J. Korean Math. Soc. 44 (2007), No. 3, pp. 605613

CRITICALITY OF CHARACTERISTIC VECTOR FIELDS ON
ALMOST COSYMPLECTIC MANIFOLDS

Hone KYUNG PAK AND TAE WAN KM

ABSTRACT. Main interest of the present paper is to investigate the crit-
icality of characteristic vector fields on almost cosymplectic manifolds.
Killing critical characteristic vector fields are absolute minima. This pa-
per contains some examples of non-Killing critical characteristic vector
fields.

1. Introduction

Let (M, §) be a Riemannian manifold and V be its Levi-Civita connection.
Consider an immersion f : M — (M ,§). The second fundamental form B
is defined by B(X,Y) := (VxY)L for XY € I(TM), where X denotes the
component of X normal to M C M. The mean curvature vector field is given
by H = trB. f is said to be critical or minimal if H = 0. Indeed, H is
characterized by the gradient of the volume and energy functionals for closed
manifolds.

This paper specially considers immersions determined by unit vector fields.
Let (M,g) be a Riemannian manifold and Z € T'(T'M) (T'M denotes the
tangent unit sphere bundle of M). Then Z : M — T'M is an embedding.
T'M is endowed with the restriction of the Sasaki metric G determined by g
and the Levi-Civita connection map x : TTM — TM, also denoted by G.
Recall the Sasaki metric given by

(1.1) G(X,Y) := g(m X, m.Y) + g(kX,kY),

where m : TM — M is the natural projection ([25]). Z is said to be critical
or minimal if Z : (M,g) — (TM,G) is a minimal embedding. Parallel
vector fields, when they exist, are absolute minima for the volume and energy
functionals. Since there are manifolds without parallel vector fields, it is natural
to look for the next best thing - critical unit vector fields. For instance, in the
three-dimensional sphere the Hopf vector fields are absolute minima ([2], [12]).
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However, in higher dimensions, these vector fields are not minima anymore,
but they are still critical ([22]).

The problem of determining the criticality of unit vector fields of the volume
and energy functionals was studied in [10], [11], [24]. The criticality problem
for characteristic vector fields on contact metric manifolds was discussed in
[22].

This paper mainly treats with almost cosymplectic manifolds. Killing critical
characteristic vector fields are absolute minima. We describe some examples of
non-Killing critical characteristic vector fields.

The authors would like to thank the referee for his helpful corrections and
kind comments.

2. Almost cosymplectic manifolds

Let (M, $,&,7,9) be a (2n+ 1)-dimensional almost contact metric manifold,
that is, ¢ is a tensor field of type (1,1), £ is a vector field, n is a 1-form, g is a
Riemannian metric satisfying the conditions

¢*=-T+n®& n(§) =1,
9(¢X,8Y) = g(X,Y) — n(X)n(Y)

for X,Y € T(TM). The fundamental 2-form ® of M is defined by ®(X,Y) :=
9(¢X,Y).

An almost contact metric manifold (M, ¢, £, 7, g) is said to be almost cosym-
plectic if dn = 0 and d® = 0. Topological and geometrical properties of almost
cosymplectic manifolds have been studied by many mathematicians ([4], [5],
[13], [15], [17], [20]). The products of almost Kahler manifolds and the real
line R or the circle S! are the simplest examples of almost cosymplectic mani-
folds. In general the converse does not hold, even locally (for the converse, see
Corollary 2.3 below).

Proposition 2.1. On an almost cosymplectic manifold (M, ¢,&,7n,g) it holds
that h = %qu) if and only if Vx& = —¢phX for any X € T(TM). In this case,
the operator h is symmetric and satisfies h =0 and h¢ + ¢h = 0.

Proof. Let h = %qub. It is obvious that h€ = 0. A general formula for V¢ in
an almost contact metric manifold ([1]) yields

(2.1) Ved = 0.

Since dny = 0, (2.1) implies for X,Y € I'(T'M)

29(hX.Y) = g(¢Vx€ — Vyx&,Y) =n(Vx9Y) +n(VexY)
=n(Vey X) +n(Vy ¢X) = 29(X, hY),

which means that h is symmetric. Moreover,

29((Vx )8, Y) = —g(¢(Le@)Y, X) = —29(RX,Y),

(2.2)
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o that Vx& = —¢hX. Finally, from the formula ([17])
(2.3) Vex€ = —¢Vx¢,

we see that h¢ + ¢h = 0.

