HOMOGENEOUS STRUCTURES ON FOUR-DIMENSIONAL LORENTZIAN DAMEK-RICCI SPACES

Assia Mostefaoui and Noura Sidhoumi

Abstract

Special examples of harmonic manifolds that are not symmetric, proving that the conjecture posed by Lichnerowicz fails in the non-compact case have been intensively studied. We completely classify homogeneous structures on Damek-Ricci spaces equipped with the left invariant metric.

1. Introduction and preliminaries

A pseudo-Riemannian manifold M is homogeneous provided that, given any points $p, q \in M$, there is an isometry ϕ of M such that $\phi(p)=q$. It is locally homogeneous if there is a local isometry mapping a neighborhood of p into a neighborhood of q. If M is homogeneous, then any geometrical properties at one point of M hold at every point. The characterization by E. Cartan of Riemannian locally symmetric spaces as those Riemannian manifolds whose curvature tensor is parallel was extended by Ambrose and Singer in [1] (see also [18]). They proved that a connected, simply connected and complete Riemannian manifold is homogeneous if and only if there exists a $(1,2)$ tensor field T satisfying certain equations, see (1). In [12] Gadea and Oubiña have extended that characterization to pseudo-Riemannian manifolds. Specifically, let (M, g) be a connected pseudo-Riemannian manifold of dimension n and signature $(k, n-k)$. Let ∇ be the Levi-Civita connection of g and R its curvature tensor field. A homogeneous pseudo-Riemannian structure on (M, g) is a tensor field T of type (1,2) on M such that the connection $\tilde{\nabla}=\nabla-T$ satisfies

$$
\begin{equation*}
\tilde{\nabla} g=0, \quad \tilde{\nabla} R=0, \quad \tilde{\nabla} T=0 \tag{1}
\end{equation*}
$$

More explicitly, T is the solution of the following system of equations (known as Ambrose-Singer equations)

$$
\begin{align*}
& g\left(T_{X} Y, Z\right)+g\left(Y, T_{X} Z\right)=0 \tag{2}\\
& \left(\nabla_{X} R\right)_{Y Z}=\left[T_{X}, R_{Y Z}\right]-R_{T_{X} Y Z}-R_{Y T_{X} Z} \tag{3}
\end{align*}
$$

Received July 22, 2021; Revised December 1, 2021; Accepted February 15, 2022.
2020 Mathematics Subject Classification. Primary 53C50, 53B30.
Key words and phrases. Damek-Ricci spaces, homogeneous structures, Lorentzian metrics, left-invariant metrics.

$$
\begin{equation*}
\left(\nabla_{X} T\right)_{Y}=\left[T_{X}, T_{Y}\right]-T_{T_{X} Y} \tag{4}
\end{equation*}
$$

for all vector fields X, Y, Z. If g is a Lorentzian metric $(k=1)$, we say that T is a homogeneous Lorentzian structure. The geometric meaning of the existence of a homogeneous pseudo-Riemannian structure is explained by the following:

Theorem 1.1 ([12]). Let (M, g) be a connected, simply connected and complete pseudo-Riemannian manifold. Then, (M, g) admits a homogeneous pseudoRiemannian structure if and only if it is a reductive homogeneous pseudoRiemannian manifold.

This means that $M=G / H$, where G is a connected Lie group acting transitively and effectively on M as a group of isometries, H is the isotropy group at a point $o \in M$, and the Lie algebra \mathfrak{g} of G may be decomposed into a vector space direct sum of the Lie algebra \mathfrak{h} of H and an $\operatorname{Ad}(H)$-invariant subspace m, that is $\mathfrak{g}=\mathfrak{h} \oplus m, \operatorname{Ad}(H) m \subset m$. It must be noted that any homogeneous Riemannian manifold is reductive, while a homogeneous pseudo-Riemannian manifold need not be reductive. Homogeneous Lorentzian structures have been investigated for several classes of Lorentzian manifolds.

