References
-
I. Agricola, S. Chiossi, T. Friedrich, and J. Holl, Spinorial description of SU(3) and
$G_2$ -manifolds, J. Geom. Phys. 98 (2015), 535-555. https://doi.org/10.1016/j.geomphys.2015.08.023 -
I. Agricola, S. Chiossi, G. Simon, and A. Fino, Solvmanifolds with integrable and nonintegrable
$G_2$ structures, Differential Geom. Appl. 25 (2007), no. 2, 125-135. https://doi.org/10.1016/j.difgeo.2006.05.002 - I. Agricola and H. Kim, A note on generalized Dirac Eigenvalues for split holonomy and torsion, Bull. Korean Math. Soc. 51 (2014), no. 6, 1579-1589. https://doi.org/10.4134/BKMS.2014.51.6.1579
- T. Arias-Marco and O. Kowalski, Classification of locally homogeneous affine connections with arbitrary torsion on 2-dimensional manifolds, Monatsh. Math. 153 (2008), no. 1, 1-18. https://doi.org/10.1007/s00605-007-0494-0
- X. Bekaert and K. Morand, Connections and dynamical trajectories in generalized Newton-Cartan gravity I. An intrinsic view, J. Math. Phys. 57 (2016), no. 2, 022507, 44 pp. https://doi.org/10.1063/1.4937445
- W. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, New York, 1975.
- M. Brozos-Vazquez, E. Garcia-Rio, and P. Gilkey, Homogeneous ane surfaces: Affine killing vector fields and gradient Ricci solitons, http://arxiv.org/abs/1512.05515 (to appear J. Math. Soc. Japan).
- M. Brozos-Vazquez, E. Garcia-Rio, and P. Gilkey, Homogeneous affine surfaces: Moduli spaces, J. Math. Anal. Appl. 444 (2016), no. 2, 1155-1184. https://doi.org/10.1016/j.jmaa.2016.07.005
- E. Calvino-Louzao, E. Garcia-Rio, P. Gilkey, and R. Vazquez-Lorenzo, The geometry of modified Riemannian extensions, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465 (2009), no. 2107, 2023-2040. https://doi.org/10.1098/rspa.2009.0046
- E. Calvino-Louzao, E. Garcia-Rio, and R. Vazquez-Lorenzo, Riemann extensions of torsion-free connections with degenerate Ricci tensor, Canad. J. Math. 62 (2010), no. 5, 1037-1057. https://doi.org/10.4153/CJM-2010-059-2
- A. Coimbra, C. Strickland-Constable, and D. Waldram, Supersymmetric backgrounds and generalized special holonomy, Classical Quantum Gravity 33 (2016), no. 12, 125026, 27 pp. https://doi.org/10.1088/0264-9381/33/12/125026
- A. Derdzinski, Noncompactness and maximum mobility of type III Ricci-flat self-dual neutral Walker four-manifolds, Q. J. Math. 62 (2011), no. 2, 363-395. https://doi.org/10.1093/qmath/hap033
- S. Deser, S. Ertl, and D. Grumiller, Canonical bifurcation in higher derivative, higher spin theories, J. Phys. A 46 (2013), no. 21, 214018, 9 pp. https://doi.org/10.1088/1751-8113/46/21/214018
- G. Dileo and A. Lotta, Some Einstein nilmanifolds with skew torsion arising in CR geometry, Int. J. Geom. Methods Mod. Phys. 12 (2015), no. 8, 1560017, 6 pp. https://doi.org/10.1142/S0219887815600178
- S. Dumitrescu, Locally homogeneous rigid geometric structures on surfaces, Geom. Dedicata 160 (2012), 71-90. https://doi.org/10.1007/s10711-011-9670-4
- S. Fedoruk, E. Ivanov, and A. Smilga, N = 4 mechanics with diverse (4,4,0) multiplets: explicit examples of hyper-Kahler with torsion, Clifford Kahler with torsion, and octonionic Kahler with torsion geometries, J. Math. Phys. 55 (2014), no. 5, 052302, 29pp. https://doi.org/10.1063/1.4871440
- Th. Friedrich and S. Ivanov, Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math. 6 (2002), no. 2, 303-335. https://doi.org/10.4310/AJM.2002.v6.n2.a5
- Th. Friedrich and S. Ivanov, Almost contact manifolds, connections with torsion, and parallel spinors, J. Reine Angew. Math. 559 (2003), 217-236.
