• Title/Summary/Keyword: harmonic manifolds

Search Result 68, Processing Time 0.017 seconds

CRITICALITY OF CHARACTERISTIC VECTOR FIELDS ON ALMOST COSYMPLECTIC MANIFOLDS

  • Pak, Hong-Kyun;Kim, Tae-Wan
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.605-613
    • /
    • 2007
  • Main interest of the present paper is to investigate the criticality of characteristic vector fields on almost cosymplectic manifolds. Killing critical characteristic vector fields are absolute minima. This paper contains some examples of non-Killing critical characteristic vector fields.

STRESS-ENERGY TENSOR OF THE TRACELESS RICCI TENSOR AND EINSTEIN-TYPE MANIFOLDS

  • Gabjin Yun
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.2
    • /
    • pp.255-277
    • /
    • 2024
  • In this paper, we introduce the notion of stress-energy tensor Q of the traceless Ricci tensor for Riemannian manifolds (Mn, g), and investigate harmonicity of Riemannian curvature tensor and Weyl curvature tensor when (M, g) satisfies some geometric structure such as critical point equation or vacuum static equation for smooth functions.

A NONEXISTENCE THEOREM FOR STABLE EXPONENTIALLY HARMONIC MAPS

  • Koh, Sung-Eun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.211-214
    • /
    • 1995
  • Let M and N be compact Riemannian manifolds and $f : M \to N$ be a smooth map. Following J. Eells, f is exponentially harmonic if it represents a critical point of the exponential energy integral $$ E(f) = \int_{M} exp(\left\$\mid$ df \right\$\mid$^2) dM $$ where $(\left\ df $\mid$\right\$\mid$^2$ is the energy density defined as $\sum_{i=1}^{m} \left\$\mid$ df(e_i) \right\$\mid$^2$, m = dimM, for orthonormal frame $e_i$ of M. The Euler- Lagrange equation of the exponential energy functional E can be written $$ exp(\left\$\mid$ df \right\$\mid$^2)(\tau(f) + df(\nabla\left\$\mid$ df \right\$\mid$^2)) = 0 $$ where $\tau(f)$ is the tension field along f. Hence, if the energy density is constant, every harmonic map is exponentially harmonic and vice versa.

  • PDF

ENERGY FINITE SOLUTIONS OF ELLIPTIC EQUATIONS ON RIEMANNIAN MANIFOLDS

  • Kim, Seok-Woo;Lee, Yong-Hah
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.807-819
    • /
    • 2008
  • We prove that for any continuous function f on the s-harmonic (1{\infty})$ boundary of a complete Riemannian manifold M, there exists a solution, which is a limit of a sequence of bounded energy finite solutions in the sense of supremum norm, for a certain elliptic operator A on M whose boundary value at each s-harmonic boundary point coincides with that of f. If $E_1,\;E_2,...,E_{\iota}$ are s-nonparabolic ends of M, then we also prove that there is a one to one correspondence between the set of bounded energy finite solutions for A on M and the Cartesian product of the sets of bounded energy finite solutions for A on $E_i$ which vanish at the boundary ${\partial}E_{\iota}\;for\;{\iota}=1,2,...,{\iota}$

HOMOGENEOUS STRUCTURES ON FOUR-DIMENSIONAL LORENTZIAN DAMEK-RICCI SPACES

  • Assia Mostefaoui;Noura Sidhoumi
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.195-203
    • /
    • 2023
  • Special examples of harmonic manifolds that are not symmetric, proving that the conjecture posed by Lichnerowicz fails in the non-compact case have been intensively studied. We completely classify homogeneous structures on Damek-Ricci spaces equipped with the left invariant metric.

STATIC AND RELATED CRITICAL SPACES WITH HARMONIC CURVATURE AND THREE RICCI EIGENVALUES

  • Kim, Jongsu
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1435-1449
    • /
    • 2020
  • In this article we make a local classification of n-dimensional Riemannian manifolds (M, g) with harmonic curvature and less than four Ricci eigenvalues which admit a smooth non constant solution f to the following equation $$(1)\hspace{20}{\nabla}df=f(r-{\frac{R}{n-1}}g)+x{\cdot} r+y(R)g,$$ where ∇ is the Levi-Civita connection of g, r is the Ricci tensor of g, x is a constant and y(R) a function of the scalar curvature R. Indeed, we showed that, in a neighborhood V of each point in some open dense subset of M, either (i) or (ii) below holds; (i) (V, g, f + x) is a static space and isometric to a domain in the Riemannian product of an Einstein manifold N and a static space (W, gW, f + x), where gW is a warped product metric of an interval and an Einstein manifold. (ii) (V, g) is isometric to a domain in the warped product of an interval and an Einstein manifold. For the proof we use eigenvalue analysis based on the Codazzi tensor properties of the Ricci tensor.

ON SEMI-RIEMANNIAN MANIFOLDS SATISFYING THE SECOND BIANCHI IDENTITY

  • Kwon, Jung-Hwan;Pyo, Yong-Soo;Suh, Young-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.1
    • /
    • pp.129-167
    • /
    • 2003
  • In this paper we introduce new notions of Ricci-like tensor and many kind of curvature-like tensors such that concircular, projective, or conformal curvature-like tensors defined on semi-Riemannian manifolds. Moreover, we give some geometric conditions which are equivalent to the Codazzi tensor, the Weyl tensor, or the second Bianchi identity concerned with such kind of curvature-like tensors respectively and also give a generalization of Weyl's Theorem given in [18] and [19].