For some special classes of metrics, the Ambrose-Singer equations can be completely solved, leading to a complete classification. Natural candidates for this kind of study are Lie groups. Some examples of complete classifications of homogeneous structures in a class of homogeneous pseudo-Riemannian may be found in $[3-5,7,13,14]$.

The study of Damek-Ricci spaces includes a wide investigation in literature. That is particularly relevant, to give a negative answer, in high dimensions, to the famous question posed by Lichnrowicz: "Is a harmonic Riemannian manifold necessarily a symmetric space?"

Damek-Ricci spaces have been constructed by Damek and Ricci in [9]. These spaces are semidirect products of Heisenberg groups with the real line. Several results about these spaces have been investigated by many authors. In [10], Degla and Todjihounde proved the non existence of any proper (nongeodesic) biharmonic curve in the four-dimensional Damek-Ricci space although such curves exist in three-dimensional Heisenberg groups. In [2], they studied the dispersive properties of the linear wave equation on Damek-Ricci spaces and their application to nonlinear Cauchy problems. In [11], it was constructed uncountable many isoparametric families of hypersurfaces in Damek-Ricci spaces, by characterizing those of them that have constant principal curvatures. In [15], Koivogui and Todjihounde gave a setting for constructing Weierstrass representation formulas for simply connected minimal surfaces into four-dimensional Riemannian Damek-Ricci spaces. This was extended to the case of spacelike and timelike minimal surfaces in 4-dimensional Damek-Ricci spaces equipped with left-invariant Lorentzian metric [8]. In [17], Tan and Deng considered the four-dimensional Lorentzian Damek-Ricci spaces $\left(\mathbb{S}_{\varepsilon}^{4}, g_{\varepsilon}\right)$ and investigated other geometrical properties. In particular, they proved the non-existence of
left-invariant Ricci solitons on these spaces. More recently, the second author generalized this result proving the non-existence of non invariant vector field for which the soliton equation is satisfied [16].

In this paper, we shall classify homogeneous structures of the four-dimensional Damek-Ricci spaces $\left(\mathbb{S}_{\varepsilon}^{4}, g_{\varepsilon}\right)$, equipped with the left-invariant Lorentzian metric g_{ε}.

The paper is organized in the following way. In Section 2, we shall report some basic information about four-dimensional Damek-Ricci space and its leftinvariant metrics in global coordinates, we shall describe their Levi-Civita connection, the curvature and the Ricci tensor. In Section 3, homogeneous structures of four-dimensional Damek Ricci spaces $\left(\mathbb{S}_{\varepsilon}^{4}, g_{\varepsilon}\right)$ are considered, proving their classification.

2. Geometry of 4-dimensional Damek-Ricci spaces

For a brief introduction to Damek-Ricci spaces structures, we express the relevant definitions here. We start with a short description of four-dimensional Damek-Ricci spaces, referring to [6] and [9] for more details and further results. For this purpose, we need to recall the so-called generalized Heisenberg group, since Damek-Ricci space depends on it.

2.1. Generalized Heisenberg group

The generalized Heisenberg algebras are defined as follows. Let b and z be real vector spaces of dimension m and n, respectively, such that \mathfrak{n} is the orthogonal sum $\mathfrak{n}=b \oplus z$. We define in \mathfrak{n} the bracket

$$
[U+X, V+Y]=\beta(U, V)
$$

where $\beta: b \times b \rightarrow z$ is a skew-symmetric bilinear map. This product defines a Lie algebra structure on \mathfrak{n}.

We equip b with a positive inner product and z with a positive or Lorentzian inner product and let $\langle,\rangle_{\mathfrak{n}}$ denote the product metric. Define a linear map $J: Z \in z \rightarrow J_{z} \in \operatorname{End}(b)$ by

$$
\left\langle J_{Z} U, V\right\rangle_{\mathfrak{n}}=\langle\beta(U, V), Z\rangle_{\mathfrak{n}} \text { for all } U, V \in b \text { and } Z \in z .
$$

Then, \mathfrak{n} is a two-step nilpotent Lie algebra with center z.