Conversely, let Vx{ = —¢hX. Then 0 = V£ = —phé, which induces
h& = 0. (2.2) and (2.3) show that h is symmetric and satisfies h¢ + ¢h = 0
respectively. Furthermore, an easy computation together with (2.1) gives rise
to

(Lep)X = ¢VxE — Vyx& = hX + ¢hodX = 2RX,
which completes the proof. |

Let (M, ¢,€,7n,9) be a (2n + 1)-dimensional almost cosymplectic manifold.
The condition dn = 0 allows us to admit on M a 2n-dimensional foliation F of
codimension 1 which is defined by the contact distribution D := kery. Let D+
be the orthogonal complement to D and F* be the corresponding flow, which
is generated by £. In the foliation context, we have

Proposition 2.2. Let (M, ¢,£,n,g) be an almost cosymplectic manifold. Then
F is Riemannian, tangentially almost Kdhler and minimal. Moreover, the
Sfollowings are equivalent.

(1) F is totally geodesic,

(2) h=0,

(3) ¢ is Killing,

(4) ¢ is parallel.

Proof. Observe that F is Riemannian if and only if V¢£ = 0, or equivalently
dn(¢, X) =0 for X € T'(D). This observation shows that F is Riemannian.
We note that

(2.4) $E =0, 1P =0,

where ¢ denotes the interior product operator. Hence the restriction (gp, ¢p,

®p) of (g,¢,P) to the contact distribution D inherits an almost Hermitian

structure for F. Since d®p = 0, (F, gp, ¢p, Pp) is tangentially almost Kahler.
On the other hand, we find

(2.5) 9(VxY,§) = g(¢hX,Y)

for X,Y € T'(D). (2.5) shows that ¢h plays a role as the second fundamental
form for F. In particular, Proposition 2.1 implies that tr¢h = 0. so that F is
minimal.

Finally, (1) < (2) follows from (2.5). (2.4) induces L ® = 0. It follows that
(2) & (3). (3) & (4) is due to dy = 0. 0

Remarks. (1) We find that the 1-dimensional foliation F* is totally geodesic.
Furthermore, F is Riemannian if and only if F is totally geodesic. It follows
from Proposition 2.2 that;
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Corollary 2.3. An almost cosymplectic manifold is locally o trivial product of
an almost Kéhler manifold and R or S* if and only if h = 0.

(2) When M is closed, if the Ricci curvature of M is non-negative then F is
totally geodesic ([19]). Then Corollary 2.3 reads that locally M is the trivial
product of a closed almost Kihler manifold and S*.

The conclusion that F is totally geodesic can also be shown by applying the
usual Bochner technique. Indeed, note that 7 is the transversal volume form
for . Since F is Riemannian and minimal, 5 is a harmonic 1-form ([23]).
Then the Bochner technique implies 7 is parallel, that is, F is totally geodesic
by Proposition 2.2.

By a similar argument, we conclude that the Ricci curvature of a closed
almost cosymplectic manifold cannot be positive.

Recall that an almost contact manifold (M, ¢,&,n) is said to be normal if
Ng(X,Y) := [¢X, Y] — ¢[¢X, Y] — $[X, ¢Y] + ¢*[X, Y] + 2dn(X, Y )¢

vanishes for any X,Y € I'(T'M). A normal almost cosymplectic manifold is
called a cosymplectic manifold. It was obtained a characterization of an almost
cosymplectic manifold to be normal ([20]).

Proposition 2.4. An almost cosymplectic manifold M is cosymplectic if and
only if the foliation F given by the contact distribution is tangentially Kdhler
and h = 0.

In view of Proposition 2.4, it is worthwhile to notice the following charac-
terization.

Theorem 2.5. Let (M, $,£,m,9) be an almost contact metric manifold. Then
M 1is almost cosymplectic with h = 0 if and only if

(1) the contact distribution D is integrable,

(2) F is Riemannian,

(3) Vep =0,

(4) F is tangentially almost Kdhler,

(5) F is totally geodesic.

Proof. The sufficiency is obvious from (2.1) and Proposition 2.2. Conversely,
(1) and (2) means that dn = 0. This, together with (5), yields £ is parallel.
Then ¢ is Killing and L¢¢ = V¢ = 0 by means of (3), so h = 0. It follows that
L¢® = 0. Hence we see from (2.4) that the fundamental 2-form @ is a basic
form for F* corresponding to ®p on the contact distribution D in the sense
of Proposition 2.2. Moreover (4) implies that d® = 0. Therefore M is almost
cosymplectic with A = 0. a

Remarks. (1) In the case where M is an almost Kenmotsu manifold ([16], [15]),
F is Riemannian and tangentially almost K&hler ([20], [21]). In this case, h =0
if and only if F is totally umbilic with constant mean curvature —¢. In addition,
M is Kenmotsu if and only if F is tangentially K&hler and & = 0.
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(2) There are several examples of almost cosymplectic manifolds (with ~ = 0)
which are not cosymplectic ([3], [5]).

