• Title/Summary/Keyword: generalized (${\sigma}$, ${\tau}$)-derivations

Search Result 9, Processing Time 0.021 seconds

On Prime Near-rings with Generalized (σ,τ)-derivations

  • Golbasi, Oznur
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.249-254
    • /
    • 2005
  • Let N be a prime left near-ring with multiplicative center Z and f be a generalized $({\sigma},{\tau})-derivation$ associated with d. We prove commutativity theorems in prime near- rings with generalized $({\sigma},{\tau})-derivation$.

  • PDF

ON A LIE RING OF GENERALIZED INNER DERIVATIONS

  • Aydin, Neset;Turkmen, Selin
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.827-833
    • /
    • 2017
  • In this paper, we define a set including of all $f_a$ with $a{\in}R$ generalized derivations of R and is denoted by $f_R$. It is proved that (i) the mapping $g:L(R){\rightarrow}f_R$ given by g (a) = f-a for all $a{\in}R$ is a Lie epimorphism with kernel $N_{{\sigma},{\tau}}$ ; (ii) if R is a semiprime ring and ${\sigma}$ is an epimorphism of R, the mapping $h:f_R{\rightarrow}I(R)$ given by $h(f_a)=i_{{\sigma}(-a)}$ is a Lie epimorphism with kernel $l(f_R)$ ; (iii) if $f_R$ is a prime Lie ring and A, B are Lie ideals of R, then $[f_A,f_B]=(0)$ implies that either $f_A=(0)$ or $f_B=(0)$.

ON GENERALIZED (σ, τ)-DERIVATIONS II

  • Argac, Nurcan;Inceboz, Hulya G.
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.495-504
    • /
    • 2010
  • This paper continues a line investigation in [1]. Let A be a K-algebra and M an A/K-bimodule. In [5] Hamaguchi gave a necessary and sufficient condition for gDer(A, M) to be isomorphic to BDer(A, M). The main aim of this paper is to establish similar relationships for generalized ($\sigma$, $\tau$)-derivations.

Correction to "On prime near-rings with generalized (σ, τ)- derivations, Kyungpook Math. J., 45(2005), 249-254"

  • Al Hwaeer, Hassan J.;Albkwre, Gbrel;Turgay, Neset Deniz
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.2
    • /
    • pp.415-421
    • /
    • 2020
  • In the proof of Theorem 3 on p.253 in [4], both right and left distributivity are assumed simultaneously which makes the proof invalid. We give a corrected proof for this theorem by introducing an extension of Lemma 2.2 in [2].