- If the inner product in z is positive and $J_{Z}^{2}=-\langle Z, Z\rangle_{\mathfrak{n}} \operatorname{id}_{b}$ for all $Z \in z$, then the Lie algebra \mathfrak{n} is called a generalized Riemannian Heisenberg algebra, and the associated simply connected nilpotent Lie group, endowed with the induced left-invariant Riemannian metric, is called a generalized Riemannian Heisenberg group.
- If the inner product in z is Lorentzian and

$$
J_{Z}^{2}=\left\{\begin{array}{c}
-\langle Z, Z\rangle_{\mathfrak{n}} \mathrm{id}_{b}, \text { when } Z \text { is spacelike }, \\
\langle Z, Z\rangle_{\mathfrak{n}} \mathrm{id}_{b}, \text { when } Z \text { is timelike },
\end{array}\right.
$$

then the Lie algebra \mathfrak{n} is called a generalized Riemannian Heisenberg algebra, and the associated simply connected nilpotent Lie group, endowed with the induced left-invariant Lorentzian metric, is called a generalized Lorentzian Heisenberg group.

2.2. Damek-Ricci spaces

Now, let $\varepsilon= \pm 1$ and $\mathfrak{a}_{\varepsilon}$ be a one-dimensional pseudo-Riemannian real vector space, which is Riemannian when $\varepsilon=1$ and Lorentzian when $\varepsilon=-1$, and let $\mathfrak{n}_{-\varepsilon}=b \oplus z$ be a generalized Heisenberg algebra which is Lorentzian when $\varepsilon=1$ and Riemannian when $\varepsilon=-1$.

Consider a new vector space $\mathfrak{a}_{\varepsilon} \oplus \mathfrak{n}_{-\varepsilon}$ as the vector space direct sum of $\mathfrak{a}_{\varepsilon}$ and $\mathfrak{n}_{-\varepsilon}$. Let $s, r \in \mathbb{R}, U, V \in b$ and $X, Y \in z$. We define the Lorentzian product $\langle\cdot, \cdot\rangle$ and a Lie bracket $[\cdot, \cdot]$ on $\mathfrak{a}_{\varepsilon} \oplus \mathfrak{n}_{-\varepsilon}$ by

$$
\begin{aligned}
\langle r A+U+X, s A+V+Y\rangle & =\langle U+X, V+Y\rangle_{\mathfrak{n}_{-\varepsilon}}+\varepsilon r s \\
{[r A+U+X, s A+V+Y] } & =[U, V]_{\mathfrak{n}_{-\varepsilon}}+\frac{1}{2} r V-\frac{1}{2} s U+r Y-s X
\end{aligned}
$$

for a non zero vector A in $\mathfrak{a}_{\varepsilon}$. Therefore $\mathfrak{a}_{\varepsilon} \oplus \mathfrak{n}_{-\varepsilon}$ becomes a solvable Lie algebra. The corresponding simply connected Lie group, equipped with the induced left-invariant Lorentzian metric, is called a Lorentzian Damek-Ricci space and will be denoted by \mathbb{S}_{ε}.

2.3. Curvature of four-dimensional Damek-Ricci spaces

Consider the four-dimensional Damek-Ricci spaces $\left(\mathbb{S}_{\varepsilon}^{4}, g_{\varepsilon}\right)$, equipped with the left-invariant Lorentzian metric g_{ε}. Through the paper, we will denote the coordinate basis $\left\{\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}, \frac{\partial}{\partial t}\right\}$ by $\left\{\partial_{x}, \partial_{y}, \partial_{z}, \partial_{t}\right\}$.

As it was pointed in [8], the left-invariant Lorentzian metric g_{ε} on the fourdimensional space $\mathbb{S}_{\varepsilon}^{4}$ is given by

$$
\begin{equation*}
g_{\varepsilon}=e^{-t} \mathrm{~d} x^{2}+e^{-t} \mathrm{~d} y^{2}+\varepsilon e^{-2 t}\left(\mathrm{~d} z+\frac{c}{2} y \mathrm{~d} x-\frac{c}{2} x \mathrm{~d} y\right)^{2}-\varepsilon \mathrm{d} t^{2}, \tag{5}
\end{equation*}
$$

where $c \in \mathbb{R}$.
Following [8], let us denote
(6) $e_{1}=e^{\frac{t}{2}}\left(\frac{\partial}{\partial x}-\frac{c y}{2} \frac{\partial}{\partial z}\right), e_{2}=e^{\frac{t}{2}}\left(\frac{\partial}{\partial y}+\frac{c x}{2} \frac{\partial}{\partial z}\right), e_{3}=e^{t} \frac{\partial}{\partial z}, e_{4}=\frac{\partial}{\partial t}$.