3. Harmonic maps on almost cosymplectic manifolds

Let (M,g) and (M’,g’') be Riemannian manifolds and f : M — M’ be a
map. Denote by V and V’ the Levi-Civita connection of g and g’ respectively.
The pullback bundle f~*(TM’) admits the connection V induced from V and
V'. Then the second fundamental form oy of f is defined by

O‘f(X’ Y) = (6){]“*)(3/)
for X,Y € T(TM). The tension field is defined by 7 := tray. f is said to be
harmonic if 77 = 0.

Let f : M — M’ be a map between two almost contact metric manifolds.
f is said to be ¢-holomorphic (resp. ¢-antiholomorphic) if f.o¢ = ¢’ o fi (resp.
feod=—¢" o f.). By a similar way as in [14], we deduce

Theorem 3.1. Let M and M' be almost cosymplectic manifolds. Then any
¢-holomorphic or ¢-antiholomorphic map f: M — M’ is harmonic.

Proof. On an almost cosymplectic manifold V¢ satisfies for X,Y € T'(T'M)
(7))

(3.1) (Vx®)Y +(Vx9)9Y = —n(Y)hX.
Then for X € T'(D)
(3.2) VxX + VexdX = ¢[pX, X].

On the other hand, since f is ¢-holomorphic or ¢-antiholomorphic, (3.2)
becomes

(33) Vx X + Vex f.0X = ¢'[¢/ £ X, £.X).

It follows from (3.2) and (3.3) that

(3.4) af(X,X) + as(¢X,$X) = 0.

Moreover, since V¢€ = V&' = 0, we find

(3.5) ar(£,€) = 0.

Therefore we conclude from (3.4) and (3.5) that f is harmonic. 0

4. Criticality on almost cosymplectic manifolds

Let (M, g) be a Riemannian manifold. The tangent bundle T'M is equipped
with a symplectic form Q = —d©, where © is the pull-back of the fundamental
1-form on T*M by the musical isomorphism. The map

(4.1) (ma, k) : TTM — TM & TM

is a vector bundle isomorphism along 7 : TM — M, which determines an
almost complex structure Jpps on TM such that if (m.,x)(z) = (u,v) then
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(7, &) (Jrmz) = (—v,u) ([8]). Then (G, Jrp, ) is an almost Kahler structure
on TM, where G is the Sasaki metric given by (1.1). T'M carries the geodesic
spray U determined by m,.U(p,v) = v and kU (p,v) = 0 for any (p,v) € TM.
Note that U and © are G-duals.

Let j : T*M —— TM be the inclusion of the tangent unit sphere bundle
as a hypersurface in 7M. Then 7 := j*© is a contact form on T'M whose
characteristic vector field is U. The kernel of 7] has associated almost complex
operator ¢ determined by

PU =0, ¢X =JruX

for any X € T(T'M) such that G(X,U) = 0. Hence (¢,U,#,G) is a contact
metric structure on 7' M.

Under the identification (4.1), a vector tangent at (p,v) € TM is a couple
(u, VuW), where u € T,M and W is a vector field on M such that W(p) = v.
Note that in this case g(v, V,W) = 0.

Now let (M, ¢,£, 7, g) be an almost cosymplectic manifold. A vector tangent
to {(M) C T*M at (p,€) is a couple (u, V,£), where u € T,M. Under the
identification (4.1) U € I'(T* M) is given by U(p,v) = (v,0).

Let (M, ¢,€,m,9) be an almost contact metric manifold. A submanifold N
of M is said to be invariant if the characteristic vector field £ is tangent to N
and ¢X is tangent to N whenever X is. Then N admits an almost contact
metric structure from M by the restriction.

It is easy to see that if M is almost cosymplectic then NV is also almost
cosymplectic. Moreover, the inclusion i : N — M is ¢-holomorphic. Then i is
harmonic by means of Theorem 3.1. Since an isometric immersion is minimal
if and only if it is harmonic ([9]), we conclude;

Proposition 4.1. Let N be an invariant submanifold of an almost cosymplectic
manifold (M, $,&,1,9). Then N is minimal.

Theorem 4.2. Let (M,$,£,m,9) be an almost cosymplectic manifold. Then
E(M) CT*M is invariant if and only if € is Killing.

