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ON ALMOST EVERYWHERE WARPED PRODUCT
MANIFOLDS WITH HARMONIC CURVATURES

IN-BAE KM, JONG TacK CHOo AND Kyo KUEN HWANG

I. Introduction

The notion of warped product manifolds is an important branch of
research on differential geometry (see [1] and [2]). The author intro-
duced the notion of almost everywhere warped product manifolds in
[4], which is a smooth extension of that of warped product, and studied
some fundamental properties of the manifolds.

Recently the research of Riemannian manifolds with harmonic cur-
vatures has become a topic on differential geometry (see [6] and [7]). It
is natural for this research to ask that the Ricci tensors of Riemannian
manifolds with harmonic curvatures are parallel or not. As an affir-
mative answer of this question, we shall deal with almost everywhere
warped products with harmonic curvatures.

The purpose of this paper is to study a perfect condition for almost
everywhere warped product manifolds to have harmonic curvatures or
parallel Ricci tensors. Some geometric properties of these manifolds
will be investigated, and the so-called Bourguignon’s conjecture will
be solved negatively by virtue of this study. After recalling the prop-
erties of almost everywhere warped products in paragraph II, we shall
investigate some conditions to have harmonic curvatures and parallel
Ricci tensors in paragraphs III and IV respectively. Paragraph V will
be devoted to discuss the Bourguignon’s conjecture.

I1. Almost everywhere warped products

Let M; and M, be Riemannian manifolds of dimensions m and n
respectively, and f a positive-valued differential function on M; only.
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The warped product M = M, x ;M3 is the product manifold M; x M,
endowed with the Riemannian metric

(2.1) (X, X) = (mX,mX) + fiAmz)(m X, 72 X)

for any vector X € T;(M), = € M, where n,(a = 1,2) are the natural
projections m : M — Mi, m : M — M, the differential map of
7o is denoted by the same character, and ( , ) is the Riemannian
inner product. Every surface of revolution (not crossing the axis of
revolution) is the typical example of the warped product (see [2]).

Now we shall recall the notion of almost everywhere warped products
in [4]. Let M be an (m +n)-dimensional Riemannian manifolds, M; an
m-dimensional submanifold of M, f a differentiable function defined
on M;, N the zero-level hypersurface given by f = 0 and M a con-
nected component of M; —N. We assume that the gradient vector field
of f does not vanish on N. If M — N is diffeomorphic to the product
manifold M? x M, of M{ with an n-dimensional Riemannian manifold
M, and if the Riemannian metric of M is given by (2.1) on M — N,
then we say that M is an almost everywhere warped product (briefly
AEWP) of My and M2, and denote it by M = M; x fM2. We see that
AEWP M = M; x fﬁz is a warped product if the zero-level surface
N of f is empty. 2-dimensional Euclidean space R? expressed by the
usual polar coordinate system is an AEWP R? = R x 55 of a real line
R and a circle S, where f is the distance function from the origin to any
point of R%. Another examples are given in [4]. Let (z4) = (z", z?) be
a local coordinate system of the AEWP M = M, x s Ma, called a sep-
arate coordinate, where (z") and (z?) are those of My and M respec-
tively. Here and hereafter the indices A, B,C,D,--- ; h,i,j,k,--- and
P,q,7,8, -+ runover theranges 1,2,--- ,m,m+1,---m+4n; 1,2,--- ,m
and m + 1,m + 2,.-+ ,m + n respectively, unless otherwise stated. If
the components of the metric tensors of M, M; and M are denoted
by gpa, gji and §,, respectively, then the metric form of the AEWP
is expressed by

(2.2) 9BadzBdz? = gjida? dz* + [f(a®)? §,pdada?

with respect to the separate coordinate system. The components of
the metric tensor of M belong to (z?) are equal to

2 e
Gqp = f 9ep
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If we denote the Christoffel symbols of M, M; and M, by T4c,
{;":} and {77,} respectively, then it follows from (2.2) that

(2.3) { F;'zi = {jh.'}, P?q =0, F'I}q - _ffh_g_rq,

F?i =0, F;’q = f—lfjtsga ng = {j’;},
where we have put
fi=0f/0z" and f*=g"f;.

Let D,V and V be the Riemannian connections of M , M, and M, with
respect to the metrics gpa, g;i and g, respectively. The components

of curvature tensors of M, My and M will be denoted by K5, szi
and R, respectively. Then, by use of (2.3), we have the relations

srq

Kl =R}, Kh,=K} =Kk!, =0,

kji» 8y krq
(24) I{l{'qu = 'f(kah)?rw K:’ji = —f—l(vjfi)az’
I{Erq = ﬁ:rq - ”GHZ(‘SE -g—rq - 6’1" gsq)’
where || || indicates the magnitude of a tensor and
G =grad f.