Then, $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ form an orthonormal basis of the Lie algebra \mathfrak{s}^{4} of $\mathbb{S}_{\varepsilon}^{4}$ for which

$$
g_{\varepsilon}\left(e_{1}, e_{1}\right)=g_{\varepsilon}\left(e_{2}, e_{2}\right)=1, \quad g_{\varepsilon}\left(e_{3}, e_{3}\right)=-g_{\varepsilon}\left(e_{4}, e_{4}\right)=\varepsilon
$$

The bracket operation in \mathfrak{s}^{4} is given by the formulas:

$$
\begin{aligned}
& {\left[e_{1}, e_{2}\right]=c e_{3}, \quad\left[e_{1}, e_{3}\right]=0, \quad\left[e_{1}, e_{4}\right]=-\frac{1}{2} e_{1}} \\
& {\left[e_{2}, e_{3}\right]=0, \quad\left[e_{2}, e_{4}\right]=-\frac{1}{2} e_{2}, \quad\left[e_{3}, e_{4}\right]=-e_{3}}
\end{aligned}
$$

We will denote by ∇ the Levi-Civita connection of $\left(\mathbb{S}_{\varepsilon}^{4}, g_{\varepsilon}\right)$, and by R its curvature tensor taken with the sign convention:

$$
R(X, Y)=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]} .
$$

Using the Koszul formula to calculate the components of the Levi-Civita connection with respect to the orthonormal basis given by (6), we find

$$
\begin{array}{ll}
\nabla_{e_{1}} & =\left(\begin{array}{cccc}
0 & 0 & 0 & -\frac{1}{2} \\
0 & 0 & -\frac{\varepsilon c}{2} & 0 \\
0 & \frac{c}{2} & 0 & 0 \\
-\frac{\varepsilon}{2} & 0 & 0 & 0
\end{array}\right), \\
\left.\nabla_{e_{3}}=\left(\begin{array}{cccc}
0 & \frac{\varepsilon c}{2} & 0 & 0 \\
-\frac{\varepsilon c}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0
\end{array}\right), \quad \begin{array}{cccc}
0 & 0 & \frac{c \varepsilon}{2} & 0 \\
0 & 0 & 0 & -\frac{1}{2} \\
-\frac{c}{2} & 0 & 0 & 0 \\
0 & -\frac{\varepsilon}{2} & 0 & 0
\end{array}\right), \tag{7}\\
\end{array}
$$

Denoting by $R_{i j}$ the matrix describing $R\left(e_{i}, e_{j}\right)$ with respect to the orthonormal basis given by (6) and for $c^{2}=1$, we have

$$
R_{12}=\left(\begin{array}{cccc}
0 & -\frac{\varepsilon}{2} & 0 & 0 \\
\frac{\varepsilon}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{c}{2} \\
0 & 0 & \frac{c}{2} & 0
\end{array}\right), \quad R_{13}=\left(\begin{array}{cccc}
0 & 0 & \frac{3}{4} & 0 \\
0 & 0 & 0 & \frac{\varepsilon c}{4} \\
-\frac{3 \varepsilon}{4} & 0 & 0 & 0 \\
0 & \frac{c}{4} & 0 & 0
\end{array}\right)
$$

