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THE SCHWARZIAN DERIVATIVE AND CONFORMAL

TRANSFORMATION ON FINSLER MANIFOLDS

Behroz Bidabad and Faranak Sedighi

Abstract. Thurston, in 1986, discovered that the Schwarzian deriva-

tive has mysterious properties similar to the curvature on a manifold.
After his work, there are several approaches to develop this notion on

Riemannian manifolds. Here, a tensor field is identified in the study of
global conformal diffeomorphisms on Finsler manifolds as a natural gen-

eralization of the Schwarzian derivative. Then, a natural definition of

a Mobius mapping on Finsler manifolds is given and its properties are
studied. In particular, it is shown that Mobius mappings are mappings

that preserve circles and vice versa. Therefore, if a forward geodesically

complete Finsler manifold admits a Mobius mapping, then the indica-
trix is conformally diffeomorphic to the Euclidean sphere Sn−1 in Rn.

In addition, if a forward geodesically complete absolutely homogeneous

Finsler manifold of scalar flag curvature admits a non-trivial change of
Mobius mapping, then it is a Riemannian manifold of constant sectional

curvature.

1. Introduction

Thurston in [17] claims different curvatures on a manifold, measure the
deviation of a curve or a manifold from being flat and Schwarzian derivative
measures the deviation of a conformal map for being Mobius transformation.
Therefore, by analogy, many qualitative constructions in differential geometry
can be made.

The Schwarzian derivative appears also in many areas of complex analysis
but it occurs first and foremost in the study of the Mobius mappings defined
by T (x) = ax+b

cx+d , where ad − bc 6= 0. Historically, definition and properties of
Schwarzian derivative were first introduced by Lagrange in “Sur la construction
des cartes géographiques” (1781). Let f be a C∞ non-constant injective real
function on R. The Schwarzian derivative is defined by

(1) S(f) =
f ′′′

f ′
− 3

2
(
f ′′

f ′
)2,
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where f ′, f ′′, f ′′′, are first, second, and third derivatives of f with respect to x ∈
R. The expression (1) is ubiquitous and tends to appear in seemingly unrelated
fields of mathematics: classical complex analysis, differential equations, one-
dimensional dynamics, as well as, more recently, Teichmüller theory, integrable
systems and conformal field theory. It has been extended by several authors
such as Osgood and Stowe [13], Carne [10], etc. A classical notation for S(f(x))
is {f, x}, or {w, x} if we write w = f(x), and is due to Cayley in 1880.

The Schwarzian derivative is occurred first as an operator which is invariant
under the all linear Mobius mappings in the sense that, T is Mobius if and only
if S(T ◦ f) = S(f) or if and only if S(T ) = 0.

Let g be a real function for which the composition f ◦ g is defined, we have

S(f ◦ g) = S(g) + (S(f) ◦ g)(g′)2.

It follows that S(f) = S(g) implies f = T ◦ g for some Mobius transformation
T . To recall some geometric virtues of Mobius transformations, they map
circles to circles and they are the only conformal maps of the sphere to itself.
In particular, Mobius transformations are the only functions with vanishing
Schwarzian. B. Osgood and D. Stowe [13] introduced the Schwarzian tensor
Bg(ϕ) for two conformal Riemannian manifolds (M, g) and (M, ḡ) with ḡ =
e2ϕg by

Bg(ϕ) = Hess(ϕ)− dϕ⊗ dϕ− 1

n
(∆ϕ− ‖gradϕ‖2)g.

They also have defined the Schwarzian operator f : (M, g) → (M, ḡ) by
S(f) = Bg(ϕ) where ϕ = log ‖df‖. Recently it’s shown Schwarzian is also
very useful in the study of Riemann-Finsler geometry. Meanwhile, one of the
present authors in several joint works has studied the Schwarzian derivative for
projective transformations in Finsler geometry and obtained a short proof for
some known results, see for instance [8, 15].

In the present work, we identify a tensor which arises in the study of con-
formal change of metrics on a Finsler manifold as a natural generalization of
the Schwarzian derivative. We use a certain conformal parameter to define the
Schwarzian tensor which follow, fairly directly, from the definition, and which
have corresponding formulations in the classical setting. Meanwhile, we obtain
the following theorem;

Theorem 1.1. Let (M,F ) be a Finsler manifold. The set of Mobius transfor-
mations forms a subgroup of the conformal group and contains the homotheties
group of (M,F ).

Among the others, after a joint work with Z. Shen [9] it is shown that
the Mobius transformations on Finsler geometry are equivalent to the circle
preserving or concircular transformations.

Theorem 1.2. The group of conformal transformations of (M,F ) coincides
with its Mobius group if and only if it maps all geodesic circles to geodesic
circles.
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These theorems imply the following rigidity theorems.

Theorem 1.3. If a forward geodesically complete Finsler manifold (M,F )
admits a Mobius mapping, then the indicatrix is conformally diffeomorphic to
the Euclidean sphere Sn−1 in Rn.

Theorem 1.4. Let (M,F ) be a forward geodesically complete absolutely homo-
geneous Finsler manifold of scalar flag curvature. If (M,F ) admits a nontrivial
Mobius mapping, then it is a Riemannian manifold of constant sectional cur-
vature.

Theorem 1.5. Let (M,F ) be a compact boundaryless Einstein Randers man-
ifold with constant Ricci scalar and the projective parameter p.

• If S(p) = 0, then (M,F ) is Berwaldian.
• If S(p) < 0, then (M,F ) is Riemannian.

2. Some preliminaries and notations

2.1. Finsler structure

Let M be an n-dimensional connected smooth manifold. We denote by TM
the tangent bundle and π : TM0 → M , the fiber bundle of non-zero tangent
vectors. A Finsler structure on M is a function F : TM → [0,∞), with
the following properties: F is C∞ on TM0; F is positively homogeneous of
degree one in y, that is F (x, λy) = λF (x, y) for all positive λ; The Hessian

matrix of F 2, defined by (gij) = (1/2[ ∂2

∂yi∂yj F
2]), is positive definite on TM0.