- S. Gallot, D. Hulin, and J. Lafontaine, Riemannian Geometry 3rd ed, Springer Universitext. Springer-Verlag, Berlin, 2004.
- J. Gegenberg, A. Day, H. Liu, and S. Seahra, An instability of hyperbolic space under the Yang-Mills flow, J. Math. Phys. 55 (2014), no. 4, 042501, 9 pp. https://doi.org/10.1063/1.4869870
- P. Gilkey, The moduli space of Type A surfaces with torsion and non-singular symmetric Ricci tensor, J. Geom. Phys. 110 (2016), 69-77. https://doi.org/10.1016/j.geomphys.2016.07.012
- P. Gilkey, J. H. Park, and R. Vazquez-Lorenzo, Aspects of Differential Geometry I, (Synthesis lectures on mathematics and statistics), Morgan and Claypool, 2015.
- A. Guillot and A. Sanchez-Godinez, A classification of locally homogeneous ane connections on compact surfaces, Ann. Global Anal. Geom. 46 (2014), no. 4, 335-349. https://doi.org/10.1007/s10455-014-9426-0
- S. Ivanov, Connections with torsion, parallel spinors, and geometry of spin(7) manifolds, Math. Res. Lett. 11 (2004), no. 2-3, 171-186. https://doi.org/10.4310/MRL.2004.v11.n2.a3
- S. Ivanov and M. Zlatanovic, Connections on a non-symmetric (generalized) Riemannian manifold and gravity, Classical Quantum Gravity 33 (2016), no. 7, 075016, 23 pp. https://doi.org/10.1088/0264-9381/33/7/075016
- M. Ivanova and M. Manev, A classification of the torsion tensors on almost contact manifolds with B-metric, Cent. Eur. J. Math. 12 (2014), no. 10, 1416-1432.
- M. Kassuba, Eigenvalue estimates for Dirac operators in geometries with torsion, Ann. Glob. Anal. Geom. 37 (2010), no. 1, 33-71. https://doi.org/10.1007/s10455-009-9172-x
- D. Klemm and M. Nozawa, Geometry of Killing spinors in neutral signature, Classical Quantum Gravity 32 (2015), no. 18, 185012, 36 pp. https://doi.org/10.1088/0264-9381/32/18/185012
- O. Kowalski, B. Opozda, and Z. Vlasek, A classification of locally homogeneous ane connections with skew-symmetric Ricci tensor on 2-dimensional manifolds, Monatsh. Math. 130 (2000), no. 2, 109-125. https://doi.org/10.1007/s006050070041
- O. Kowalski, B. Opozda, and Z. Vlasek, On locally nonhomogeneous pseudo-Riemannian manifolds with locally homogeneous Levi-Civita connections, Internat. J. Math. 14 (2003), no. 5, 559-572. https://doi.org/10.1142/S0129167X03001971
- O. Kowalski and M. Sekizawa, The Riemann extensions with cyclic parallel Ricci tensor, Math. Nachr. 287 (2014), no. 8-9, 955-961. https://doi.org/10.1002/mana.201200299
- M. Manev, A connection with parallel torsion on almost hypercomplex manifolds with Hermitian and anti-Hermitian metrics, J. Geom. Phys. 61 (2011), no. 1, 248-259. https://doi.org/10.1016/j.geomphys.2010.09.018
- M. Manev and K. Gribachev, A connection with parallel totally skew-symmetric torsion on a class of almost hypercomplex manifolds with Hermitian and anti-Hermitian metrics, Int. J. Geom. Methods Mod. Phys. 8 (2011), no. 1, 115-131. https://doi.org/10.1142/S0219887811005026
- D. Mekerov, Natural connection with totally skew-symmetric torsion on Riemannian almost product manifolds, Int. J. Geom. Methods Mod. Phys. 09 (2012), no. 1, 1250003, 14 pp. https://doi.org/10.1142/S021988781250003X
- B. Opozda, A classification of locally homogeneous connections on 2-dimensional manifolds, Differential Geom. Appl. 21 (2004), no. 2, 173-198. https://doi.org/10.1016/j.difgeo.2004.03.005
- B. Opozda, Locally homogeneous ane connections on compact surfaces, Proc. Amer. Math. Soc. 132 (2004), no. 9, 2713-2721. https://doi.org/10.1090/S0002-9939-04-07402-7
- J. Wang, Y. Wang, and C. Yang, Dirac operators with torsion and the non-commutative residue for manifolds with boundary, J. Geom. Phys. 81 (2014), 92-111. https://doi.org/10.1016/j.geomphys.2014.03.007