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STRESS-ENERGY TENSOR OF THE TRACELESS RICCI

TENSOR AND EINSTEIN-TYPE MANIFOLDS

Gabjin Yun

Abstract. In this paper, we introduce the notion of stress-energy ten-

sor Q of the traceless Ricci tensor for Riemannian manifolds (Mn, g), and
investigate harmonicity of Riemannian curvature tensor and Weyl curva-

ture tensor when (M, g) satisfies some geometric structure such as critical

point equation or vacuum static equation for smooth functions.

1. Introduction

A smooth map φ : (Mn, g) → (Nm, h) between Riemannian manifolds is
said to be harmonic if it is a critical point of the energy functional defined by

E(φ) = 1

2

∫
M

|dφ|2dvg.

Here dvg denotes the volume element of (M, g). The Euler-Lagrange equation
associated with E is written by τ(φ) := div(dφ) = 0 and τ(φ) is called the
tension field of φ. So φ is harmonic if and only if its tension field vanishes
identically.

Now fix a smooth map φ : M → (N,h) from an n-dimensional smooth
manifold M into a Riemannian m-manifold (Nm, h). For each Riemannian
metric g on M , define the functional F by

F(g) =
1

2

∫
M

|dφ|2gdvg,

where |dφ|g is the norm of dφ with respect to the metric g and h. Then it is
well known [1] that the Euler-Lagrange equation for F is given by

Sφ :=
1

2
|dφ|2g − φ∗(h) = 0,
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and Sφ is called the stress-energy tensor of φ. Baird and Eells [1] showed
that divSφ = −⟨τ(φ), dφ⟩ and so, if φ : (M, g) → (N,h) is harmonic, then
divSφ = 0. We say φ : (M, g) → (N,h) is conservative if divSφ = 0.

Xin [9] introduced the stress-energy tensor of vector bundle valued p-forms
ω as follows:

Sω =
1

2
|ω|2g − ω ⊙ ω,

where ω ⊙ ω is defined by

ω ⊙ ω(X,Y ) = ⟨iXω, iY ω⟩

and iX is the interior product, and he proved that a closed and co-closed form
satisfies the conservation law.

As we did for smooth maps between Riemannian manifolds and differential
forms, we introduce the stress-energy tensor Q of the traceless Ricci tensor for
Riemannian manifolds. Namely, for the traceless Ricci tensor z = Ric− s

ng of
a Riemannian n-manifold (Mn, g), the stress-energy tensor Q of z is defined by

Q =
1

2
|z|2g − z ◦ z.(1.1)

Here Ric and s denote the Ricci tensor and the scalar curvature of the metric
g, respectively, and z ◦ z is defined as

z ◦ z(X,Y ) =
∑
i

z(X, ei)z(Y, ei)

for a local orthonormal frame {ei}. It is easy to see that a Riemannian n-
manifold with n ≥ 3 is Einstein if and only if the stress-energy tensor Q of
the traceless Ricci tensor vanishes identically (Lemma 2.1). We can also see
later that the divergence of stress-energy tensor Q is deeply related to the
divergence of the Bach tensor (see Section 2 for definition of Bach tensor).
We say that Q is conservative if the divergence of Q vanishes identically. In
case of dimension 4, if (M4, g) has constant scalar curvature, then Q is always
conservative (Corollary 2.7).

In this paper, we first study the stress-energy tensor Q of the traceless Ricci
tensor, and investigate its relation to Cotton tensor C and Bach tensor B (see
Section 2 below for definitions of Cotton tensor and Bach tensor). In case
a Riemannian manifold (Mn, g) has constant scalar curvature, we have the
following results.

Theorem 1.1. Let (Mn, g) be an n-dimensional Riemannian manifold with
constant scalar curvature. Then Q is conservative if and only if ⟨iXC, z⟩ = 0
for any vector X.

Theorem 1.2. Let (Mn, g), n ≥ 5, be an n-dimensional Riemannian manifold
with constant scalar curvature. Then Q is conservative if and only if δB = 0.
Here δ denotes the (negative) divergence operator.
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Next, we study the relation of stress-energy tensor Q to harmonicity of Rie-
mannian curvature tensor or Weyl curvature tensor for Einstein-type manifolds.
A smooth Riemannian n-manifold (Mn, g) is called an Einstein-type manifold
if there exist smooth functions f, λ : M → R satisfying

fRic = Ddf + λg,(1.2)

where Ddf is the Hessian of f . The equation (1.2) is called Einstein-type equa-

tion. Note that if λ = sf
n−1 , (1.2) becomes a vacuum static equation s′∗g (f) = 0,

or

fRic = Ddf +
sf

n− 1
g.(1.3)

Here s′∗g is the L2-adjoint of the linearization s′g of the scalar curvature s with

respect to the metric g. When λ = s(nf−1)
n(n−1) , the Einstein-type equation is

reduced to the critical point equation z = s′∗g (f), or

(1 + f)z = Ddf +
sf

n(n− 1)
g.(1.4)

Hwang and the author [4] proved that if (Mn, g, f), n ≥ 5, is an n-dimension-
al complete vacuum static space with compact level sets of f , and if δ4W = 0
and δ2B ≥ 0, then (M, g) has harmonic curvature. Here W and B denote the
Weyl curvature tensor and Bach tensor, respectively. We say a Riemannian
manifold (M, g) has harmonic curvature if δR = 0, where R is the Riemannian
curvature tensor. We would like to mention that δ4W = −n−3

n−2δ
3C, where C is

the Cotton tensor of (M, g) (see Section 2 for definition), and follow the con-
vention in [2] so that δ = −div, the negative divergence operator. Throughout
this paper, the dimension n of any manifold is assumed to be greater than or
equal to 4 otherwise stated.

Related to the vacuum static equation (1.3), we first have the following.

Theorem 1.3. Let (Mn, g, f) be a vacuum static space satisfying (1.3) with
compact level sets of f . Assume that (M, g) has zero radial Weyl curvature,
i.e., ĩ∇fW = 0, and δ4W ≤ 0. Then (M, g) has harmonic curvature and Q is
conservative.

In case n ≥ 5, we can obtain the following result which can be considered
as an extension of a result in [4] to a little more general situation involving the
stress-energy tensor Q of the traceless Ricci tensor.