A Finsler manifold is a pair consisting of a differentiable manifold M and a
Finsler structure F on M denoted here by (M,F ). The hyper-surface S ⊂
Tx0

M defined by S := {y ∈ Tx0
M : F (x0, y) = 1} is called an indicatrix in

x0 ∈ M . Every Finsler structure F induces a spray G = yi ∂
∂xi − G

i(x, y) ∂
∂yi ,

on TM , where Gi(x, y) = 1
4g
il{[F 2]xkyly

k − [F 2]xl}, G is a globally defined
vector field on TM . Differential equation of a geodesic in local coordinates

is given by d2xi

ds2 + 2Gi(x(s), dxds ) = 0, where s(t) =
∫ t
t0
F (γ, dγdr )dr, is the arc

length parameter. One can observe that the pair { δ
δxi ,

∂
∂yi } forms a horizontal

and vertical frame for TTM , where δ
δxi = ∂

∂xi −G
j
i
∂
∂yj , Gji = ∂Gj

∂yi and 2Gi =

γijky
jyk, where

γijk =
1

2
gih(

∂ghk
∂xj

+
∂ghj
∂xk

− ∂gjk
∂xh

),(2)

are formal Christoffel symbols of the second kind. A Finsler structure F is
called forward (resp. backward) geodesically complete, if every geodesic on an
open interval (a, b) can be extended to a geodesic on (a,∞) (resp. (−∞, b)).
F is said to be complete if it is forward and backward complete.

Let f : M → R be a smooth function on an n-dimensional (n ≥ 2) Finsler
manifold (M,F ). At a point p ∈ M , the gradient vector field of f , ∇f(p) =
grad f(p) ∈ π∗TM , is defined by ggrad f(p)(ν, grad f(p)) = dfp(ν), ∀ν ∈ TpM,
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where df := ∂f
∂xi dx

i is the differential of f . In terms of a local coordinate system,

we have grad f := f i(x) ∂
∂xi ∈ π

∗TM , where f i(x) = gij(x, grad f(x)) ∂f∂xj .

2.2. Cartan connection and Koszul formula

Here, a brief global approach to the Cartan connection is recalled for our
further setting. Any point of TM0 will be denoted by z = (x, y), where x =
πz ∈M and y ∈ TπzM . By TTM0 we denote the tangent bundle of TM0 and
by π∗TM the pull back bundle of π. Consider the canonical linear mapping
% : TTM0 → π∗TM , where % = π∗ and %X̂ = X for all X̂ ∈ Γ(TM0). Locally
we have %z(

δ
δxi )z = ( ∂

∂xi )x and %z(
∂
∂yi )z = 0. Let VzTM be the set of vertical

vectors at z ∈ TM0, that is, the set of all vectors which are tangent to the fiber
through z. Equivalently, VzTM = kerπ∗ where π∗ : TTM0 → TM is the linear
tangent mapping. Let ∇ be a linear connection on π∗TM the sections of pull
back bundle π∗TM ,

∇ : TzTM0 × Γ(π∗TM)→ Γ(π∗TM),

(X̂, v) 7→ ∇X̂v,

provided that there is a linear mapping µ : TTM0 → π∗TM , defined by
µ(X̂) = ∇X̂υ, where X̂ ∈ TTM0 and υ is the canonical section of π∗TM .
The connection ∇ is said to be regular, if µ defines an isomorphism between
V TM0 and π∗TM . In this case, there is a horizontal distribution HTM such
that we have the Whitney sum TTM0 = HTM⊕V TM . The linear connection
on π∗TM is said to be a Finsler connection, if it is regular. It can be shown
that the sets { δ

δxj } and { ∂
∂yj }, form a local frame field for the horizontal and

vertical subspaces and the dual frame {dxi} and {δyi}, respectively. This de-

composition permits to write a vector field X̂ ∈ TTM0 into the horizontal and
vertical form X̂ = HX̂ + V X̂, uniquely.

The torsion tensor of the Finsler connection ∇ is defined by

τ(X̂, Ŷ ) = ∇X̂Y −∇ŶX − %[X̂, Ŷ ].

They determine two torsion tensors S and T defined by

(3) S(X,Y ) = τ(HX̂,HŶ ), T (Ẋ, Y ) = τ(V X̂,HŶ ),

where HX̂ ∈ HzTM = kerµz and V X̂ ∈ VzTM = ker(π∗)z, and (π∗)z is
the tangent mapping of the canonical projection π. There is a unique regu-
lar connection c∇ associated to the Finsler structure F satisfying, c∇Ẑg = 0,

S(X,Y ) = 0 and g(τ(V X̂, Ŷ ), Z) = g(τ(V X̂, Ẑ), Y ), called the Cartan connec-
tion. The condition c∇

Ẑ
g = 0 is called metric compatibility in both horizontal

and vertical covariant derivatives, which is equivalent to

(4) Ẑg(X,Y ) = g(c∇ẐX,Y ) + g(X, c∇ẐY ).
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It results from the last equation that the Cartan covariant derivative c∇ is
determined by the Finslerian Koszul formula, see [1, 7].

2g(c∇X̂Y, Z) = X̂.g(Y,Z) + Ŷ .g(X,Z)− Ẑ.g(X,Y )

+ g(τ(X̂, Ŷ ), Z) + g(τ(Ẑ, X̂), Y ) + g(τ(Ẑ, Ŷ ), X)

+ g(%[X̂, Ŷ ], Z) + g(%[Ẑ, X̂], Y ) + g(%[Ẑ, Ŷ ], X).(5)

According to the definition of connection 1-form of Cartan connection we have
ωij := Γijkdx

k + Cijkδy
k, where

Γijk :=
1

2
gil(δjglk + δkgjl − δlgjk), Cijk :=

1

2
gil∂̇lgjk,

and δi := δ
δxi , ∂̇i := ∂

∂yi . Using X̂ = HX̂+V X̂, the Cartan covariant derivative

is decomposed in the horizontal and vertical forms c∇X̂Y = ∇HX̂Y +∇V X̂Y .
In a local coordinate system the components of the Cartan connection c∇k are
denoted here by

c∇k = ∇k + ∇̇k,
where ∇k := c∇ δ

δxk
, ∇̇k := c∇ ∂

∂yk
. Denote by Γijk and Cijk the horizontal and

the vertical coefficients of Cartan connection, respectively. We have

∇k∂̇j = Γijk∂̇j , ∇̇k∂̇j = Cijk∂̇j ,

∇kδj = Γijkδi, ∇̇kδj = Cijkδi.

In a local coordinate system, the horizontal and vertical Cartan covariant
derivatives of an arbitrary (1, 1)-tensor field on π∗TM with the components

T ji are given by

∇kT ji = δkT
j
i − T jr Γrik + T ri Γjrk,(6)

∇̇kT ji = ∂̇kT
j
i − T jrCrik + T ri C

j
rk.

The components of Cartan hh-curvature tensor are given by

Rijkm = δkΓijm − δmΓijk + ΓiskΓsjm − ΓismΓsjk +RskmC
i
sj ,

where, Rikm := ypRipkm. For a non-null y ∈ TxM , the trace of hh-curvature is

called Riemann curvature. It is given by Ry(u) = Riku
k ∂
∂xi , where

Rik(y) :=
∂Gi

∂xk
− 1/2

∂2Gi

∂yk∂xj
yj +Gj

∂2Gi

∂yk∂yj
− 1/2

∂Gi

∂yj
∂Gj

∂yk
.