It follows from (2.4) that

WK Desll® = |REll? + 4nf 2| V;G)?
+ F T M Rarg ® = IGI* (88 Grg — 2T

If the function f has non-empty zero-level surface N, then we make a
point of M; tend to a point on N and obtain the following

THEOREM 2.1([4]). Let M = M; x fM3z be an AEWP of two Rie-
mannian manifolds M, and M; of dimensions m and n (> 2). If f
has non-empty zero-level surface N, then M3 is a space of constant
curvature, that is,

E”q P = ”G”2(6.’; .g_rq - 51') ysq)'
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The components of Ricci tensors of M, M; and M, will be denoted
by Kcp, Rj; and R, respectively, which are defined by

Kcp = ¢P*Kpcpa, Rji = ¢"" Ryjin and Rrq = §°F Rargp-
The scalar curvatures K of M, R of M; and R of M, are defined by
K = ¢%4Kpa, R=¢'Rj; and R=79% Ry.
It follows from (2.4) that

(2.5) { Kji =Rji—nf 'V;fi, Kjg =0,

I{"'q = ﬁrq - [(n - 1)”G”2 + fAf]_grq7

where A f is the Laplacian of f. By a simple computation, the covariant
derivative of the Ricci tensor of M is given by

(2.6)

( DiKji = ViRji—nf 'ViVifi+nf 2 fiV;fi,

D,K;; =DiI;;=0,

D,Kj; = ~—f"'fjReq +[fiAf +(n—1DfHGIPf — 2V;lIGI?
4 +ff RjilGrq,
DiKry = =2f7'fiReq + [fi O +2(n — D)f |G| fi

—-—('I’L - 1)Vk”G”2 - kaAf]-g-rq7

\ DKy =V, Ry,

III. The harmonic curvatures

For a Riemannian manifold M, if the divergence 6K of its curvature
tensor K of M vanishes identically, it is said to be harmonic. In terms
of a local coordinate system (z4), the divergence 6K is expressed by

6K = DaKhcp = DpKcp — DcKpp.

Let M = M; % f—Mz be an AEWP of two Riemannian manifolds M;
and M, of dimensions m and n respectively, and assume that M has



On almost everywhere warped product manifolds 27

harmonic curvature. Then it follows from (2.6) that

ViRji — ViRei = —nf 'R} fa
—nf2(fiV;fi — fiVifi),

31  §  fiReg=[(n = DIGISf; - 5(n - 2)fV;IGI

~f2f'Rji = F*V;AfG,q

| V.R, =V,

Transvecting f? to the second relation of (3.1), we have
(3.2)

Brg = G172 (n=DIGI* ~ 5 (v~ DS GUGI? - 5§ By = F*GAf g

Since —qu and §,, are quantities of M, and the remanining part of
(3.2) is that of M, we see that the scalar curvature R of M; given by
(3.3)

— B 1 -
R =n|G||*|(n - DIIG|I* - 3(n - 2fGIGI? - f*F f'Rji — f*GAS)
is a constant on whole M, and hence M, is Einstein.

From the Ricci identity
(3.4) ViVifi = VVifi= —R}jifn-
We have f'Rj; = —V;Af + Af;, where Afn = g7*V;V; fn. Since it is
easily verified that A||G||> = 2||Vf||* + 2f*Afi, we obtain

o 1

(3.5) ff'Rji = —GAf + §A||G||2 — IV A%,

where ||V £||2 = (V7 f)(V;fi). Substituting (3.5) into (3.3), we have
(3.6)

- - 1 1

R =n|GI"*[(n-1)|IG|I* - 5(n=2fGIGI* - 5 F*AlIGII* + IV AP
If the function f has non-empty zero-level surface N, it follows from

(3.6) that
R=n(n-1)|G|*.

Summing up the above results, we can state
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THEOREM 3.1. Let M = M; x f—Mz be an AEWP of two Riemann-
ian manifolds M, and M, of dimensions m and n respectively. Suppose
that M has harmonic curvature. Then M4 is an Einstein manifold with
constant scalar curvature

B = nllGl|*[(n ~ DIGI* ~ 3(n~2)7GIGI? - 3/ AIGI + IV A1)

if the zero-level surface N of f is empty, and with constant scalar
curvature

R=n(n-1)|GII%,
if the zero-level surface N of f is non-empty.