Theorem 1.4. Let (Mn, g, f) be a vacuum static space satisfying (1.3) with
compact level sets of f . Assume that δ4W ≤ 0 and δ2Q ≥ 0. Then (M, g) has
harmonic curvature and Q is conservative.

For Riemannian manifolds satisfying the critical point equation (1.4), we
have the following.
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Theorem 1.5. Let (g, f) be a non-trivial solution of the critical point equation
(1.4) on an n-dimensional compact manifold M . Assume that δ4W ≤ 0 and
δ2Q ≥ 0. Then (M, g) is isometric to a standard sphere Sn.

This result can be considered as a generalization of Corollary 1 in [6] since
zero radial Weyl curvature condition is stronger than our conditions. In fact,
we can also show the following.

Corollary 1.6. Let (g, f) be a non-trivial solution of the critical point equation
on an n-dimensional compact manifold M with zero radial Weyl curvature. If
δ4W ≤ 0, then (M, g) is isometric to a standard sphere Sn.

Related to the Einstein-type equation (1.2), we obtain the following.

Theorem 1.7. Let (g, f, λ) be a solution of an Einstein-type equation (1.2) on
an n-dimensional manifold M . Assume that (M, g) has harmonic Weyl tensor.
Then Q is conservative if and only if the scalar curvature s is constant.

Next, Leandro [6] proved that if (Mn, g, f), n ≥ 4, is a smooth Riemannian
n-manifold satisfying the Einstein-type equation (1.2) with zero radial Weyl
curvature and div4W = 0, and each level set of f is compact, then (M, g) has
harmonic Weyl curvature. We say a Riemannian manifold (M, g) has harmonic
Weyl curvature if δW = 0, or equivalently C = 0. We generalize this result as
follows.

Theorem 1.8. Let (g, f, λ) be a solution of an Einstein-type equation (1.2) on
an n-dimensional manifold M with compact level sets of f . If (M, g) has zero
radial Weyl curvature and δ4W ≤ 0, then (M, g) has harmonic Weyl curvature
and Q is conservative.

Theorem 1.9. Let (g, f, λ) be a solution of an Einstein-type equation (1.2)
on an n-dimensional manifold M with compact level sets of f . Assume that
(M, g) has zero radial Weyl curvature and δ4W ≤ 0. Then Q is conservative
if and only if the scalar curvature s is constant.

This paper is organized as follows. In Section 2, we study basic properties on
the stress-energy tensor Q of the traceless Ricci tensor, and then investigate its
relations to Cotton tensor and Bach tensor including proofs for Theorem 1.1
and Theorem 1.2. Section 3 is devoted to introduce vacuum static spaces
and critical point equation, and then prove Theorem 1.3, Theorem 1.4 and
Theorem 1.5. In Section 4, we study Einstein-type manifolds and Einstein-
type equation, and prove Theorem 1.7, Theorem 1.8 and Theorem 1.9.

2. Stress-energy tensor and Cotton tensor

First of all, we have the following observation by taking the trace of Q.

Lemma 2.1. Let (Mn, g) be a Riemannian n-manifold with n ≥ 3. Then
(M, g) is Einstein if and only if Q = 0, or equivalently trgQ = 0.
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As the stress-energy tensor of a smooth map from a smooth manifold into a
Riemannian manifold, we can handle the stress-energy tensor of the traceless
Ricci tensor as variational view point. Fix a Riemannian metric g on a smooth
n-manifold Mn and consider the traceless Ricci tensor z = r− r

ng with respect
to the metric g. Denote by M the set of all smooth Riemannian metrics on M
and define a functional Q : M → R by

Q(ḡ) =
1

2

∫
M

[
|z|2ḡ + |z|2g

]
dvḡ.

Note that, for a variation gt = g+ th with h ∈ S2(M) of the metric g, we have

|z|2gt = gikt gjlt zijzkl and

d

dt

∣∣∣∣
t=0

(dvgt) =
1

2
trg(h),

d

dt

∣∣∣∣
t=0

(
|z|2gt

)
= −2⟨z ◦ z, h⟩g.

Here S2(M) denotes the space of all symmetric 2-tensor fields on M . So,

d

dt

∣∣∣∣
t=0

Q(g + th) =

∫
M

〈
−z ◦ z + 1

2
|z|2g, h

〉
dvg.(2.1)

Hence the Euler-Lagrange equation for Q is given by

Q =
1

2
|z|2g − z ◦ z = 0.

Lemma 2.1 can be rephrased as follows. For a smooth n-manifold Mn with
n ≥ 3, a Riemannian metric g on M is critical for Q if and only if g is Einstein.

Let (Mn, g) be a Riemannian manifold of dimension n with the Levi-Civita
connection D, and let h be a symmetric 2-tensor on M . The differential dDh
is defined by

dDh(X,Y, Z) = DXh(Y,Z)−DY h(X,Z)

for any vectors X, Y and Z. From now on, let us denote by r the Ricci tensor
for convenience if there is no ambiguity.

Definition 2.2. The Cotton tensor C ∈ Γ(Λ2M ⊗ T ∗M) is defined by

C = dD
(
Ric− s

2(n− 1)
g

)
= dDr − 1

2(n− 1)
ds ∧ g.(2.2)

Here for a smooth function φ and a symmetric 2-tensor h, dφ∧ h is defined
as follows:

dφ ∧ h(X,Y, Z) = dφ(X)h(Y, Z)− dφ(Y )h(X,Z)

for any vector fields X,Y, Z.

Related to the Cotton tensor C, the followings are well-known.

• The Weyl curvature tensor W satisfies

δW = −n− 3

n− 2
dD

(
Ric− sg

2(n− 1)
g

)
= −n− 3

n− 2
C(2.3)
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under the following identification

Γ(T ∗M ⊗ Λ2M) ≡ Γ(Λ2M ⊗ T ∗M).

From this, we have div4W = n−3
n−2div

3C.
• Using r = z + s

ng, the Cotton tensor can be written as

C = dDz +
n− 2

2n(n− 1)
ds ∧ g.(2.4)

• Since δ(ds ∧ g) = −(∆s)g +Dds, we have

δC = δdDz +
n− 2

2n(n− 1)
Dds− n− 2

2n(n− 1)
(∆s)g.