The Ricci scalar is defined by Ric := Rii, see [3, p. 331]. Here, we use Akbar-
Zadeh’s definition of Ricci tensor as follows Ricik := 1/2(F 2Ric)yiyk , see [1].

Let N i
j = ∂Gi

∂yj , li = yi

F and l̂ = li δ
δxi = li( ∂

∂xi − Gki
∂
∂yk

). By homogeneity

we have Ricij l
ilj = Ric. Let F̃ be another Finsler structure on M . In this

paper we deal with the forward geodesics and the word “geodesic” refers to
the forward geodesic. If any geodesic of (M,F ) coincides with a geodesic of
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(M, F̃ ) as set of points and vice versa, then the change F → F̃ of the metric

is called projective and F is said to be projective to F̃ . A Finsler space (M,F )

is projective to another Finsler space (M, F̃ ) if and only if there exists a 1-

homogeneous scalar field p(x, y) satisfying G̃i(x, y) = Gi(x, y) + p(x, y)yi. The
scalar field p(x, y) is called the projective factor of the projective change under
consideration. For a tangent plane P ⊂ TpM and a non-zero vector y ∈ TpM ,
the flag curvature K(P, y) is defined by

K(P, y) =
gy(u,Ry(u))

gy(y, y)gy(u, u)− gy(y, u)2
,

where P = span{y, u}. When F is Riemannian, K(P, y) = K(P ) is indepen-
dent of y ∈ P and is just the sectional curvature in Riemannian geometry.
We say that F is of scalar curvature if for any y ∈ TpM , the flag curvature
K(P, y) = K(y) is independent of P containing y ∈ TpM . In a local coordinate
system (xi, yi) on TM , this is equivalent to saying

Rik = KF 2{δik − F−1Fyky
i}.

If K is constant, then F is said to be of constant flag curvature. A Finsler
metric F that satisfies the relation, Ric = (n − 1)K(x), for some functions K
on M , is called Einstein metric. It is well known the relation between the Ricci
scalar Ric and the Ricci tensor Ricij , tells us,

(7) Ric = (n− 1)K(x)⇐⇒ Ricij = (n− 1)K(x)gij .

See [4]. If the function K is constant, then F is called Ricci-constant. A
Finsler space is called a Berwald space if the Berwald connection coefficients,
namely (Gi)yjyk , do not depend on y. In particular, all Riemannian and locally
Minkowskian spaces are Berwaldian, see [4]. The Finsler structure of a Randers
metric on the smooth n-dimensional manifold M is given by F = α+β, where
α(x, y) :=

√
aijyiyj , is a Riemannian metric and β(x, y) := bi(x)yi, is a 1-form,

see [11]. We will need the following proposition in the sequel.

Proposition A ([4]). Let (M,F ) be a connected compact boundaryless Einstein
Randers manifold with constant Ricci scalar Ric.

• If Ric < 0, then (M,F ) is Riemannian.
• If Ric = 0, then (M,F ) is Berwaldian.

2.3. Geodesics and circles on Finsler manifolds

We recall here a natural definition given in [9] of a circle in a Finsler manifold.
Let c : I ⊂ R→M be a smooth curve parameterized by the arc length s on a
Finsler manifold (M,F ). Consider a unitary normal vector field Y along c and a
positive constant κ such that ∇ċX = κY and ∇ċY = −κX, where X := ċ = dc

ds
is the unitary tangent vector field at each point c(s) and ∇ċ is the Cartan
covariant derivative along c. The numbers κ and 1

κ are called curvature and
radius of the circle, respectively. A geodesic circle on a Finsler space (M,F ) is
defined to be a smooth curve c : I → M for which the first Frenet curvature



THE SCHWARZIAN DERIVATIVE AND CONFORMAL TRANSFORMATION 879

κ1 := κ, is constant and the second Frenet curvature κ2, vanishes identically.
That is, dκ1

ds = 0 and κ2 = 0, see [9,14]. If in the definition of a geodesic circle
we exclude geodesic or equivalently the trivial case, κ1 = 0, then we obtain the
definition of a circle on a Finsler space. A conformal change of metric is said
to be concircular if it maps geodesic circles into geodesic circles. The following
theorems will be used in the sequel.

Theorem B ([5]). Let (M,F ) be a Finsler manifold. A necessary and sufficient
condition for a conformal change ḡ = e2ϕ(x)g to be concircular, is the function
ϕ be a solution of the partial differential equation

c∇iϕj − ϕiϕj = Φgij ,

where ϕj = ∂ϕ/∂xj, c∇i is the Cartan horizontal derivative and Φ is a certain
scalar function.

Theorem C ([14]). If a forward geodesically complete Finsler manifold (M,F )
admits a circle preserving change of metric, then the indicatrix is conformally
diffeomorphic to the Euclidean sphere Sn−1 in Rn.

Theorem D ([14]). Let (M,F ) be a forward geodesically complete absolutely
homogeneous Finsler manifold of scalar flag curvature. If (M,F ) admits a
nontrivial circle preserving change of metric, then it is a Riemannian manifold
of constant sectional curvature.

3. Conformal change of Cartan connection

3.1. Conformal transformations on Finsler manifolds

Let F and F̄ be two Finsler structures on an n-dimensional manifold M .
A diffeomorphism f : (M,F ) → (M, F̄ ) is called conformal transformation or
simply a conformal change of metric, if and only if there exists a scalar function
ϕ(x) on M such that F̄ (x, y) = eϕ(x)F (x, y). One can easily show that, the

function ϕ(x, y) is independent of the direction y, or equivalently ∂ϕ
∂yi = 0. Here,

the terms mapping and transformation will be used interchangeably. Assuming
F̄ (x, y) = eϕ(x)F (x, y) the above relation becomes

(8) ḡ = e2ϕ(x)g,

where ḡ := f∗g. The diffeomorphism f is said to be homothetic if ϕ is constant
and isometric if ϕ vanishes in every point of M .

Throughout this article, the objects of (M, F̄ ) will be shown with a bar and
we shall always assume that the line elements (x, y) and (x̄, ȳ) on (M,F ) and
(M, F̄ ) are chosen such that x̄i = xi and ȳi = yi holds, unless a contrary
assumption is explicitly made. If we show the corresponding Finsler metric
tensors by g and ḡ, then Eq. (8) is written in the following local forms:

(9) ḡij(x, y) = e2ϕ(x)gij(x, y), ḡij(x, y) = e−2ϕ(x)gij(x, y),
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where gij is the inverse matrix defined by gijg
ik = δkj . Eq. (8) and definition

of Cartan tensor yield

(10) C̄ijk(x, y) = Cijk(x, y), C̄ijk = e2ϕCijk,

where Cijk = gilCljk = 1/2gil
∂glj
∂yk

.