(8) $\quad R_{14}=\left(\begin{array}{cccc}0 & 0 & 0 & -\frac{1}{4} \\ 0 & 0 & -\frac{\varepsilon c}{4} & 0 \\ 0 & \frac{c}{4} & 0 & 0 \\ -\frac{\varepsilon}{4} & 0 & 0 & 0\end{array}\right), \quad R_{23}=\left(\begin{array}{cccc}0 & 0 & 0 & -\frac{\varepsilon c}{4} \\ 0 & 0 & \frac{3}{4} & 0 \\ 0 & -\frac{3 \varepsilon}{4} & 0 & 0 \\ -\frac{c}{4} & 0 & 0 & 0\end{array}\right)$,

$$
R_{24}=\left(\begin{array}{cccc}
0 & 0 & \frac{\varepsilon c}{4} & 0 \\
0 & 0 & 0 & -\frac{1}{4} \\
-\frac{c}{4} & 0 & 0 & 0 \\
0 & -\frac{\varepsilon}{4} & 0 & 0
\end{array}\right), \quad R_{34}=\left(\begin{array}{cccc}
0 & \frac{\varepsilon c}{2} & 0 & 0 \\
-\frac{\varepsilon c}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0
\end{array}\right) .
$$

3. Homogeneous structures on four dimensional Damek-Ricci spaces $\mathbb{S}_{\varepsilon}^{4}$

A homogeneous Lorentzian structure T on the four dimensional Lorentzian Damek-Ricci spaces $\left(\mathbb{S}_{\varepsilon}^{4}, g_{\varepsilon}\right)$ is uniquely determined by its local components $T_{i j}^{k}$ with respect to $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$. The smooth functions $T_{i j}^{k}$ are defined by

$$
T\left(e_{i}, e_{j}\right)=\sum_{k=1}^{4} T_{i j}^{k} e_{k}
$$

From (5) we prove that the first Ambrose-Singer equation (2) is satisfied if and only if

$$
\begin{cases}T_{i, 1}^{2}=-T_{i, 2}^{1} & \text { for } i=1, \ldots, 4 \tag{9}\\ T_{i, j}^{3}=-\varepsilon T_{i, 3}^{j} & \text { for } i=1, \ldots, 4 \text { and } j=1,2 \\ T_{i, j}^{k}=T_{i, k}^{j} & \text { for } i=1, \ldots, 4 \text { and } j, k=3,4 \\ T_{i, 4}^{j}=\varepsilon T_{i, j}^{4} & \text { for } i=1, \ldots, 4 \text { and } j=1,2 \\ T_{i, 1}^{1}=0 & \text { for } i=1, \ldots, 4 \\ T_{i, 2}^{2}=0 & \text { for } i=1, \ldots, 4 \\ T_{i, 3}^{3}=0 & \text { for } i=1, \ldots, 4 \\ T_{i, 4}^{4}=0 & \text { for } i=1, \ldots, 4\end{cases}
$$

Next, using (7), (8) and (9), a straight computation leads to prove that the second Ambrose-Singer equation (3) is satisfied if and only if

$$
\left\{\begin{array}{l}
T_{i, i}^{4}=-\frac{\varepsilon}{2} \quad \text { for } i=1,2 \tag{10}\\
T_{1,2}^{3}=\frac{c}{2}, \\
T_{2,1}^{3}=-\frac{c}{2} \\
T_{3,4}^{3}=-1, \\
T_{3,1}^{1}=0, \\
T_{1,1}^{3}=T_{1,4}^{3}=T_{2,2}^{3}=T_{2,4}^{3}=T_{3,1}^{3}=T_{3,2}^{3}=T_{4,1}^{3}=T_{4,2}^{3}=T_{4,4}^{3}=0, \\
T_{1,2}^{4}=T_{2,1}^{4}=T_{3,1}^{4}=T_{3,2}^{4}=T_{4,1}^{4}=T_{4,2}^{4}=0
\end{array}\right.
$$