Moreover, introducing a local frame {ei}, and denoting Cijk = C(ei, ej ,
ek), we have

⟨δC, z⟩ = −Cijk;izjk

= −(Cijkzjk);i + Cijkzjk;i

= −(Cijkzjk);i +
1

2
|C|2,

where the semi-colon denotes covariant derivative.
• The cyclic summation of indices in C vanishes: Cijk +Cjki+Ckij = 0,
and trace of C in any two summands also vanishes.

Also it is easy to see that the following identities hold (cf. [2]).

δr = −1

2
ds and δz = −n− 2

2n
ds.(2.5)

Lemma 2.3. Let (M, g) be a Riemannian n-manifold. Then for any vector
field X, we have

⟨iXC, z⟩ = 1

2
X(|z|2) + δ(z ◦ z)(X) +

(n− 2)2

2n(n− 1)
z(∇s,X).(2.6)

Proof. Let {ei} be a local frame which is normal at a point. Then, at the point,
it follows from (2.4) and tr(z) = 0 that

C(X, ei, ej)z(ei, ej) =
1

2
X(|z|2)−Deiz(X, ej)z(ei, ej)−

n− 2

2n(n− 1)
z(∇s,X).

It also follows from definition together with (2.5) that

δ(z ◦ z)(X) = −n− 2

2n
z(∇s,X)− z(ei, ej)Deiz(ej , X).(2.7)

So, since

−Deiz(X, ej)z(ei, ej)−
n− 2

2n(n− 1)
z(∇s,X) = δ(z ◦ z)(X) +

(n− 2)2

2n(n− 1)
z(∇s,X),

we obtain

⟨iXC, z⟩ = 1

2
X(|z|2) + δ(z ◦ z)(X) +

(n− 2)2

2n(n− 1)
z(∇s,X).

□



STRESS-ENERGY TENSOR OF THE TRACELESS RICCI TENSOR 261

Lemma 2.4. Let (M, g) be a Riemannian n-manifold. Then for any vector
field X, we have

δQ(X) = −⟨iXC, z⟩+ (n− 2)2

2n(n− 1)
z(∇s,X).

Proof. Since δQ = − 1
2d|z|

2 − δ(z ◦ z), this follows from Lemma 2.3. □

Corollary 2.5. Let (Mn, g) be an n-dimensional Riemannian manifold with
constant scalar curvature. Then Q is conservative if and only if ⟨iXC, z⟩ = 0
for any vector X.

From Corollary 2.5 together with (2.3), we obtain directly the following.

Corollary 2.6. Let (Mn, g) be an n-dimensional Riemannian manifold with
constant scalar curvature. If (M, g) has harmonic Weyl tensor, i.e., δW = 0,
then Q is conservative.

Now we consider the Bach tensor B and its relations to the stress-energy
tensor Q of the traceless Ricci tensor. The Bach tensor B is defined by

B =
1

n− 3
δDδW +

1

n− 2
W̊(r),(2.8)

where δD is the adjoint of δ and W̊(r) is defined by

W̊(r)(X,Y ) = Ric(W(X, ei)Y, ei)

for a local frame {ei} (cf. [2]). Since

C = −n− 2

n− 3
δW and δC = −n− 2

n− 3
δδW,(2.9)

the Bach tensor satisfies

B =
1

n− 2

(
−δC + W̊(r)

)
.(2.10)

Moreover, since W̊(r) = W̊(z), we have

B =
1

n− 2

(
−δC + W̊(z)

)
.(2.11)

Here W̊(z) is defined similarly as W̊(r).
For n ≥ 4 and for any vector field X, the following property holds in general

(cf. [3] or [4]):

(n− 2)δB(X) = −n− 4

n− 2
⟨iXC, z⟩.(2.12)

Because of dimension property, we have the following from Corollary 2.5 and
(2.12).

Corollary 2.7. Let (M4, g) be a 4-dimensional Riemannian manifold with
constant scalar curvature. Then Q is always conservative.
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Note that, in dimension n = 3, we just have B = −δC. The complete
divergence of the Bach tensor has the following form for dimension n ≥ 4:

δδB =
n− 4

(n− 2)2

(
1

2
|C|2 − ⟨δC, z⟩

)
.(2.13)

Combining Lemma 2.4 with (2.12), we obtain the following.

Lemma 2.8. Let n ≥ 5. Then the divergence of Q is given by

δQ =
(n− 2)2

n− 4
δB +

(n− 2)2

2n(n− 1)
i∇sz.

Here i∇s denotes the usual interior product to the first factor defined by i∇sz(X)
= z(∇s,X) for any vector X.

Corollary 2.9. Let (Mn, g), n ≥ 5, be an n-dimensional Riemannian manifold
with constant scalar curvature. Then Q is conservative if and only if δB = 0.

Finally, we consider the complete divergence of the stress-energy tensor Q
of the traceless Ricci tensor. First, it follows from Lemma 2.8 that

δδQ =
1

2
∆|z|2 − δδ(z ◦ z)

=
(n− 2)2

n− 4
δδB +

(n− 2)2

2n(n− 1)
δi∇sz.(2.14)

Since, for a local frame {ei} normal at a point,

δi∇sz = −Dei(z(∇s, ei))

= −Deiz(∇s, ei)− z(Dei∇s, ei)

= δz(∇s)− ⟨Dds, z⟩

= −n− 2

2n
|∇s|2 − ⟨Dds, z⟩,(2.15)

we obtain

δδQ =
(n− 2)2

n− 4
δδB − (n− 2)3

4n2(n− 1)
|∇s|2 − (n− 2)2

2n(n− 1)
⟨Dds, z⟩.(2.16)

Combining (2.13) with (2.16), we can also show the following identity for
the complete divergence of Q.

Lemma 2.10. Let (Mn, g) be a Riemannian n-manifold. Then

δδQ =
1

2
|C|2 − ⟨δC, z⟩ − (n− 2)3

4n2(n− 1)
|∇s|2 − (n− 2)2

2n(n− 1)
⟨Dds, z⟩.(2.17)

Proof. The equation (2.17) can be deduced directly from Lemma 2.4. Let {ei}
be a local frame which is normal at a point. Then, at the point, it follows from
Lemma 2.4 that

δδQ = −ei(δQ(ei)) = −ei

(
−⟨ieiC, z⟩+

(n− 2)2

2n(n− 1)
z(∇s, ei)

)
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= −⟨δC, z⟩+ 1

2
|C|2 + (n− 2)2

2n(n− 1)
δz(∇s)− (n− 2)2

2n(n− 1)
⟨Dds, z⟩.