It is well known that after a conformal change of metric, the Christoffel
symbols γijk, as a geometric object on a Finsler manifold (M,F ), satisfies

(11) γ̄ijk = γijk + (δijδ
h
k + δikδ

h
j − gihgjk)ϕh,

where, ϕh = ∂ϕ/∂xh and δij is the Kronecker delta, see for instance, [12, page

28]. Contracting both side of (11) by yjyk and using 2Gi = γijky
jyk, we obtain

the relation between Gi and Ḡi in conformal Finsler spaces as follows.

(12) Ḡi = Gi −Birϕr,

where Bir := (F
2

2 g
ir − yryi).

By differentiation of (12) with respect to yj we have

(13) Ḡij = Gij −Birj ϕr,

where Birj = yjg
ir−F 2Cirj −δrj yi−yrδij and Cirj := gisCrsj = − 1

2
∂gir

∂yj , for more

details see [12].
By definition of δ

δxk
and (13) we get

δ̄

δxk
=

∂

∂xk
− Ḡik

∂

∂yi
=

∂

∂xk
− (Gik −Birk ϕr)

∂

∂yi
=

δ

δxk
+Birk ϕr

∂

∂yi
.

If we put Lk := Birk ϕr
∂
∂yi , then the above relation becomes

(14)
δ̄

δxk
=

δ

δxk
+ Lk.

The following identities are well known;

(1) [ δ
δxi ,

δ
δxj ] = Rhij

∂
∂yh

,

(2) [ δ
δxi ,

∂
∂yj ] =

∂Nhi
∂yj

∂
∂yh

= Nh
ij

∂
∂yh

,

(3) [ ∂
∂yi ,

∂
∂yj ] = 0.

Therefore by definition of the function % : TTM0 → π∗TM and the above
identities, we have

(15) %([
δ

δxi
,
δ

δxj
]) = 0, %([

δ

δxi
,
∂

∂yj
]) = 0, %([

∂

∂yi
,
∂

∂yj
]) = 0.

Proposition 3.1. Let (M,F ) and (M, F̄ ) be two conformal Finsler manifolds
with the Cartan connections c∇ and c∇, respectively. The related covariant
derivatives satisfy

c∇X̂Y = c∇X̂Y + (HX̂ϕ)Y + (HŶ ϕ)X − (∇ϕ)g(X,Y )
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+ T (Li, Y ) + T (Lj , X)− g(T (Lt, Y ), X)
∂

∂xs
gts.(16)

Proof. Let us assume X̂ = δ
δxi , Ŷ = δ

δxj and Ẑ = δ
δxk

, by definition of % we

have %(X̂) = X = ∂
∂xi , Y = ∂

∂xj and Z = ∂
∂xk

. On the other hand by the

hh-torsion freeness of Cartan connection we have τ( δ
δxi ,

δ
δxj ) = 0, τ(X̂, Ŷ ) =

τ(Ẑ, Ŷ ) = τ(X̂, Ẑ) = 0. Therefore from (15) the Koszul formula (5) reduces to

(17) 2g(∇ δ

δxi

∂

∂xj
,
∂

∂xk
) =

δ

δxi
gjk +

δ

δxj
gik −

δ

δxk
gij .

Rewriting (17) for (M, ḡ) and using (14) and Lie
2ϕ = 0 we have

2ḡ(∇̄ δ̄

δxi

∂

∂xj
,
∂

∂xk
) =

δ̄

δxi
ḡjk +

δ̄

δxj
ḡik −

δ̄

δxk
ḡij

= (
δ

δxi
+ Li)(e

2ϕgjk) + (
δ

δxj
+ Lj)(e

2ϕgik)

− (
δ

δxk
+ Lk)(e2ϕgij)

= e2ϕ(
δ

δxi
gjk +

δ

δxj
gik −

δ

δxk
gij)

+ 2e2ϕ(
∂ϕ

∂xi
gjk +

∂ϕ

∂xj
gik −

∂ϕ

∂xk
gij)

+ Li(e
2ϕgjk) + Lj(e

2ϕgik)− Lk(e2ϕgij)

= 2e2ϕg(∇ δ

δxi

∂

∂xj
,
∂

∂xk
)+2e2ϕ(

∂ϕ

∂xi
gjk+

∂ϕ

∂xj
gik−

∂ϕ

∂xk
gij)

+ e2ϕ(Li(gjk) + Lj(gik)− Lk(gij)).

Replacing ḡ = e2ϕg in the left hand side of the above relation we get

g(∇̄ δ̄

δxi

∂

∂xj
,
∂

∂xk
) = g(∇ δ

δxi

∂

∂xj
,
∂

∂xk
) + ϕigjk + ϕjgik − ϕkgij

+
1

2
(Li(gjk) + Lj(gik)− Lk(gij)).(18)

On the other hand

Li(gjk) = Bmri ϕr
∂

∂ym
gjk = 2Bmri ϕrCmjk = 2Bmri ϕrC

l
mjgkl.

And

Lk(gij) = 2Bmrk ϕrC
l
mjgil = 2Bmrt ϕrC

l
mjgilδ

t
k = 2Bmrt ϕrCmjig

tsgsk.

Therefore (18) becomes

g(∇̄ δ̄

δxi

∂

∂xj
,
∂

∂xk
) = g(∇ δ

δxi

∂

∂xj
,
∂

∂xk
) + ϕigjk + ϕjgik − ϕkgij

+Bmri ϕrC
l
mjgkl +Bmrj ϕrC

l
migkl −Bmrt ϕrCmjig

tsgsk.