Proof. It is obvious that the geodesic spray U is tangent to £(M). Let (u, V,£)
be a tangent vector at (p, &) € £(M) such that G((u, V4£), (£,0)) = 0, that is,
a tangent vector in ker 7 on T'M. Then

¢(u, Vug) = (_vué‘au) = (phu,u),
so that ¢(u, V,£) is tangent to £(M) if and only if
U= Vgp€ = —h%u

by Proposition 2.1. It follows that A = 0, namely, £ is Killing by Proposition 2.2.
a

It should be noted that if £(M) C T'M is invariant then the inclusion ¢ :
M — T'M is ¢-holomorphic. The converse is not true in general. Extending
Theorem 4.2, we establish;
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Theorem 4.3. Let (M, $,£,1m,9) be as in Theorem 4.2. Then & : M — T'M
s ¢-holomorphic if and only if € is Killing.

Proof. Under the identification (4.1), we easily see that £, sends £ to U. Thus
it suffice to consider the commutativity of the almost complex structures ¢ and

o.
Let v € T, M satisfy n(v) = 0. Then

(4.2) $6.(v) = P16 (v), KE. (1)) = (v, Vok) = (9w, v).

On the other hand,

(4.3) £u(dv) = (¢v, Vguf) = (v, —ho).

It follows from (4.2) and (4.3) that £ is ¢-holomorphic if and only if h = 0, i.e.,
¢ is Killing. O

Proposition 2.2 say that Killing characteristic vector fields on almost cosym-
plectic manifold are absolute minima for the volume and energy functionals.
Thus it may be interesting to find critical characteristic vector fields which are
not absolute minima. In order to do this, we recall that a unit vector field
Z:(M,g) — (T*M,G) is a harmonic map if and only if

(4.4) trR(V.Z,Z)% =0, trV?Z =cZ
for some constant ¢ € R. First we establish a formula.

Proposition 4.4. Let (M, ¢,£,7n,9) be as in Theorem 4.2. Then the Ricci
operator Q satisfies Q& = trv2¢. In particular, £ is Killing if and only if
QRE=0.
Proof. Observe from Proposition 2.1 that
(4.5) trV2€ = —trV(oh).
Moreover we have for any X,Y € I'(T M)

R(X,Y){ =VxVy€& - VyVxé—Vixy

=—(Vx(¢h)Y + (Vy(¢h))X.

Now we may take a local orthonormal ¢-basis {e4} = {ep =&, €q, €nta = P€s}
consisting of eigenvectors of h with eigenvalues {Ao = 0, A\s, —Aa}. Then

Y 9(Vx(ho)ea, €a) = 2Xag(V x€a, Pea)
and
> 9(Vx(hd)gea, dea) = ~2Xag(V x€q, fea).
Hence (4.5) implies
D 9(R(X ea)ea &) = = g(Veu($h)X — (Vx($h))ea, ea)
= —g(trV(gh), X) = g(trV¢, X),
which yields Q¢ = trV3¢.
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Moreover, it is obvious that ¢ is Killing means Q& = 0. Conversely, if Q£ =0
then 0 = g(Q¢,¢) = —trh?, so that h = 0. That is, ¢ is Killing. O

From the harmonicity criterion (4.4) and Proposition 4.4, we can find an
example of almost cosymplectic manifolds whose characteristic vector fields
are non-Killing, but are still critical.

Example. Let (M, ¢,£,7n,9) be an almost cosymplectic manifold with £ €
N (1), where

(4.6) N() :={Z e D(TM)|R(X,Y)Z = I(g(Y, Z)X — g(X, Z)Y)}

for any X,Y € I(TM). Then we see that £ : M — T1M is a harmonic map.
Indeed, Proposition 2.1 and (4.6) yield for any Y € I'(T'M)

Y 9(R(Vené,€)ea,Y) = =Y g(R(Y,ea)t, phea)
Hg(Y, 9he) — n(Y Yergh} = 0,
so that trR(V.&, &)* = 0. Moreover it was obtained in [6] that

Q¢ = 2nl¢.

Thus trV2¢ = ¢ for some constant ¢ = 2nl by Proposition 4.5. It follows from
(4.4) that £ is a harmonic map.

On the other hand, it was proved in [6] that in this situation, { <0 and ! =0
if and only if £ is Killing. When [ < 0, the foliation F appeared in Proposition
2.2 is tangentially Kahler. Therefore, we conclude that the characteristic vector
field £ on an almost cosymplectic manifold with £ € A ({),! < 0 is non-Killing,
but still critical. It was obtained several examples of almost cosymplectic man-
ifolds which the foliation F are tangentially Kahler but not cosymplectic ([7],

[18]).

I
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