Substituting δz = −n−2
2n ds, we can obtain (2.17). □

For later use, we would like to mention some properties on divergence of the
Cotton tensor and traceless Ricci tensor which hold in general for Riemannian
manifolds.

Proposition 2.11 ([4]). Let (Mn, g) be a Riemannian manifold. Then, we
have

div2C(X) =
1

2
⟨̃iXW, C⟩ − 1

n− 2
⟨iXC, z⟩

for any vector field X. Here, ĩX is the interior product to the last factor defined
by ĩXW(Y,Z, U) = W(Y, Z, U,X) for any vectors Y , Z, and U .

Lemma 2.12. Let (Mn, g) be a Riemannian manifold. Then

δdDz = D∗Dz +
n

n− 2
z ◦ z + s

n− 1
z

− W̊(z)− 1

n− 2
|z|2g + n− 2

2n
Dds.(2.18)

Proof. The following identity holds in general (cf. [2]):

δdDr = D∗Dr + r ◦ r − R̊(r) +
1

2
Dds.(2.19)

Note that

(i) D∗Dr = D∗Dz − 1

n
(∆s)g,

(ii) δdDr = δdD
(
z +

s

n
g
)
= δdDz − 1

n
(∆s)g +

1

n
Dds,

(iii) r ◦ r = z ◦ z + 2s

n
z +

s2

n2
g,

(iv) R̊(r) = W̊ (z) +
1

n− 2
|z|2g + n− 2

n(n− 1)
sz − 2

n− 2
z ◦ z + s2

n2
g.

Substituting these into (2.19), we obtain

δdDz = D∗Dz +
n

n− 2
z ◦ z + 1

n− 1
sz − W̊ (z)− 1

n− 2
|z|2g + n− 2

2n
Dds. □

3. Vacuum static equation and critical point equation

In this section, we study the harmonicity of Reimannian curvature tensor
and conservation law of the stress-energy tensor Q of traceless Ricci tensor for
Riemannian manifolds satisfying vacuum static equation (1.3) or critical point
equation (1.4). Recall that, using z = r − s

n , vacuum static equation can be
rewritten as

fz = Ddf +
sf

n(n− 1)
g.(3.1)
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It is well-known that a Riemannian manifold satisfying either vacuum static
equation or critical point equation has positive constant scalar curvature. So,
in these cases, we have

δQ =
(n− 2)2

n− 4
δB and δδQ =

(n− 2)2

n− 4
δδB

when n ≥ 5. Furthermore, since ∆f = − s
n−1 by taking the trace of (3.1), we

always assume that the potential function f attains both positive and negative
values.

To investigate the harmonicity of Riemannian curvature tensor, we introduce
a 3-tensor T . Namely, let (Mn, g, f) be an n-dimensional Riemannian manifold
whose potential function f satisfies the vacuum static equation (1.3) or critical
point equation (1.4). Define T by

T =
1

n− 2
df ∧ z +

1

(n− 1)(n− 2)
i∇fz ∧ g,(3.2)

where i∇f denotes the usual interior product to the first factor defined by
i∇fz(X) = z(∇f,X) for any vector X.

Here, we will prove that nonnegative complete divergences of Cotton tensor
and nonpositive complete divergence of stress-energy tensor on a Riemann-
ian manifold satisfying vacuum static equation or critical point equation has
harmonic curvature for n ≥ 5 if the level sets of the potential function f are
compact. To do this, we first invoke some identities on the tensor T and the
Cotton tensor C in [4].

Lemma 3.1 ([4]). Let (M, g, f) be a vacuum static space. Then

f C = ĩ∇fW − (n− 1)T.

Lemma 3.2 ([4]). On a vacuum static space we have

div2C(∇f) =
1

2
f |C|2 + ⟨i∇fC, z⟩.(3.3)

Proposition 3.3 ([4]). Let (M, g, f) be a vacuum static space. If T = 0, then
B = 0 and C = 0.

Lemma 3.4. We have

⟨T,C⟩ = 2

n− 2
⟨i∇fC, z⟩.(3.4)

In particular, if either δQ = 0, or δB = 0 and n ≥ 5, then ⟨T,C⟩ = 0 and so

(n− 1)|T |2 = ⟨̃i∇fW, T ⟩ and f |C|2 = ⟨̃i∇fW, C⟩.

Proof. Introducing a geodesic orthonormal frame {ei}, and denoting Tijk =
T (ei, ej , ek) and Cijk = C(ei, ej , ek), we can write, using Einstein convention
on the sum,

(n− 2)Tijk = fizjk − fjzik +
1

n− 1
(flzliδjk − flzljδik)
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and

Cijkδik = Cijkδjk = 0, Cijk = −Cjik.

Thus,

(n− 2)⟨T,C⟩ = fizjkCijk − fjzikCijk +
1

n− 1
(flzliCijkδjk − flzljCijkδik)

= 2fizjkCijk = 2⟨i∇fC, z⟩.

If δQ = 0, from Lemma 2.4, we have ⟨i∇fC, z⟩ = 0, and the last two equalities
follow from Lemma 3.1. □

For vacuum static spaces (M, g, f), recall that vanishing of the Cotton tensor
C is equivalent to the harmonicity of Riemannian curvature tensor since δR =
−dDr = C when the scalar curvature is constant. Also, by Lemma 3.1, we
can see that vanishing of the Cotton tensor C is equivalent to ĩ∇fW = 0
when T = 0. We say that, on vacuum static spaces, (M, g) has radially zero
Weyl curvature if ĩ∇fW = W(·, ·, ·,∇f) = 0, or equivalently i∇fW = 0. The
following result is a generalization of Proposition 3.3 in [6] in some sense.

Theorem 3.5. Let (Mn, g, f) be a vacuum static space with compact level sets
of f . Assume that div3C ≤ 0 and ĩ∇fW = 0. Then (M, g) has harmonic
curvature and Q is conservative.

Proof. By Lemma 3.1 together with our assumption, we have fC = −(n− 1)T
and so

f |C|2 = −(n− 1)⟨T,C⟩ = −2(n− 1)

n− 2
⟨i∇fC, z⟩.

The second equality follows from Lemma 3.4. Substituting this into (3.3), we
obtain

div2C(∇f) =
1

2(n− 1)
f |C|2.