882 B. BIDABAD AND F. SEDIGHI

Hence

∇̄ δ̄

δxi

∂

∂xj
= ∇ δ

δxi

∂

∂xj
+ ϕi

∂

∂xj
+ ϕj

∂

∂xi
− (∇ϕ)gij +Bmri ϕrC

l
mj

∂

∂xl

+Bmrj ϕrC
l
mi

∂

∂xl
−Bmrt ϕrCmjig

ts ∂

∂xs
,(19)

where, ∇ϕ is the gradient of ϕ and we have ϕk = g(∇ϕ, ∂
∂xk

).
By the definition of torsion (3), we have

T (Li,
∂

∂xj
) = ∇Li

∂

∂xj
= Bmri ϕrC

l
mj

∂

∂xl
,

hence (19) becomes

∇̄ δ̄

δxi

∂

∂xj
= ∇ δ

δxi

∂

∂xj
+ ϕi

∂

∂xj
+ ϕj

∂

∂xi
−∇ϕgij

+ T (Li,
∂

∂xj
) + T (Lj ,

∂

∂xi
)− g(T (Lt,

∂

∂xj
),

∂

∂xi
)
∂

∂xs
gts.(20)

Next assume that X̂ = ∂
∂yi is the vertical and Ŷ = δ

δxj and Ẑ = δ
δxk

are

the horizontal derivatives, we have X = %(X̂) = 0, Y = ∂
∂xj and Z = ∂

∂xk
.

Replacing these values in the Koszul formula (5) we get

2g(∇ ∂

∂yi

∂

∂xj
,
∂

∂xk
) =

∂

∂yi
gjk + g(τ(

∂

∂yi
,
δ

δxj
),

∂

∂xk
)(21)

+ g(τ(
δ

δxk
,
∂

∂yi
),

∂

∂xj
).

By the anti-symmetric property of torsion we have

g(τ(
∂

∂yi
,
δ

δxj
),

∂

∂xk
) = g(τ(

∂

∂yi
,
δ

δxk
),

∂

∂xj
) = −g(τ(

δ

δxk
,
∂

∂yi
),

∂

∂xj
),

hence (21) yields

(22) 2g(∇ ∂

∂yi

∂

∂xj
,
∂

∂xk
) =

∂

∂yi
gjk = 2Cijk.

Similarly for (M, F̄ ), ḡ( ∂
∂xj ,

∂
∂xk

) = ḡjk and we have

(23) 2ḡ(∇̄ ∂

∂yi

∂

∂xj
,
∂

∂xk
) = 2ḡ(C̄lij

∂

∂xl
,
∂

∂xk
) = 2C̄lij ḡlk = 2C̄ijk.

Replacing ḡ = e2ϕg in the left side of (23) and using (10) we get

(24) g(∇̄ ∂

∂yi

∂

∂xj
,
∂

∂xk
) = Cijk.

From (22) and (24) we get

g(∇̄ ∂

∂yi

∂

∂xj
,
∂

∂xk
) = g(∇ ∂

∂yi

∂

∂xj
,
∂

∂xk
).

Therefore we have

(25) ∇̄ ∂

∂yi

∂

∂xj
= ∇ ∂

∂yi

∂

∂xj
.
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The decomposition X̂ = HX̂ + V X̂ yields c∇X̂Y = ∇HX̂Y +∇V X̂Y . Using
(20) and (25) we have the proof. �

Recall that on a Riemannian manifold, the metric g is independent of the
direction y and Lk = Birk ϕr

∂
∂yi , hence we have Li = 0. Therefore, (16) reduces

to the following relation, see [13].

∇XY = ∇XY + (Xϕ)Y + (Y ϕ)X − (∇ϕ)g(X,Y ), ∀X,Y ∈ χ(M).

4. Hessian and Laplacian on Finsler manifolds

Here based on the global Cartan connection the Hessian and Laplacian are
defined. The natural definitions of Hessian and Laplacian considered here are
in some senses more general than those given in [2,7,16,18] and contains some
of them in special cases.

4.1. Horizontal and vertical Hessian

Let f ∈ C∞(M), the Hessian of f in the Cartan connection c∇X̂ is defined
by

Hess : Γ(TM0)× Γ(π∗TM)→ C∞(TM0)

Hess(f)(X̂, Y ) = g(Y, c∇X̂(∇f))(26)

for all X̂ ∈ Γ(TM0) and Y ∈ Γ(π∗TM). Using (4) the metric compatibility of
Cartan connection for a gradient vector field, we have

X̂g(Y,∇f) = g(c∇X̂Y,∇f) + g(Y, c∇X̂∇f),

(X̂Y )f = c∇X̂Y f + g(Y, c∇X̂∇f).(27)

Replacing the last equation in (26), we find a definition for the Hessian of f in
Cartan connection as follows

Hess(f)(X̂, Y ) = (X̂Y )f − (c∇X̂Y )f.(28)

Note that Hess(f) can be split in horizontal and vertical parts as follows

Hess(f)(X̂, Y ) = HessHf (X̂, Y ) + HessVf (X̂, Y ).

In terms of the local frame fields { δ
δxj ,

∂
∂yj } and { ∂

∂xj } from (28) we have

HessHf (
δ

δxi
,
∂

∂xj
) =

δ

δxi
(
∂f

∂xj
)− (∇ δ

δxi

∂

∂xj
)f =

δ

δxi
(
∂f

∂xj
)− Γkij

∂f

∂xk
,

see [7]. Since f is a function of x alone, the above equation reduces to

(29) HessHf (
δ

δxi
,
∂

∂xj
) =

∂2f

∂xi∂xj
− Γkij

∂f

∂xk
.

Following (28), the vertical part of Hess(f) is written

HessVf (
∂

∂yi
,
∂

∂xj
) =

∂

∂yi
(
∂f

∂xj
)− (∇

∂
∂yi

∂

∂xj
)f =

∂

∂yi
(
∂f

∂xj
)− Ckij

∂f

∂xk
.
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Again since f is a function of x alone, the vertical Hessian reduces to

(30) HessVf (
∂

∂yi
,
∂

∂xj
) = −Ckij

∂f

∂xk
.

Therefore for every function f on M by (29) and (30) we have

Hess(f)(X̂, Y ) =
∂2f

∂xi∂xj
− (Γkij + Ckij)

∂f

∂xk
.(31)

Remark 4.1. Recall that the Hessian on a Riemannian manifold is defined by
Hess(f)(X,Y ) = (XY )f − (∇XY )f, for all X,Y ∈ χ(M). In a local coordinate
on a Riemannian manifold

Hess(f)(X,Y ) =
∂2f

∂xi∂xj
− γkij

∂f

∂xk
,

where γkji are formal Christoffel symbols given by (2).

