n) + (2Vds” + 2(AsP)g + 5

Derivative of [,, |dw|*dv is [7, Lemma 5.2]:
Lo, 2
(§ldw[ g — dwodw,h) + (20,dw,n).
Derivative of [, (sg)?dv is from [2, p.133]:
L o2
(2Vdsg +2(Asg)g + 35679 = 2847g, h).

Putting above last 4 formulas into (3.1) we can finish the proof of
Lemma 3.1. O
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THEOREM 3.2. If a Weyl structure (g,w) on a smooth oriented com-
pact 4-manifold M is R™-critical, then it is closed. Moreover, it holds
that [, s |w|*dv = 0.

Proof. From Lemma 3.1, (g,w) is R¥-critical if and only if it satisfies
the following equation:
(3.2)

o 1 .
0 =(h,26%d"r, — z%gzg — 4Wz, + Sldwfg - dw o duw

1 1. oo
+ E{2Vd.sD +2(As%)g + 5(s7)%g — 2577, — 3sPw @ w}

=

1 1
— E{ZVdsg +2(Asy)g + 5539 — 25470}
+ (1,26, dw — %st

for any smooth pair (h,7) satisfying d,(n + h(w) + "'—éﬂw) = 0.

We analyze this by considering first the pair (h,n) = (0,w). Then
from above (3.2) we get

(3.3) /4[dw|2d'u:/ sP|wl2dv.
M A

Next, consider (h,7) = (g,0) to get the following from (3.2)

1 1
0 =/ 285, +Aldwf? + FAsD + H{(sP)? — (sP)s,} — 25Dl
M ) 2 6 4
— %Asgdv
© 38, sP o sP 2
= - —_— ) —— 4 =
[ A S - Sl + i

$D
:/ ——|w|® + 4]dw|*dv,
M2
where we used (2.3) in the second equality. So using (3.3) together we

get
“sP o, . 2 "Dy 2
/ ——]w’“dv-:/ 4|dw|‘dfu=/ s w7 d .
M2 J M J M

It follows that dw = 0 and [,, s”|w[?*dv = 0. This finishes the proof of
Theorem 3.2. O
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From Theorem 3.2 a R"™-critical Weyl structure always has its one
form w to be harmonic, so the study of R¥-critical Weyl structure has
to do with the first deRham cohomology of the manifold. In particular,
when there is no harmonic one form on a manifold, we have

COROLLARY 3.3. If the first deRham cohomology H}p(M) of M van-
ishes, then every R™-critical Weyl structure is a R-critical Riemannian
metric.

REMARK 3.1. Many examples of 4-dimensional non-exact Einstein-
Weyl structures on compact manifolds were constructed in [12, 13]. The-
orem 3.2 implies that none of these are R"-critical except only one type
of examples: see below FExample 3.1.

ExAMPLE 3.1. On 5% x 53, let g, be the product of the metric t*df?on
St = {exp(i8)|0 € [0,27)} and the canonical metric ge., on S° with
sectional curvature one. Let w; be the 1-form 2¢df, which is harmonic
with respect to g;. For each ¢, (g;,w;) is an Einstein-Weyl structure with
sP+ = 0. Any closed non-exact 4-dimensional Einstein-Weyl structures
is locally equivalent to this structure [6].

Now we may point out another interest as follows;

PROPOSITION 3.4. A RY¥-critical Weyl structure (g,w) is a R-critical
Riemannian metric if one of the followings holds:

(1) the scalar curvature s, is non-positive.
(2) the conformal scalar curvature s is either non-positive or non-
negative, but nonzero somewhere.

Proof. We only need to show that w vanishes on M. From Theorem
3.2 and (2.3), we have that [, s?|w|?dv = [}, sg|w|* — §|w|* = 0. So if
84 is non-positive, then w = 0.

In the case s is either non-positive or non-negative, if it is nonzero
somewhere, then it is nonzerc on an open set. The form w has to vanish
on that open set. As w is harmonic, it is zero on M, see Remark 3.2
below. O

REMARK 3.2. It is well known that harmonic forms satisfy weak
unique continuation property as above; or one may refer to [1].
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REMARK 3.3. If ¢ is critical for R, then the scalar curvature is
constant [2]. We ask if a R%¥-critical Weyl structure always has s” and
54 constant.