Now assume that M, is an m (> 2)-dimensional space of constant
curvature R, that is,

R
(37) R;:]’,' = M(azgjl - 6.79’“)

Then it follows from the first relation of (3.1) and (3.7) that

L
m(m — 1)

Applying f* to (3.8) and summing up with respect to k, we have

(3.8) fkVifi = fiVifi= - Rf(frgji — figki)-

1

me("G”zgji ~ fifi)-

(3.9)  NGI*Vifi = fif*Vifi=~
Transvecting g7* to (3.8) again, we obtain

(3.10) VAIGI? = 2(Af + —R)fj.
Therefore, comparing (3.9) with (3.10), we have

(811)  Vifi= ————=fg;i +|IGII7*(Af + ——-f)f:fz

( -1
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In general a scalar field f satisfying
Vifi = Agj

is said to be special concircular, where A is a scalar field (see [5]).
The equation (3.10) implies that

GIGI? = 2Af + = RG]
and the relations (3.5) and (3.7) give to
SAIGI ~ IVSI? = GAS +—RIGIP.
Substituting these two equations into (3.6), we have
(3.12) R=n[(n-D|GII>=(n—2)fAf - l;—l-lsz - FPGAFNGI®):

If the function f is a special concircular scalar field on M, then we
see from (3.11) that
R

Af=-o3f

Substituting this equation into (3.12), we obtain

R =n(n-1(IGII* + — Rf?).

1
=1
Thus we can state

THEOREM 3.2. Let M = M) x M, be an AEWP of anm (> 2)-
dimensional space My of constant curvature R and an n-dimensional
Riemannian manifold M. Suppose that M has harmonic curvature.
Then the function f satisfies the equation

n-—1

n[(n = DIGI? - (n - 2)fAf —~ ——Rf* - f|G|2GAf] =R,

m
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where R is the constant curvature of M,. If f is a special concircular
scalar field, then it satisfies

n(n = DIGI* + s B =

In the case where M is a 1-dimensional, we shall denote the deriva-
tive with respect to the coordinate z! of M, by prime. Then it follows
from (3.6) that

1

(3.13) R=nln-1)(f)~(n-1ff - (]

We can easily see from (3.1) and (3.13) that M has harmonic curvature
if and only if M is an Einstein manifold with constant scalar curvature
R given by (3.13). Thus we can state

THEOREM 3.3. Let M = My x M, be an AEWP of a 1-dimensional
manifold M, and an n-dimensional Riemannian manifold .M—z. Then
M has harmonic curvature if and only if M, is an Einstein manifold
and the function f satisfies the ordinary differential equation

(3.14) n[(n = D)) = (n = DfF " — f2f" = Rf',
where R is the constant scalar curvature of M.

REMARK 3.4. Under the assumptions of Theorem 3.3, it follows
from (2.6) that

{ D1~K11 — __nf—Q(ffm _ fff")’
DrKlq = le’rq = (fflll - f'f”)-g-rqi

and otherwise vanished. Therefore we see from (3.15) that the Ricci
tensor of M is not parallel in general

(3.15)

IV. The parallel Ricci tensors

In this paragraph, we shall deal with an AEWP M = M; x s M,
of two Riemannian manifolds M; and M3, and assume that the Ricci
tensor Kpa of M is parallel, that is, DcKpa = 0. Then it follows
from the first relation of (2.6) that

(4.1) FPViRji = n(fViVjfi — fiV;ifi).
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Applying ¢’* and ¢** to (4.1), and summing up the repeated indices,
we have

(4.2) ViR =n(fV;Af — fiAf)
and
(4.3) ViR =n(2fAf; — VIIGI?)

respectively. Comparing (4.2) with (4.3), we obtain

(4.4) fVAF ~ f,AF = 2fAf; - ViG],
Since the Ricci identity (3.4) implies

(4.5) 'Ry = Af, - V;Af,

the equation (4.4) reduces to

(4.6) 2ff'R;i = Aj||GI - f;Af — fVAS.

From the third relation of (2.6) and the above (4.6), we obtain

- — 1 1

(47) [Ty = [5F6HAF + 0= DIGI S, — 5 V;Af
1 —
- —2_(” - l)va”GHz]grqv

which follows from the fourth of (2.6).

If the function f has non-empty zero-level surface, then we see from
(4.1) and (4.7) that

v]f1 =0 and —RNI = (Tl - 1)|IG|'2§rq
Conversely if the relations (4.1) and (4.7) are satisfied on M, we

easily see from (2.6) that the Ricci tensor of M is parallel. Thus we
can state
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THEOREM 4.1. Let M = Mj x {M3 be an AEWP of two Riemann-
ian manifolds M, and M3 of dimensions m and n respectively. Then
the Ricci tensor of M is parallel if and only if (1) the covariant deriv-
ative of the Ricci tensor of M, satisfies

ViRji = nf"2(kavjfi - fiV;fi),
and (2) the Ricci tensor of My does
2fReg = [fi0f + 2n = DIGIPS; = F2VAf = (n = DF VG150,

provided f has empty zero-level surface.

