Browse > Article
http://dx.doi.org/10.4134/JKMS.2012.49.5.965

RICCI CURVATURE AND MONOPOLE CLASSES ON 3-MANIFOLDS  

Sung, Chan-Young (Department of Mathematics and Institute for Mathematical Sciences Konkuk University)
Publication Information
Journal of the Korean Mathematical Society / v.49, no.5, 2012 , pp. 965-976 More about this Journal
Abstract
We prove an $L^2$-estimate of Ricci curvature in terms of harmonic 1-forms on a closed oriented Riemannian 3-manifold admitting a solution of any rescaled Seiberg-Witten equations. We also give a necessary condition to be a monopole class on some special connected sums.
Keywords
Seiberg-Witten equations; Ricci curvature; monopole class;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Sung, Surgery and equivariant Yamabe invariant, Differential Geom. Appl. 24 (2006), no. 3, 271-287.   DOI   ScienceOn
2 C. Sung, Collapsing and monopole classes of 3-manifolds, J. Geom. Phys. 57 (2007), no. 2, 549-559.   DOI   ScienceOn
3 C. Sung, Surgery, Yamabe invariant, and Seiberg-Witten theory, J. Geom. Phys. 59 (2009), no. 2, 246-255.   DOI   ScienceOn
4 C. Sung, Finite group actions and G-monopole classes on smooth 4-manifolds, arXiv:1108.3875.
5 C. H. Taubes, The Seiberg-Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994), no. 6, 809-822.   DOI
6 M. Gromov and H. B. Lawson, The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. 111 (1980), no. 3, 423-434.   DOI
7 M. Gursky, Four-manifolds with $\delta W^{+}$ = 0 and Einstein constants of the sphere, Math. Ann. 318 (2000), no. 3, 417-431.   DOI
8 P. B. Kronheimer and T. S. Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994), no. 6, 797-808.   DOI
9 H. B. Lawson and M.-L. Michelson, Spin Geometry, Princeton University Press, 1989.
10 C. LeBrun, Four-manifolds without Einstein metric, Math. Res. Lett. 3 (1996), no. 2, 133-147.   DOI
11 C. LeBrun, Yamabe constants and the perturbed Seiberg-Witten equations, Comm. Anal. Geom. 5 (1997), no. 3, 535-553.   DOI
12 C. LeBrun, Curvature and smooth topology in dimension four, Global analysis and harmonic analysis (Marseille-Luminy, 1999), 179-200, Semin. Congr., 4, Soc. Math. France, Paris, 2000.
13 C. LeBrun, Ricci curvature, minimal volumes, and Seiberg-Witten theory, Invent. Math. 145 (2001), no. 2, 279-316.   DOI
14 C. LeBrun, Einstein metrics, four-manifolds, and differential topology, Surveys in differential geometry, Vol. VIII (Boston, MA, 2002), 235-255, Surv. Differ. Geom., VIII, Int. Press, Somerville, MA, 2003.
15 C. Sung, Surgery, curvature, and minimal volume, Ann. Global Anal. Geom. 26 (2004), no. 3, 209-229.   DOI
16 J. Lee and T. Parker, The Yamabe problem, Bull. Amer. Math. Soc. 17 (1987), no. 1, 37-91.   DOI
17 T. J. Li and A. Liu, General wall crossing formula, Math. Res. Lett. 2 (1995), no. 6, 797-810.   DOI
18 J. Morgan, The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifold, Princeton University Press, 1996.
19 S. Bauer and M. Furuta, A stable cohomotopy refinement of Seiberg-Witten invariants. I, Invent. Math. 155 (2004), no. 1, 1-19.   DOI
20 S. Bauer, A stable cohomotopy re nement of Seiberg-Witten invariants. II, Invent. Math. 155 (2004), no. 1, 21-40.   DOI
21 G. Besson, G. Courtois, and S. Gallot, Volume et entropie minimale des espaces localement symetriques, Invent. Math. 103 (1991), no. 2, 417-445.   DOI
22 H.-D. Cao and J. Zhou, Equivariant cohomology and wall crossing formula in Seiberg-Witten theory, Math. Res. Lett. 5 (1998), no. 6, 711-721.   DOI