Now consider Weyl structures (g,w) such that the Gauduchon metrics
g have non-positive sectional curvature. Lamontagne has proved [§]
that any metric of non-positive sectional curvature is Einstein if it is
critical with respect to R functional. Therefore from Proposition 3.4,
we conclude;

COROLLARY 3.5. Any RY critical Weyl structure (g,w) with non
positively curved metric g is an Einstein metric.

4. Critical Weyl structures on a class of solv-manifolds

It is currently very hard to classify R-critical metrics. Indeed there
are no examples found yet except the two classes of metrics mentioned in
the introduction. Similarly as in the study of Einstein metrics, one may
look for (compact quotients of) homogeneous manifolds, to find any. We
are here interested in solv-manifolds because most of these are yet to be
analyzed after Lamontagne’s work.

In this section we consider solv-manifolds which are compact quo-
tients of 4-dimensional simply connected solvable Lie groups Sol?, ,, [14].
The Lie algebra has a basis {e;} with

(4.1) [61, 62] = ey, [61, 63] = bes, [61764] = Ceyq,

and [e;, e;] = 0 for any other pair 4,5 = 1,2, 3,4. Here, a > b > ¢ are real
numbers, a + b+ ¢ =0, and e%, e°, e¢ are the roots of z° — mz? + nz —
1 = 0 with m and n distinet positive integers. Then the Lie algebra is
unimodular and has trivial center. The compact quotient manifolds are
T3-bundles over S whose monodromy is a linear map with characteristic
polynomial 2% — mz? 4 nz — 1 = 0. For an example, we may choose the
3 x 3 matrix of determinant 1:

2 1 0
-1 6 1
0 6 1

From the roots of its characteristic polynomial, we compute using
Mathematica software program;
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a = 1.92, b= 0.75, ¢ == —2.67.

We consider the left-invariant metrics with orthonormal basis {ez} as
n (4.1), and compute their sectional curvatures. Note the sign conven-
tion of curvature tensor; R(z,y)z = Vigyz = VaVyz + V, V2,

2 2 2
Ri913 = —a”, Riz13 = —b°, Ripg=—¢,

Razo3 = —ab, Ragoq = —ac, R334 = —be,

Rijr = 0 for any other 4,4, k,1 =1.2,3,4.
The Ricel curvature tensor is as follows.
rn = —a® = b = 2, Ty =133 = raq = 0,
r;; = 0 for any other 4,7 = 1,2,3,4.
The trace-free Ricci curvature tensor is as follows.
zZ11 = —ﬁ(a2 +b° —|—C )

Zog = 233 = 244 = (a + v + C”)
Zij —Oforanyotherzg-l 2, 3 4.
The scalar curvature is s = —a® — b® — ¢

Now we check the criticality of metrics and Weyl structures. From
the R-critical metric equation
8 w
20VdVr, — 23‘]2‘(] —4Wz, =0,
we get

(4.2) / |dY gl dv—/ (2 --”Zg-}—4WZg,4.q)dU

The integrand on the right hand side of (4.2) is (2% z, —|—4T/T/zg, 2y) =
2 Zij()\i—k)\j)zaij, where z = 2,4 Aiei®e, and o;; = R;;4;; the sectional
curvature [8]. The integrand on the right hand side of (4.2) is now
computed:

4 2 2 2 4
a®+ b+, .
2 E ()\z ‘|‘ >\7)20'7_7 == z{m( 2 >}2 E O',;j
7,7 7.

= %(ag F 1242, = —%(GL2 L2 4 )R

But the left hand side of (4.2) is non-negative, which is a contra-
diction. So this homogeneous metric is not R critical. As the scalar
curvature is negative, we may apply Proposition 3.4 to conclude that
there does not exist even a critical R* Weyl structure associated to g.
Now we summarize the above discussion in the following



R-critical Weyl structures 203

THEOREM 4.1. The left-invariant metrics on Sol¢ _ with orthonor-

TIL,TL

mal basis as in (4.1) are not R-critical and furthermore are not associated
to RY-critical Weyl structures.

REMARK 4.1. We ask if all 4-dimensional left-invariant metrics on

compact (quotients of) homogeneous manifolds are not R-critical unless
they are Einstein or half-conformally-flat zero-scalar-curved.
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