Finally, from (7), (9), (10) and after computations we can prove that the third Ambrose-Singer equation (4) is satisfied if and only if

$$
\left\{\begin{array}{l}
e^{\frac{t}{2}}\left(\partial_{x} T_{1,2}^{1}-\frac{c y}{2} \partial_{z} T_{1,2}^{1}\right)-T_{1,2}^{1} T_{2,2}^{1}=0 \tag{11}\\
e^{\frac{t}{2}}\left(\partial_{x} T_{2,2}^{1}-\frac{c y}{2} \partial_{z} T_{2,2}^{1}\right)+\left(T_{1,2}^{1}\right)^{2}=0 \\
\partial_{x} T_{3,2}^{1}-\frac{c y}{2} \partial_{z} T_{3,2}^{1}=0, \\
\partial_{x} T_{4,2}^{1}-\frac{c y}{2} \partial_{z} T_{4,2}^{1}=0, \\
e^{\frac{t}{2}}\left(\partial_{y} T_{1,2}^{1}+\frac{c x}{2} \partial_{z} T_{1,2}^{1}\right)-\left(T_{2,2}^{1}\right)^{2}=0 \\
e^{\frac{t}{2}}\left(\partial_{y} T_{2,2}^{1}+\frac{c x}{2} \partial_{z} T_{2,2}^{1}\right)+T_{1,2}^{1} T_{2,2}^{1}=0 \\
\partial_{y} T_{3,2}^{1}+\frac{c x}{2} \partial_{z} T_{3,2}^{1}=0 \\
\partial_{y} T_{4,2}^{1}+\frac{c x}{2} \partial_{z} T_{4,2}^{1}=0 \\
e^{t} \partial_{z} T_{1,2}^{1}-T_{2,2}^{1}\left(T_{3,2}^{1}-\frac{1}{2} c \varepsilon\right)=0 \\
e^{t} \partial_{z} T_{2,2}^{1}-T_{1,2}^{1}\left(-T_{3,2}^{1}+\frac{1}{2} c \varepsilon\right)=0 \\
\partial_{t} T_{2,2}^{1}+T_{1,2}^{1} T_{4,2}^{1}=0 \\
\partial_{t} T_{1,2}^{1}-T_{4,2}^{1} T_{2,2}^{1}=0 \\
T_{3,2}^{1}=k_{1} \\
T_{4,2}^{1}=k_{2}
\end{array}\right.
$$

where k_{1}, k_{2} are real constants. Now, we put $F=T_{1,2}^{1}, G=T_{2,2}^{1}$, which are smooth functions on $\mathbb{S}_{\varepsilon}^{4}$.

Therefore, (11) becomes

$$
\left\{\begin{array}{l}
e^{\frac{t}{2}}\left(\partial_{x} F-\frac{c y}{2} \partial_{z} F\right)-F G=0 \tag{12}\\
e^{\frac{t}{2}}\left(\partial_{x} G-\frac{c y}{2} \partial_{z} G\right)+F^{2}=0 \\
e^{\frac{t}{2}}\left(\partial_{y} F+\frac{c x}{2} \partial_{z} F\right)-G^{2}=0 \\
e^{\frac{t}{2}}\left(\partial_{y} G+\frac{c x}{2} \partial_{z} G\right)+F G=0 \\
e^{t} \partial_{z} F-G\left(k_{1}-\frac{1}{2} c \varepsilon\right)=0 \\
e^{t} \partial_{z} G+F\left(k_{1}-\frac{1}{2} c \varepsilon\right)=0 \\
\partial_{t} G+k_{2} F=0, \\
\partial_{t} F-k_{2} G=0
\end{array}\right.
$$

Deriving the seventh equation in (12) with respect to t and using the last equation in (12), we get

$$
G=h_{1} \cos \left(k_{2} t\right)+h_{2} \sin \left(k_{2} t\right)
$$

for some smooth functions $h_{1}=h_{1}(x, y, z)$ and $h_{2}=h_{2}(x, y, z)$.
Again, by deriving the fifth and the sixth equations in (12) with respect to t and using the seventh and the eighth equations in (12), we obtain

$$
\begin{align*}
& e^{t} \partial_{z} F+k_{2} e^{t} \partial_{z} G+k_{2}\left(k_{1}-\frac{1}{2} c \varepsilon\right) F=0, \tag{13}\\
& e^{t} \partial_{z} G-k_{2} e^{t} \partial_{z} F+\left(k_{1}-\frac{1}{2} c \varepsilon\right) \partial_{t} F=0 .
\end{align*}
$$

Now, we derive the first equation in (13) with respect to t and taking into account the derivative of the fifth and sixth equations in (12) with respect to t, we get

$$
k_{2}\left(k_{1}-\frac{1}{2} c \varepsilon\right) F=0
$$

Thus, we need to consider the following different cases.