4.2. Horizontal and vertical Laplacian

Generally, a Laplacian is the trace of a Hessian, and in our setting the
horizontal Laplacian ∆Hf and the vertical Laplacian ∆V f of a real smooth
function f on M are defined respectively by

∆Hf = traceg(HessHf (X̂, Y )),

∆V f = traceg(HessVf (X̂, Y )),

where Y ∈ Γ(π∗TM), and X̂ ∈ Γ(TM0). Equivalently, in a local coordinate
system, using (29) and (30) the horizontal and the vertical Laplacian of f are
given by

∆Hf = gij(
∂2f

∂xi∂xj
− Γkij

∂f

∂xk
),

where f ∈ C∞(M) and

∆V f = gij(−Ckij
∂f

∂xk
),

respectively. The above horizontal Laplacian is also used in [2, p. 362] and
[6, 7]. Recall that a Finsler metric gij defines an inner product on the sections
of π∗TM , hence one needs to consider the complete lift of a vector field on M
to introduce the concept of conformal vector fields on Finsler geometry. More
intuitively let V = vi ∂

∂xi be a vector field on the smooth manifold M . The
complete lift and the horizontal lift of V are two globally defined vector fields

on TM0 given by Ṽ = vi(x) ∂
∂xi + yj( ∂v

i

∂xj ) ∂
∂yi , and hV̂ = vi(x) δ

δxi , respectively.

Remark 4.2. Let ϕ be a function of x alone and X = Xi ∂
∂xi , a vector field on

the smooth manifold M , clearly we have

Xϕ = X̃ϕ and Xϕ = hX̂ϕ,

where X̃ and hX̂ are the complete lift and the horizontal lift of X, respectively.
If necessary, we may restrict without loss of generality the vector field X̂ to the
complete lift X̃ on TM0.
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5. Schwarzian of the conformal diffeomorphisms

The classical notions of Schwarzian derivative and Schwarzian operator of
an analytic function on a plane, are generalized for a conformal mapping on
a Riemannian manifold, by Osgood and Stowe, see [13]. Here, inspiring the
Riemannian Schwarzian operator developed in [10, 13] and using the above
definitions of the gradient, Hessian and Laplacian for Cartan connection on
a Finsler manifold, a natural definition of Schwarzian is given for conformal
mappings.

Definition 1. Let (M,F ) and (M, F̄ ) be two conformally related Finsler man-
ifolds, where F̄ = eϕF . The Schwarzian tensor B

F
(ϕ) is a symmetric traceless

(0, 2)-tensor field defined by

B
F

(ϕ)(X̂, Y ) = Hess(ϕ)(X̂, Y )− (dϕ⊗ dϕ)(%X̂, Y )(32)

− 1

n
(∆ϕ− ‖gradϕ‖2)g(%X̂, Y ),

for all X̂ ∈ Γ(TM0) and Y ∈ Γ(π∗TM), where ‖gradϕ‖2 = ϕiϕi, ϕ
i = gijϕj

and g is the inner product on π∗TM derived from the Finsler structure F .

We define the Schwarzian derivative of a conformal transformation as an
operator applying to the vector fields X̂ on TM0 in the following sense.

Definition 2. Let F and F̄ be two conformally related Finsler metrics on
M . The Schwarzian derivative of a conformal map f : (M,F )→ (M, F̄ ) with
F̄ = eϕF , at a point x ∈M , is a linear map

SF (f) : Γ(TM0)→ Γ(π∗TM),

SF (f)X̂ = c∇X̂(∇ϕ)− g(∇ϕ, %X̂)∇ϕ− 1

n
(∆ϕ− ‖gradϕ‖2)%X̂,

where X̂ ∈ Γ(TM0) and %X̂ = X.

Lack of ambiguity, we denote simply the Schwarzian derivative SF (f) by
S(f). From which we obtain

g(S
F

(f)(X̂), Y )(33)

= g(c∇X̂∇ϕ, Y )− g(∇ϕ, %X̂)g(∇ϕ, Y )− 1/n(∆ϕ− ‖gradϕ‖2)g(%X̂, Y )

= Hess(ϕ)(X̂, Y )− g(∇ϕ,X)g(∇ϕ, Y )− 1/n(∆ϕ− ‖gradϕ‖2)g(X,Y )

= Hess(ϕ)(X̂, Y )− (Xϕ)(Y ϕ)− 1/n(∆ϕ− ‖gradϕ‖2)g(X,Y )

= B
F

(ϕ)(X̂, Y ),

where X̂ ∈ Γ(TM0), %(X̂) = X and X,Y ∈ Γ(π∗TM). The the Schwarzian
tensor B

F
(ϕ) plays a similar role as the Schwarzian derivative of the conformal

diffeomorphism f , in the above sense. The Schwarzian derivative SF (f) in

Definition 2 applies on the vector fields X̂ ∈ Γ(TM0), as well the Schwarzian
tensor B

F
(ϕ))(·, Y ) in Definition 1.
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As a “raison d’être” for our terminology, we determine S(f), when f is a
real function on R with the Euclidean metric g = |dx|2 or gij = δij . In this
case ϕ = log |f ′| and f∗|dx| = |f ′||dx|, by computing in standard coordinates
one gets

eϕ = f ′.(34)

By differentiating (34) with respect to x, we have

ϕ′eϕ = f ′′.(35)

From (34) and (35) we get ϕ′ = f ′′

f ′ . A second differentiation of (35) leads

eϕ(ϕ′′ + ϕ′2) = f ′′′, and ϕ′′ + ϕ′2 = f ′′′

f ′ .

Replacing the last equation in the definition of S(f) and using (34) and (35),
we have

S(f) =
f ′′′

f ′
− 3

2
(
f ′′

f ′
)2

= (ϕ′′ + ϕ′2)− 3

2
(ϕ′2)

= ϕ′′ − ϕ′2 +
1

2
|ϕ′|2

= Hessϕ− dϕ⊗ dϕ− (∆ϕ− ‖gradϕ‖2)g

= BF (ϕ),

where for the dimension n = 1, we have Hessϕ = ϕ′′, ϕ′ = dϕ and 2∆ϕ = |ϕ′|2.
As another verification of Definition 1, the replacement of the Riemannian
Hessian and Laplacian in this definition gives the well-known definition of the
Riemannian Schwarzian derivative of a conformal map. In terms of a local
coordinate system, using the local Hessian (31), we have(

BF (ϕ)
)
ij

=
∂2ϕ

∂xi∂xj
− (Γhij + Chij)ϕh − ϕiϕj −

1

n
(∆ϕ− ‖gradϕ‖2)gij ,

where Γhij and Chij are the Christoffel symbols of Cartan connection and the

Cartan tensor, respectively and ϕj = ∂ϕ
∂xj . Using the Cartan horizontal and

vertical covariant derivative formulas (6), and the fact that ϕ is a function of
x alone, the last equation is written in the following familiar form(

BF (ϕ)
)
ij

= c∇iϕj − ϕiϕj −
1

n
(∆ϕ− ‖gradϕ‖2)gij ,(36)

where c∇iϕj := ∂2ϕ
∂xi∂xj − (Γhij +Chij)ϕh are the components of Cartan covariant

derivative.
We will refer to B

F
(ϕ) operator in the sequel, as the Schwarzian derivative

S
F

(f) of a conformal map f : (M,F ) → (M, F̄ ) with F̄ = eϕF , in Finsler
geometry.
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6. Mobius mapping and Finsler manifolds

In Riemannian geometry, a conformal mapping is said to be Mobius if its
Schwarzian derivative is zero. Therefore, we could consider a natural definition
for Mobius mappings on Finsler manifolds as follows.