So, applying the divergence theorem for two regular values t1, t2 (t1 < t2) of f ,
we have∫

t1≤f≤t2

div3Cdvg =

∫
f=t2

div2C(N)dσ −
∫
f=t1

div2C(N)dσ

=
t2

2(n− 1)

∫
f=t2

|C|2

|∇f |
dσ − t1

2(n− 1)

∫
f=t1

|C|2

|∇f |
dσ.

Since div3C ≥ 0, we obtain

t2

∫
f=t2

|C|2

|∇f |
dσ ≤ t1

∫
f=t1

|C|2

|∇f |
dσ.(3.5)

Now by taking t1 = 0, t2 > 0 and t2 = 0, t1 < 0 in turns, we have C = 0, which
shows (M, g) has harmonic curvature since the scalar curvature is constant.
Finally, by Corollary 2.5, we can see that Q is conservative. □
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Lemma 3.6. Let (Mn, g, f) be an n-dimensional vacuum static space with
compact level sets of f . Assume that div2Q ≥ 0. Then∫

f=t

1

|∇f |
⟨i∇fC, z⟩ dσ

is monotone increasing with respect to regular values t′s of f .

Proof. Since the scalar curvature is constant, it follows from Lemma 2.10 that

1

2
|C|2 ≥ −⟨divC, z⟩.(3.6)

For a geodesic orthonormal frame {ei}ni=1, we claim

Cijkzjk;i = C(ei, ej , ek)Deiz(ej , ek) =
1

2
|C|2.

In fact, since Cijkzik;j = −Cjikzik;j = −Cijkzjk;i, we have

|C|2 = C2
ijk = Cijk (zjk;i − zik;j) = 2Cijkzjk;i.

Thus, we compute

⟨divC, z⟩ = Cijk;izjk = (Cijkzjk);i − Cijkzjk;i = (Cijkzjk);i −
1

2
|C|2.

Thus, by (3.6) we have

div(C(·, ej , ek)zjk) = (Cijkzjk);i ≥ 0

on M . This implies that, for two regular values t1, t2 (t1 < t2) of f ,

0 ≤
∫
t1≤f≤t2

div(C(·, ej , ek)zjk) dvg

=

∫
f=t2

1

|∇f |
⟨i∇fC, z⟩ dσ −

∫
f=t1

1

|∇f |
⟨i∇fC, z⟩ dσ.

□

Theorem 3.7. Let (Mn, g, f) be a vacuum static space with compact level sets
of f satisfying div3C ≤ 0 and div2Q ≥ 0. Then (M, g) has harmonic curvature
and Q is conservative.

Proof. First, suppose that f−1(0) = ∅ and we may assume that f > 0; oth-
erwise we may take −f instead of f . In this case, it follows from Lemma 3.6
that ∫

f=t

1

|∇f |
⟨i∇fC, z⟩ dσ ≥ 0

for any value t > 0. For a regular value t > 0, the divergence theorem together
with Lemma 3.2 and Lemma 3.6 shows∫

f≤t

div3Cdvg =

∫
f=t

div2C(N)dσ

=
1

2

∫
f=t

f |C|2

|∇f |
dσ +

∫
f=t

1

|∇f |
⟨i∇fC, z⟩ dσ ≥ t

2

∫
f=t

|C|2

|∇f |
dσ.



STRESS-ENERGY TENSOR OF THE TRACELESS RICCI TENSOR 267

Since div3C ≤ 0 and t > 0, this implies that C = 0 on M .
Now assume that f−1(0) ̸= ∅. For regular values t1 and t2 of f with t1 < t2,

by Lemma 3.2 and Lemma 3.6, we have∫
t1≤f≤t2

div3C dvg =

∫
f=t2

div2C(N) dσ −
∫
f=t1

div2C(N) dσ

=
t2
2

∫
f=t2

|C|2

|∇f |
dσ +

∫
f=t2

1

|∇f |
⟨i∇fC, z⟩ dσ

− t1
2

∫
f=t1

|C|2

|∇f |
dσ −

∫
f=t1

1

|∇f |
⟨i∇fC, z⟩ dσ

≥ t2
2

∫
f=t2

|C|2

|∇f |
dσ − t1

2

∫
f=t1

|C|2

|∇f |
dσ.(3.7)

Consequently, by assumption div3C ≤ 0, we have

t2
2

∫
f=t2

|C|2

|∇f |
dσ ≤ t1

2

∫
f=t1

|C|2

|∇f |
dσ

for any two regular values t1, t2 with t1 < t2.
By taking t1 = 0 we may conclude that C = 0 on the set {x : f(x) ≥ 0}.

Similarly, by taking t2 = 0 we may conclude that C = 0 on f = t1 for all
regular values t1 of f with t1 < t2 = 0. Hence, we have C = 0 on the whole M
by continuity. In other words, M has harmonic curvature. Finally, we can see
from Lemma 2.4 that Q is conservative. □

Now we consider a converse of Theorem 3.5 and Theorem 3.7.

Proposition 3.8. Let (Mn, g, f) be an n-dimensional vacuum static space. If
δQ = 0 and ĩ∇fW = 0, then (M, g) is Bach-flat.

Proof. The proof follows from Proposition 3.3 and Lemma 3.4. □

Theorem 3.9. Let (Mn, g, f) be an n-dimensional vacuum static space with
compact level sets (n ≥ 3). If δQ = 0 and ĩ∇fW = 0, then, up to finite cover
and appropriate scaling, either (M, g) is Ricci-flat, or isometric to one of Sn,
Hn or the warped product S1 × Σ or R × Σ, where Σ is a compact Einstein
manifold of positive scalar curvature.

Proof. The proof follows from the main result in [8] and Proposition 3.8. □

Example 3.10. Consider the product manifold M = R×Sn−1 with the prod-
uct metric g = dt2 + g0, where g0 is the round metric on Sn−1. Letting
(θ2, . . . , θn) be the spherical coordinates on Sn−1 so that {∂t = ∂

∂t , ∂i = ∂θi}
becomes a frame on M , we have

s = (n− 1)(n− 2)
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and

z(∂t, ∂t) = − (n− 1)(n− 2)

n
, z(∂t, ∂j) = 0, z(∂i, ∂j) =

n− 2

n
δij .