1) If $F=0$, then, from the third equation in (12), we find $G=0$.
2) Let $k_{1}=\frac{1}{2} c \varepsilon$. In this case, adding the first and fourth equations of (12) and using the fifth and the sixth ones, we get

$$
\partial_{x} F=-\partial_{y} G
$$

Now, deriving the third equation of (12) with respect to x, we obtain

$$
\begin{aligned}
& \partial_{y}^{2} G=0, \\
& G \partial_{x} G=0 .
\end{aligned}
$$

For $G=0$, we have immediately $F=0$, while if $\partial_{x} G=0$, the second and the third equations in (12) give $F=0$ and $G=0$.
3) $k_{2}=0$. That is to say $K=0$, thus $G=h_{1}$. Now, deriving the sixth equation in (12) with respect to z and using the fifth one, we obtain

$$
e^{t} \partial_{z}^{2} h_{1}+\left(k_{1}-\frac{1}{2} c \varepsilon\right)^{2} e^{-t} h_{1}=0
$$

Therefore,

$$
\left\{\begin{array}{l}
\partial_{z}^{2} h_{1}=0, \\
\left(k_{1}-\frac{1}{2} c \varepsilon\right)^{2} h_{1}=0 .
\end{array}\right.
$$

If $h_{1}=0$, that is to say $G=0$, then from the second equation in (12) we have $F=0$.

Theorem 3.1. Consider the four-dimensional Damek-Ricci spaces $\left(\mathbb{S}_{\varepsilon}^{4}, g_{\varepsilon}\right)$ equipped with the left-invariant Lorentzian metric g_{ε}. Then $\left(\mathbb{S}_{\varepsilon}^{4}, g_{\varepsilon}\right)$ is locally reductive homogeneous space.

Furthermore, all homogeneous structures of $\left(\mathbb{S}_{\varepsilon}^{4}, g_{\varepsilon}\right)$ are determined (through their local components $T_{i j}^{k}$) with respect to the orthonormal basis given by (6) and dual basis $\left(\omega^{i}\right)_{i=1, \ldots, 4}$ as follows:

$$
\begin{aligned}
T= & \alpha\left(\omega^{3} \otimes \omega^{2} \otimes e_{1}-\omega^{3} \otimes \omega^{1} \otimes e_{2}\right)+\beta\left(\omega^{4} \otimes \omega^{2} \otimes e_{1}-\omega^{4} \otimes \omega^{1} \otimes e_{2}\right) \\
& +\frac{c \varepsilon}{2}\left(\omega^{2} \otimes \omega^{3} \otimes e_{1}-\omega^{1} \otimes \omega^{3} \otimes e_{2}\right)-\frac{1}{2}\left(\omega^{1} \otimes \omega^{4} \otimes e_{1}+\omega^{2} \otimes \omega^{4} \otimes e_{2}\right) \\
& -\frac{\varepsilon}{2}\left(\omega^{1} \otimes \omega^{1} \otimes e_{4}+\omega^{2} \otimes \omega^{2} \otimes e_{4}\right)-\omega^{3} \otimes \omega^{4} \otimes e_{3}-\omega^{3} \otimes \omega^{3} \otimes e_{4} \\
& +\frac{c}{2}\left(\omega^{1} \otimes \omega^{2} \otimes e_{3}-\omega^{2} \otimes \omega^{1} \otimes e_{3}\right) .
\end{aligned}
$$