Definition 3. A conformal diffeomorphism f : (M,F ) → (M, F̄ ), is called a
Mobius mapping, if the Schwarzian derivative S

F
(f) vanishes.

By means of (33), we know S
F

(f) = 0, if and only if BF (ϕ) = 0, ∀Y ∈
π∗TM .

Clearly every isometry or every identity map id : (M,F ) → (M,F ) is a
Mobius mapping with ϕ(x) = 0.

If we put Φ = 1
n (∆ϕ−‖gradϕ‖2), then (36) becomesBF (ϕ) = c∇iϕj−ϕiϕj−

Φgij . Hence vanishing of the Schwarzian tensor BF (ϕ) = 0, is equivalent to

c∇iϕj − ϕiϕj = Φgij .(37)

Remark 6.1. The equation (37) and Theorem B characterize the Mobius map-
pings in the sense that, a conformal diffeomorphism is Mobius if and only if it
preserves geodesic circles.

A property of Mobius mappings is given in the following Theorem.

Theorem 6.2. Let (M,F ) be a Finsler manifold and ϕ and σ the two real
smooth functions on M such that F̄ = eϕF . We have

BF (ϕ+ σ) = BF (ϕ) +BF̄ (σ) +A(σ),

where A(σ) = T (Li, Y )σ + T (Lj , X)σ − g(T (Lt, Y ), X) ∂
∂xs g

stσ and Li :=

Bkri ϕr
∂
∂yk

.

Proof. By means of the definition of Hessian with respect to the Finsler metric
ḡ, and the fact (HX̂ϕ) = δ

δxiϕ = Xϕ, using (16) we have

Hessḡ(σ)(X̂, Y ) = X̂Y (σ)− ∇̄X̂Y (σ)

= X̂Y (σ)−∇X̂Y (σ)−X(ϕ)Y (σ)− Y (ϕ)X(σ)

+ g(X,Y )∇ϕ(σ)− T (Li, Y )σ − T (Lj , X)σ

+ g(T (Lt, Y ), X)
∂

∂xs
gstσ

= Hessg(σ)(X̂, Y )−X(ϕ)Y (σ)− Y (ϕ)X(σ)

+ g(X,Y )g(∇ϕ,∇σ)− T (Li, Y )σ − T (Lj , X)σ

+ g(T (Lt, Y ), X)
∂

∂xs
gstσ,(38)

where X,Y ∈ Γ(π∗TM) and X̂ ∈ Γ(TM0). Let us denote the gradient and the
Laplacian with respect to ḡ by ∇̄ and ∆̄ respectively. If {e1, e2, . . . , en} is a
local orthonormal frame on M with respect to ḡ, that is, ḡ(ei, ej) = δij , then
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{e−ϕe1, e
−ϕe2, . . . , e

−ϕen} is a local orthonormal frame with respect to g on
M . By definition ∀i, j, T (Li, ej) = c∇Liej = 0, hence from (38) we get

∆̄σ =
n∑
i=1

Hessḡ(σ)(êi, ei)

=
n∑
i=1

{Hessg(σ)(e−ϕêi, e
−ϕei)−2ei(ϕ)ei(σ)+g(e−ϕei, e

−ϕei)g(∇ϕ,∇σ)}

=
n∑
i=1

Hessg(σ)(e−ϕêi, e
−ϕei)−2ḡ(∇̄ϕ, ∇̄σ) + ne−2ϕg(∇ϕ,∇σ)

= e−2ϕ∆σ − 2ḡ(∇̄ϕ, ∇̄σ) + ne−2ϕg(∇ϕ,∇σ),(39)

where ei ∈ Γ(π∗TM) and êi is its complete lift to Γ(TM0). By means of (9)
and the definition of gradient of the scalar function ϕ with respect to ḡ we have

∇̄ϕ = ∇ḡϕ = ḡij
∂ϕ

∂xi
∂

∂xj
= e−2ϕgij

∂ϕ

∂xi
∂

∂xj
= e−2ϕ∇gϕ.

Similarly, ∇̄σ = ∇ḡσ = e−2ϕ∇gσ. Hence (39) becomes

∆̄σ = e−2ϕ{∆gσ + (n− 2)g(∇ϕ,∇σ)}.(40)

On the other hand

‖∇̄ϕ‖2ḡ = ḡijϕiϕj = e−2ϕgijϕiϕj = e−2ϕ‖∇ϕ‖2g,

and similarly ‖∇̄σ‖2ḡ = e−2ϕ‖∇σ‖2g. The equations (38) and (40) and definition

of Schwarzian tensor (32) with %X̂ = X imply

BF̄ (σ)(X̂, Y ) = Hessḡ(σ)(X̂, Y )−X(σ)Y (σ)− 1

n
{∆̄σ − ‖∇̄σ‖2ḡ}ḡ(X,Y )

= Hessg(σ)(X̂, Y )−X(ϕ)Y (σ)− Y (ϕ)X(σ)

+ g(X,Y )g(∇ϕ,∇σ)−X(σ)Y (σ)

− e−2ϕ

n
{∆gσ + (n− 2)g(∇ϕ,∇σ)− ‖∇σ‖2g}e2ϕg(X,Y )

− T (Li, Y )σ − T (Lj , X)σ + g(T (Lt, Y ), X)
∂

∂xs
gstσ

= BF (σ)(X̂, Y )−X(ϕ)Y (σ)− Y (ϕ)X(σ)+
2

n
g(∇ϕ,∇σ)g(X,Y )

− T (Li, Y )σ − T (Lj , X)σ + g(T (Lt, Y ), X)
∂

∂xs
gstσ.