Define the function f on M by

f(t, θ2, . . . , θn) = A sin
√
n− 2 t+B cos

√
n− 2 t

for two constants A,B. Then it is easy to see that f satisfies the following
vacuum static equation

fz = Ddf +
sf

n(n− 1)
g.

For a compact Einstein-type manifold, we consider

M = S1
(

1√
n− 2

)
× Sn−1.

Then we can see that the function

f(t, θ2, . . . , θn) = cos
√
n− 2 t

solves the vacuum static equation.
In both cases, we have

|z|2 =
(n− 1)(n− 2)2

n
, |iNz|2 =

(n− 1)2(n− 2)2

n2

and

z◦z(∂t, ∂t) =
(
(n− 1)(n− 2)

n

)2

, z◦z(∂t, ∂i) = 0, z◦z(∂i, ∂j) =
(
n− 2

n

)2

δij .

So, δQ = 0, i.e., Q is conservative. One can also easily check that (M, g) is
Bach flat and has harmonic curvature. In fact, since M is locally conformally
flat, the conclusion follows from Proposition 3.8.

Now we consider Riemannian manifolds satisfying critical point equation
(1.4). We call the critical point equation CPE in short. Whenever we con-
sider the critical point equation, we always assume that M is compact without
boundary. For a solution (g, f) of the CPE, we may assume that

min
M

f < −1.

In fact, if the minimum of f is greater than or equal to −1, it is easily see
that (M, g) is Einstein and so due to a result [7] of Obata, (M, g) must be
isometric to a standard sphere. In fact, for critical point equation, we have
div(i∇fz) = (1 + f)|z|2 and so by integrating it over M , we have z = 0 by
divergence theorem.

As in the proofs of Lemma 3.1 and Lemma 3.2, we can prove the following
two identities for critical point equation.

Lemma 3.11. Let (M, g, f) be a non-trivial solution of the CPE. Then

(1 + f)C = ĩ∇fW − (n− 1)T.
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Lemma 3.12. For a solution of the CPE, we have

div2C(∇f) =
1

2
(1 + f)|C|2 + ⟨i∇fC, z⟩.

The exactly same proof of Lemma 3.6 shows the following in CPE case.

Lemma 3.13. Assume that div2Q ≥ 0 for a solution (M, g, f) of the CPE.
Then ∫

f=t

1

|∇f |
⟨i∇fC, z⟩ dσ

is nonnegative and monotone increasing with respect to regular values t′s of f .

Theorem 3.14. Let (g, f) be a non-trivial solution of the CPE on an n-
dimensional compact manifold M . If div3C ≤ 0 and div2Q ≥ 0, then (M, g) is
isometric to a standard sphere Sn.

Proof. As in the proof of Theorem 3.7, by Lemma 3.12 and Lemma 3.13 to-
gether with the assumption div3C ≤ 0, we have

1 + t2
2

∫
f=t2

|C|2

|∇f |
≤ 1 + t1

2

∫
f=t1

|C|2

|∇f |

for any two regular values t1, t2 with t1 < t2.
By taking t1 = −1− ϵ, regular value of f for sufficiently small ϵ with ϵ > 0,

we may conclude that C = 0 on the set {x : f(x) ≥ −1}. Similarly, by taking
t2 = −1 + ϵ, regular value of f for sufficiently small ϵ with ϵ > 0, we may
conclude that C = 0 on f = t1 for all regular values t1 of f with t1 < −1.
Hence, we have C = 0 on the whole M by continuity. In other words, M has
harmonic curvature. The conclusion follows from a result in [10] and [11]. □

Proposition 3.15. Let (g, f) be a nontrivial solution of the CPE on a compact
smooth n-manifold M . Assume that div3C ≤ 0 and ĩ∇fW = 0. Then div2Q ≥
0.

Proof. Since the scalar curvature is constant, from Lemma 2.4 and Proposi-
tion 2.11, we have

div2C =
1

n− 2
δQ

and so δδQ = −(n− 2)div3C. □

From Theorem 3.14 and Proposition 3.15, we can see that the exactly same
property as Theorem 3.5 holds for the critical point equation. This result is an
extension of a result in [6].

Corollary 3.16. Let (g, f) be a non-trivial solution of the critical point equa-
tion on an n-dimensional compact manifold M . If div3C ≤ 0 and ĩ∇fW = 0,
then (M, g) is isometric to a standard sphere Sn.
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4. Einstein-type equation

In this section, we consider the harmonicity of Weyl tensor and conservation
law of the stress-energy tensor of the traceless Ricci tensor for Riemannian
manifolds satisfying the Einstein-type equation (1.2). Note that the scalar
curvature of a Riemannian manifold satisfying the Einstein-type equation is
not necessarily constant. By letting

λ = h− sf

n− 1
,

and using z = Ric − s
ng, the Einstein-type equation (1.2) can be rewritten in

the following form

fz = Ddf +

(
sf

n(n− 1)
+ λ

)
g.(4.1)

Taking the trace of (4.1), we have

∆f = − s

n− 1
f − nλ.(4.2)

Also by taking the divergence in (4.1), and using δz = −n−2
2n ds and (4.2), we

obtain

f

2
ds+ (n− 1)dλ = 0.(4.3)

This shows that an Einstein-type manifold does not necessarily have constant
scalar curvature which is different from both CPE case and vacuum static
equation. In particular, if the scalar curvature is constant, then λ must be
constant and vice versa.

If f = 0, then λ should also be zero, and if f is a nonzero constant, from (4.1)
and (4.2), we have λ = − s

n(n−1)f and fz = 0, which mean (M, g) is Einstein.

So if n ≥ 3, λ must be constant since the scalar curvature is constant. From
now on, we assume that (g, f, λ) is a nontrivial solution of an Einstein-type
equation which means f is not a constant function.

By taking the exterior derivative d of (4.3), we have

df ∧ ds = 0,(4.4)

which means 1-forms df and ds are parallel. In fact, we have

ds(∇f)df = |∇f |2ds, ⟨∇s,∇f⟩2 = |∇s|2|∇f |2(4.5)

and

ds =
⟨∇f,∇s⟩
|∇f |2

df on M \ Crit(f),

where Crit(f) denotes the set of all critical points of f on M . So,

i∇sz =
⟨∇f,∇s⟩
|∇f |2

i∇fz.(4.6)
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Lemma 4.1. Let (g, f, λ) be a solution of an Einstein-type equation (4.1) on
an n-dimensional manifold M . Then

δi∇fz = −f |z|2 − n− 2

2n
⟨∇s,∇f⟩.(4.7)

Proof. Introducing a geodesic orthonormal frame {ei} which is normal at a
point, it follows from definition that, at the point,

δi∇fz = −ei(z(∇f, ei))

= −Deiz(∇f, ei)− z(Dei∇f, ei)

= δz(∇f)− fz(ei, ej)z(ej , ei)

= −n− 2

2n
⟨∇s,∇f⟩ − f |z|2.