References

[1] W. Ambrose and I. M. Singer, On homogeneous Riemannian manifolds, Duke Math. J. 25 (1958), 647-669. http://projecteuclid.org/euclid.dmj/1077468199
[2] J.-P. Anker, V. Pierfelice, and M. Vallarino, The wave equation on Damek-Ricci spaces, Ann. Mat. Pura Appl. (4) 194 (2015), no. 3, 731-758. https://doi.org/10.1007/ s10231-013-0395-x
[3] A. B. Ardakani and A. H. Zaeim, Homogeneous structures on special classes of spacetimes, Int. J. Nonlinear Sci. 14 (2012), no. 1, 95-99.
[4] W. Batat, G. Calvaruso, and B. De Leo, Homogeneous Lorentzian 3-manifolds with a parallel null vector field, Balkan J. Geom. Appl. 14 (2009), no. 1, 11-20.
[5] W. Batat and S. Rahmani, Homogeneous Lorentzian structures on the generalized Heisenberg group, Differ. Geom. Dyn. Syst. 12 (2010), 12-17.
[6] J. Berndt, F. Tricerri, and L. Vanhecke, Generalized Heisenberg groups and DamekRicci harmonic spaces, Lecture Notes in Mathematics, 1598, Springer-Verlag, Berlin, 1995. https://doi.org/10.1007/BFb0076902
[7] G. Calvaruso, Homogeneous structures on three-dimensional Lorentzian manifolds, J. Geom. Phys. 57 (2007), no. 4, 1279-1291. https://doi.org/10.1016/j.geomphys. 2006. 10.005
[8] A. Cintra, F. Mercuri, and I. Onnis, Minimal surfaces in 4-dimensional Lorentzian Damek-Ricci spaces, arXiv:1501.03427.
[9] E. Damek and F. Ricci, A class of nonsymmetric harmonic Riemannian spaces, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 139-142. https://doi.org/10.1090/S0273-0979-1992-00293-8
[10] S. Degla and L. Todjihounde, Biharmonic curves in four-dimensional Damek-Ricci spaces, J. Math. Sci. Adv. Appl. 5 (2010), no. 1, 19-27.
[11] J. C. Díaz-Ramos and M. Domínguez-Vázquez, Isoparametric hypersurfaces in DamekRicci spaces, Adv. Math. 239 (2013), 1-17. https://doi.org/10.1016/j.aim.2013.02. 010
[12] P. M. Gadea and J. A. Oubiña, Homogeneous pseudo-Riemannian structures and homogeneous almost para-Hermitian structures, Houston J. Math. 18 (1992), no. 3, 449-465.
[13] P. M. Gadea and J. A. Oubiña, Homogeneous Lorentzian structures on the oscillator groups, Arch. Math. (Basel) 73 (1999), no. 4, 311-320. https://doi.org/10.1007/ s000130050403
[14] P. M. Gadea and A. P. Ramos, Homogeneous Lorentzian structures on some GödelLevichev's spacetimes, and associated reductive decompositions, Balkan J. Geom. Appl. 8 (2003), no. 1, 45-51.
[15] M. Koivogui and L. Todjihounde, Weierstrass representation for minimal immersions into Damek-Ricci spaces, Int. Electron. J. Geom. 6 (2013), no. 1, 1-7.
[16] N. Sidhoumi, Ricci solitons of four-dimensional Lorentzian Damek-Ricci spaces, J. Math. Phys. Anal. Geom. 16 (2020), no. 2, 1-10.
[17] J. Tan and S. Deng, Some geometrical properties of four-dimensional Lorentzian DamekRicci spaces, Publ. Math. Debrecen 89 (2016), no. 1-2, 105-124.
[18] F. Tricerri and L. Vanhecke, Homogeneous structures on Riemannian manifolds, London Mathematical Society Lecture Note Series, 83, Cambridge University Press, Cambridge, 1983. https://doi.org/10.1017/CB09781107325531

Assia Mostefaoui
École Nationale Polytechnique d'Oran-Maurice Audin
B.P 1523 El M'naouar Oran 31000, Algeria

Email address: assia.mostefaoui@enp-oran.dz
Noura Sidhoumi
École Nationale Polytechnique D'Oran-Maurice Audin
B.P 1523 El M'naouar Oran 31000, Algeria

Email address: noura.sidhoumi@enp-oran.dz