If we put A(σ) := T (Li, Y )σ + T (Lj , X)σ − g(T (Lt, Y ), X) ∂
∂xs g

stσ, the above
equation yields

BF̄ (σ) = BF (σ)− dϕ⊗ dσ − dσ ⊗ dϕ+
2

n
g(∇ϕ,∇σ)g −A(σ).(41)
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On the other hand

Hessg(ϕ+ σ)− d(ϕ+ σ)⊗ d(ϕ+ σ) = Hessg(ϕ) + Hessg(σ)− dϕ⊗ dϕ
− dϕ⊗ dσ − dσ ⊗ dϕ− dσ ⊗ dσ.(42)

Using the definition of Schwarzian tensor, (32) and (42) we have

BF (ϕ+ σ) = Hessg(ϕ+ σ)− d(ϕ+ σ)⊗ d(ϕ+ σ)

− 1

n
{∆(ϕ+ σ)− ‖∇(ϕ+ σ)‖2}g

= Hessg(ϕ)− dϕ⊗ dϕ− 1

n
{∆ϕ− ‖∇ϕ‖2}g

+ Hessg(σ)− dσ ⊗ dσ − 1

n
{∆σ − ‖∇σ‖2}g

− dϕ⊗ dσ − dσ ⊗ dϕ+
2

n
g(∇ϕ,∇σ)g

= BF (ϕ) +BF (σ)− dϕ⊗ dσ − dσ ⊗ dϕ+
2

n
g(∇ϕ,∇σ)g.

The equation (41) implies B
F

(ϕ + σ) = B
F

(ϕ) + B
F̄

(σ) + A(σ), and we have
the proof. �

Remark 6.3. If the conformal transformation is an identity or isometry, then
we have ϕ = 0 and Theorem 6.2, yields

(43) B
F

(σ) = B
F̄

(σ) +A(σ).

Lemma 6.4. Let h : (M,F ) → (M,F ′) and f : (M,F ′) → (M,F ′′) be two
conformal transformations on Finsler manifolds such that

h∗g′ = e2ϕg and f∗g′′ = e2σg′.(44)

Then

(45) S
F

(f ◦ h) = S
F

(h) + h∗S
F

(f).

Proof. Here, ϕ and σ are both real smooth functions on M . By means of (44)
we have

(f ◦ h)∗g′′ = (h∗ ◦ f∗)g′′ = h∗(e2σg′) = h∗(e2σ)h∗(g′) = h∗(e2σ)e2ϕg

= (e2σ ◦ h)e2ϕg = e2(σ◦h)e2ϕg = e2(ϕ+(σ◦h))g.(46)

By definition of Schwarzian derivative, if f∗g′′ = e2σg′, then SF ′(f) = BF ′(σ),
therefore from (46) we have SF (f ◦h) = BF (ϕ+ (σ ◦h)). By Theorem 6.2 and
the equations (44) we get

SF (f ◦ h) = BF (ϕ+ (σ ◦ h)) = BF (ϕ) +BF̄ (σ ◦ h) +A(σ ◦ h).

From (43) we have BF (σ◦h) = BF̄ (σ◦h)+A(σ◦h). Therefore the above relation
yields SF (f ◦h) = BF (ϕ)+BF (σ ◦h) = BF (ϕ)+h∗BF (σ) = SF (h)+h∗SF (f).
Therefore if f and h are both Mobius functions, then their composition is also
Mobius and we have the proof. �
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Proof of Theorem 1.1. Let (M,F ) and (M, F̄ ) be two Finsler manifolds and
f : (M,F )→ (M, F̄ ) a conformal transformation. In order to show the Mobius
transformations from a group, we first show that the composites and inverses
of Mobius transformations are Mobius. By means of Lemma 6.4 we have

0 = S
F

(id) = S
F

(f ◦ f−1) = S
F

(f−1) + (f−1)∗S
F

(f),

where id is the identity map. Therefore, we have S
F

(f−1) = −(f−1)∗S
F

(f).
Therefore, if f is a Mobius function, its inverse is Mobius as well. Next we
show S

F
(f) = SF̄ (f). In fact, let F̄ = eϕF and consider the composition

f = h−1 ◦ f ◦ h given by (M,F )
h−→ (M,F )

f−→ (M, F̄ )
h−1

−−→ (M, F̄ ), where h is
the identity map and we have S

F
(h) = SF̄ (h−1) = 0, hence by means of (45)

S
F

(f)= S
F

((h−1◦f)◦h) = SF (h)+h∗SF̄ (h−1◦f) = 0+h∗{SF̄ (f)+f∗SF̄ (h−1)}.

Since h is the identity map

h∗(SF̄ (f) + 0) = SF̄ (f).

Hence S
F

(f) = SF̄ (f). Therefore, the set of Mobius transformations of (M,F )
forms a group.

Let f : (M,F )→ (M, F̄ ) be a homothety, since ϕ is constant, by definition
we get B

F
(ϕ) = 0 = S

F
(f). Thus any homothety, is a Mobius transformation

and hence a subgroup of conformal transformations of (M,F ). �

Proof of Theorem 1.2. By means of (37), Theorem 1.1 and Theorem B we can
easily see that a conformal diffeomorphism between two n-dimensional Finsler
manifolds (M,F ) and (M, F̄ ) is a Mobius transformation if and only if it maps
all geodesic circles to geodesic circles. This completes the proof. For more
details one can refer to [9]. �

Using the above properties of Schwarzian derivative we obtain proof of the
following rigidity theorems of complete Finsler manifolds.

Proof of Theorems 1.3 and 1.4. By Remark 6.1 the circle preserving or con-
circular maps are Mobius functions and vice versa. Therefore proof of these
Theorems are a direct applications of Theorem C and Theorem D. �

6.1. Schwarzian and Einstein Randers spaces

As an application of the Schwarzian derivative, we can prove a rigidity the-
orem on Einstein Randers’ spaces.

Proof of Theorem 1.5. In [8], it is shown that in a Finsler manifold the projec-
tive parameter p is a solution of the following ODE.

(47) S(p(s)) =
d3p
ds3

dp
ds

− 3

2

[ d2p
ds2

dp
ds

]2
=

2

n− 1
Ricjk

dxj

ds

dxk

ds
=

2

n− 1
F 2Ric,
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where S(p) is the Schwarzian of “p”and “s”is the arc length parameter of
a geodesic γ. The projective parameter is unique up to a linear fractional
transformations, that is

S(p ◦ T ) = S(p),

where T = ax+b
cx+d and ad − bc 6= 0. When the Ricci tensor is parallel with

respect to any of Berwald, Chern or Cartan connection, it is constant along
the geodesics and we can easily solve the equation (47), see [8].

Since (M,F ) is an Einstein space, plugging (7) in (47) we get

(48) S(p) =
2

n− 1
F 2Ric = 2F 2K,

where K is a function of x alone. If S(p) =0, then by the above equation we
have K =0 and Ric =0. As a consequence of PropositionA in Page 878, (M,F )
is a Berwaldian space.

If S(p) < 0, then (48) yields K < 0, and Ric < 0, hence by Proposition A,
(M,F ) is Riemannian. �
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