□

For Einstein-type manifolds, using (4.3), we can show that the exactly same
property as Lemma 3.1 and Lemma 3.11 holds.

Lemma 4.2 (cf. [12]). Let (g, f, λ) be a solution of the Einstein-type equation
(4.1). Then

f C = ĩ∇fW − (n− 1)T.(4.8)

Recall that the tensor T is defined by

T =
1

n− 2
df ∧ zg +

1

(n− 1)(n− 2)
i∇fzg ∧ g.

Lemma 4.3. On an Einstein-type equation, we have

div2C(∇f) =
1

2
f |C|2 + ⟨i∇fC, z⟩.

Proof. Note that

⟨T,C⟩ = 1

n− 2
⟨df ∧ z, C⟩ = 2

n− 2
⟨i∇fC, z⟩.

Thus, by Proposition 2.11 and Lemma 4.2, we have

div2C(∇f) =
1

2
f |C|2 + n− 1

2
⟨T,C⟩ − 1

n− 2
⟨i∇fC, z⟩

=
1

2
f |C|2 + ⟨i∇fC, z⟩.

□

Lemma 4.4. Let (g, f, λ) be a nontrivial solution of an Einstein-type equation
(4.1) on an n-dimensional manifold M . If C = 0, then for any vector X which
is orthogonal to ∇f ,

z(∇f,X) = 0.
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Proof. Since C = 0, by Lemma 4.2,

ĩ∇fW = (n− 1)T.

Substituting a triple (X,Y,∇f) into this, we obtain

0 = (n− 1)T (X,Y,∇f)

= df(X)z(Y,∇f)− df(Y )z(X,∇f).

In the second equality, we used the identity (4.3): f
2ds+ (n− 1)dλ = 0. Since

X and Y are arbitrary, by choosing X ⊥ ∇f and Y = ∇f , we have

|df |2z(X,∇f) = 0. □

If (g, f, λ) is a nontrivial solution of an Einstein-type equation (4.1) on an
n-dimensional manifold M satisfying z(∇f,X) = 0 for any vector field X
orthogonal to ∇f , then we can write

i∇fz = αdf, α = z(N,N), N =
∇f

|∇f |
,

as a 1-form. Moreover, since |α| ≤ |z|, the function α can be extended on the
whole manifold M to a C0-function. On the other hand, the orthogonality
z(∇f,X) = 0 for X ⊥ ∇f implies that

DNN = 0 and DeiN =
1

|∇f |
Ddf(ei, X) = 0

for a local frame {e1 = N, e2, . . . , en} (cf. [5]).

Theorem 4.5. Let (g, f, λ) be a solution of an Einstein-type equation (4.1) on
an n-dimensional manifold M . Assume that (M, g) has harmonic Weyl tensor.
Then Q is conservative if and only if the scalar curvature s is constant.

Proof. Since C = 0, by Lemma 2.4, we have

δQ =
(n− 2)2

2n(n− 1)
i∇sz.

If s is constant, then δQ = 0 trivially. Conversely, assume that Q is conserva-
tive. Since ∇s and ∇f are parallel, by Lemma 4.4,

z(∇s,X) = 0

for any vector X with X ⊥ ∇f . This together with (4.6) implies that

i∇sz = αds.

Since δQ = 0, either α = 0 or s is constant. In the last of the proof, we will
show that α = 0 on the whole M or ds = 0 on the whole M . First we are going
to show the following Assertion.

Assertion. If α = 0, then s is constant.



STRESS-ENERGY TENSOR OF THE TRACELESS RICCI TENSOR 273

If α = 0, then i∇fz = αdf = 0 and so, by definition of T , we have

i∇fT =
1

n− 2
|∇f |2z.

Since C = 0, we have ĩ∇fW = (n− 1)T . So,

n− 1

n− 2
|∇f |2z = (n− 1)i∇fT = −|∇f |2WN ,

where WN is defined by WN (X,Y ) = W(X,N, Y,N) with N = ∇f
|∇f | = ± ∇s

|∇s| .

In other words, we obtain

z = −n− 2

n− 1
WN .(4.9)

Taking the divergence of (4.9), we have

−n− 2

2n
ds = δz = −n− 2

n− 1
δWN = 0,

which completes our assertion. In fact, we have

δWN (X) = −DeiWN (ei, X) = −ei(W(ei, N,X,N))

= δW(N,X,N) = −n− 3

n− 2
C(N,X,N) = 0.

Finally, we will prove that if Q is conservative, then the set, Crit(s), of all
critical points of s is closed and open. It is obvious that Crit(s) is closed. To
show Crit(s) is open, let p ∈ Crit(s) be an isolated critical point. Then α = 0
on a neighborhood of p. The proof of Assertion shows that ds = 0 around p,
which is a contradiction. □

Lemma 4.6. Let (g, f, λ) be a solution of an Einstein-type equation (4.1) on
an n-dimensional manifold M . If ĩ∇fW = 0, then

div2C(∇f) = − 1

n− 2
⟨i∇fC, z⟩ =

1

2(n− 1)
f |C|2

and

f |C|2 =
2(n− 1)

n− 2
δQ(∇f)− n− 2

n
z(∇s,∇f).

Proof. If ĩ∇fW = 0, by Proposition 2.11,

div2C(∇f) = − 1

n− 2
⟨i∇fC, z⟩.

Also, by Lemma 4.2, we have

fC = −(n− 1)T

and so

f |C|2 = −(n− 1)⟨T,C⟩ = −2(n− 1)

n− 2
⟨i∇fC, z⟩.
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Hence,

div2C(∇f) =
1

2(n− 1)
f |C|2.

Finally, by Lemma 2.4,

δQ(∇f) = −⟨i∇fC, z⟩+
(n− 2)2

2n(n− 1)
z(∇s,∇f)

=
n− 2

2(n− 1)
f |C|2 + (n− 2)2

2n(n− 1)
z(∇s,∇f).