In this case where f has non-empty zero-level surface,
iji =0 a‘nd —qu = (n - l)llG"z-g—rq

are satisfied on M.
We assume that M) is an m (> 2)-dimensional space of constant
curvature. Then we see from (3.7) and (4.2) that

(4.8) fV;Af = fiAf.
It follows from (4.3), (4.5) and (4.7) that

(49) VAIGI? = 2Af + = Rf)f;,

where R is the constant scalar curvature of M;. Substituting (4.8) and
(4.9) into (4.7), we obtain

(4.10) Bry = (n = D)(IGI? ~ FAS ~ —Rf)5rq

Therefore the following is immediate from Theorem 4.1

THEOREM 4.2. Let M = My x fM, be an AEWP of an m (>
2)-dimensional space M, of constant curvature and an n-dimensional
Riemannian manifold Ma. Then the Ricci tensor of M is parallel if
and only if (1) the function f satisfies

IVieVifi= fiVifi,
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and (2) M, is an Einstein manifold with the constant scalar curvature
—_ 1
R = n(n = (G| - FAS = Rf),

where R is the constant scalar curvature of M,.

If M, is a 1-dimensional manifold, and if we denote the derivative
with respect to the coordinate ! of M; by prime, then it follows from
(4.1) that

(4'11) fflll - f’f”-

Taking account of (4.11), the relation (4.7) reduces to

-qu = (Tl - 1)(f,2 - ff")_g—rq'

Thus the following is also immediate from Theorem 4.1.

THEOREM 4.3. Let M = M x {M3 be an AEWP of a 1-dimensional
space M, and an n-dimensional Riemannian manifold M. Then the
Ricci tensor of M is parallel if and only if My is Einstein and the
ordinary differential equation

n(n-1)(f* - ff") =R

is satisfied, where R is the constant scalar curvature of M.

V. The Bourguignon’s conjucture

In this paragraph, we shall give a negative answer for the so-called
Bourguignon’s conjucture. The conjucture suggested as “the Ricci ten-
sor of a compact Riemannian manifold with harmonic curvature must
be parallel”, and A. Derdzinski gave an example as for a negative an-
swer of it in [3].

Let M = M; x M, be an AEWP of a 1-dimensional manifold
M, and an n-dimensional Riemannian manifold M, and denote the
coordinate z! of M; by t. As stated in Theorem 3.3 and Remark 3.4 in
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paragraph I1I, M has harmonic curvature if and only if M, is Einstein,
the function f(t) satisfies

(5.1) nl(n = 1)f° —(n-2)ff'f" - £ " = Rf".
The non-vanishing derivative of components of the Ricci tensor of M
are given by
52) { ik = nf~*(f'f ~ ££"),
- DrI\,lq = Dll{rq = (ffm - f,f”)-g-rq'
As in Theorem 4.3, the Ricci tensor of M is parallel if and only if

M3 is Einstein and the function f(t) satisfies

(53) n(n-1)(f" - ff")=R.

Differentiating (5.3) with respect to ¢, we have
flfll — fflll

and hence the equation (5.3) is rewritten as

(54) n(n - 1)(f* - ¢f*) =R,
where c is a constant on M.

We put a = [R/n(n —1)}'/? and ¢ = —b?,0, % according to the sign
of ¢, where b is a positive constant. Then, by a suitable choice of the
first coordinate ¢ of the separate coordinate system (¢, z?%,--- ,z"™*!) of
M, the solution of the equation (5.4) is given by

at forc=0,

exp bt for ¢ = b2, R =0,
(5.5) f(t) = ¢{ (a/b)sinh bt for ¢ = b%, R >0,

~(a/b)cosh bt for c =¥, R <0,

(a/b) cos bt for ¢ = —b%, R>0.

It is easily seen from (5.2) that the Ricci tensor of M is parallel

if and only if the function f(t) satisfies (5.4), that is, it is equal to a
function in (5.5). Therefore if f(t) satisfies the equation (5.1) but does
not satisfy (5.4), or even if it is equal to a function of the same type
in (5.5) with some different coefficients to the constant a, then M has

harmonic curvature but the Ricci tensor of M is not parallel. Summing
up these results, we can state
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THEOREM 5.1. Let M = My x f—A_/I_z bean AEWPofa l-di_z_x_lensional
manifold M and an n-dimensional Riemannian manifold Mz. Then
M has harmonic curvature and non-parallel Ricci tensor if and only if
(1) M, is Einstein, and (2) the function f is equal to a solution of the
ordinary differential equation

n((n =~ Df° = (n - 2ff'f* = "] = RS,
which does not equal to a solution of the equation
n(n~1)(f* —cf*) =&,

¢ and R being a constant and constant scalar curvature of M, respec-
tively.

By virtue of Theorem 5.1, we may construct many compact AEWP
with harmonic curvature and non-parallel Ricci tensor. For example,
if we choose M, as a compact Einstein manifold and the function f as
a solution described in Theorem 5.1, then the Riemannian manifolds
Ix M3 and S x fﬁz are compact AEWP’s and have the properties
mentioned above, where I and S indicate a closed interval and a circle
respectively.
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