□

Lemma 4.7. Let (g, f, λ) be a solution of an Einstein-type equation (4.1) on
an n-dimensional manifold M with compact level sets of f . If div3C ≤ 0 and
ĩ∇fW = 0, then Then

Λ(t) := t

∫
f=t

|C|2

|∇f |
dσ

is monotone decreasing with respect to regular values t′s of f .

Proof. Since ĩ∇fW = 0, it follows from Lemma 4.6 together with divergence
theorem that∫

t1≤f≤t2

div3Cdvg =

∫
f=t2

div2C(N)dσ −
∫
f=t1

div2C(N)dσ

=
t2

2(n− 1)

∫
f=t

|C|2

|∇f |
dσ − t1

2(n− 1)

∫
f=t

|C|2

|∇f |
dσ.

Since div3C ≤ 0, this shows that

t2
2(n− 1)

∫
f=t

|C|2

|∇f |
dσ ≤ t1

2(n− 1)

∫
f=t

|C|2

|∇f |
dσ.

□

The following result is a generalization of a result in [6].

Theorem 4.8. Let (g, f, λ) be a solution of an Einstein-type equation (4.1) on
an n-dimensional manifold M with compact level sets of f . If div3C ≤ 0 and
ĩ∇fW = 0, then (M, g) has harmonic Weyl tensor, or equivalently C = 0.

Proof. Since div3C ≤ 0 and ĩ∇fW = 0, it follows from Lemma 4.6 together
with divergence theorem that

0 ≥
∫
f≤t

div3Cdvg =

∫
f=t

div2C(N)dσ =
t

2(n− 1)

∫
f=t

|C|2

|∇f |
dσ.

This implies that C = 0 on the set {f ≥ 0} and so Λ(t) = 0 for t ≥ 0.
On the other hand, by Lemma 4.7, we can see that C = 0 on the set f < 0

by letting t2 = 0. □
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Corollary 4.9 ([6]). Let (g, f, λ) be a solution of an Einstein-type equation
(4.1) on an n-dimensional manifold M with compact level sets of f . If (M, g)
has zero radial Weyl curvature with div4W = 0, then (M, g) has harmonic
Weyl tensor.

Proof. It is obvious since div4W = 0 implies div3C ≤ 0. □

Combining Theorem 4.5 to Theorem 4.8, we obtain the following result.

Corollary 4.10. Let (g, f, λ) be a solution of an Einstein-type equation (4.1)
on an n-dimensional manifold M with compact level sets of f . Assume that
div3C ≤ 0 and ĩ∇fW = 0. Then Q is conservative if and only if the scalar
curvature s is constant.

Theorem 4.11. Let (g, f, λ) be a solution of an Einstein-type equation (4.1)
on an n-dimensional manifold M . Assume that div3C ≤ 0 and ĩ∇fW = 0,
then (M, g) is Bach-flat.

Proof. By Lemma 4.2 and Theorem 4.8, we have C = 0 and T = 0. It follows
from the definition of T that

zg +
α

n− 1
g = 0

on each level hypersurface f−1(t) for a regular value. Furthermore, by Lemma
4.4, z(∇f,X) = 0 for any vector field X such that X ⊥ ∇f . Consequently, by

choosing a local frame {ei} with e1 = N = ∇f
|∇f | , we have

z(ei, ej) = − α

n− 1
δij (2 ≤ i, j ≤ n) and z(N,N) = α.

So,

W̊(z)(X,Y ) = W(X, ei, Y, ej)z(ei, ej)

= − α

n− 1

n∑
i=2

W(X, ei, Y, ei) + αW(X,N, Y,N)

=
nα

n− 1
W(X,N, Y,N) = 0.

Hence we have (n− 2)B = −δC + W̊(z) = 0. □

Now we consider Einstein-type manifolds with nonnegative complete diver-
gence of stress-energy tensor of the traceless Ricci tensor. In this case, we can
prove the same property as Einstein-type manifolds with zero radial Weyl cur-
vature hold when δ(i∇sz) ≤ 0. Note that this condition is trivial if the scalar
curvature is constant.

Lemma 4.12. Let (g, f, λ) be a solution of an Einstein-type equation (4.1)
on an n-dimensional manifold M with compact level sets of f . Assume that
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div2Q ≥ 0 and div(i∇sz) ≥ 0. Then∫
f=t

1

|∇f |
⟨i∇fC, z⟩

is nonnegative and monotone increasing with respect to regular values t′s of f .

Proof. From Lemma 2.10 together with (2.15), we have

δδQ =
1

2
|C|2 − ⟨δC, z⟩+ (n− 2)2

2n(n− 1)
δi∇sz

≤ 1

2
|C|2 − ⟨δC, z⟩.

So from assumption, we have

0 ≤ 1

2
|C|2 − ⟨δC, z⟩.

The rest of proof is the same as that of Lemma 3.6. □

Theorem 4.13. Let (g, f, λ) be a solution of an Einstein-type equation (4.1)
on an n-dimensional manifold M with compact level sets of f . Assume that
div2Q ≥ 0 and div(i∇sz) ≥ 0. If div3C ≤ 0, then (M, g) has harmonic Weyl
tensor.

Proof. As in the proof of Theorem 3.7, by Lemma 4.3 and Lemma 4.12 together
with the assumption div3C ≤ 0, we have

t2
2

∫
f=t2

|C|2

|∇f |
≤ t1

2

∫
f=t1

|C|2

|∇f |

for any two regular values t1, t2 with t1 < t2.
By taking t1 = 0 we may conclude that C = 0 on the set {x : f(x) ≥ 0}.

Similarly, by taking t2 = 0 we may conclude that C = 0 on f = t for all regular
values t of f with t < t2 = 0. Hence, we have C = 0 on the whole M by
continuity. In other words, M has harmonic curvature. □

Combining Theorem 4.5 to Theorem 4.13, we obtain the following result.

Corollary 4.14. Let (g, f, λ) be a solution of an Einstein-type equation (4.1)
on an n-dimensional manifold M with compact level sets of f . Assume that
div3C ≤ 0 and div2Q ≥ 0 with div(i∇sz) ≥ 0. Then Q is conservative if and
only if the scalar curvature s is constant.
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