ON (σ, τ) -LIE IDEALS WITH GENERALIZED DERIVATION

Öznur Gölbaşı and Emine Koç

ABSTRACT. In the present paper, we extend some well known results concerning derivations of prime rings to generalized derivations for (σ, τ) -Lie ideals.

1. Introduction

Let R be an associative ring with center Z and σ, τ two mappings from R into itself. For any $x, y \in R$, we write [x, y] and $[x, y]_{\sigma, \tau}$, for xy - yx and $x\sigma(y) - \tau(y)x$ respectively and make extensive use of basic commutator identities:

 $1) \ [xy,z]_{\sigma,\tau} = x[y,z]_{\sigma,\tau} + [x,\tau(z)]y = x[y,\sigma(z)] + [x,z]_{\sigma,\tau}y,$

2) $[x, yz]_{\sigma,\tau} = \tau(y)[x, z]_{\sigma,\tau} + [x, y]_{\sigma,\tau}\sigma(z).$

Let U be an additive subgroup of R. The definition of (σ, τ) -Lie ideal of R is given in [15] as follows:

(i) U is a (σ, τ) -right Lie ideal of R if $[U, R]_{\sigma, \tau} \subset U$.

(ii) U is a (σ, τ) -left Lie ideal of R if $[R, U]_{\sigma, \tau} \subset U$.

(iii) U is a (σ, τ) -Lie ideal of R, if U is both a (σ, τ) -right Lie ideal and (σ, τ) -left Lie ideal of R.

It is clear that every Lie ideal of R is a (1, 1)-left (right) Lie ideal of R, where $1: R \to R$ is an identity map.

Recall that a ring R is prime if for any $x, y \in R, xRy = \{0\}$ implies that x = 0 or y = 0. An additive mapping $d : R \to R$ is called a derivation if d(xy) = d(x)y + xd(y) holds for all $x, y \in R$. For a fixed $a \in R$, the mapping $I_a : R \to R$ given by $I_a(x) = [a, x]$ is a derivation which is said to be an inner derivation.

The commutativity of prime rings with derivation was initiated by E. C. Posner [17]. Over the last two decades, a great deal of work has been done on this subject. A function $f_{a,b}: R \to R$ is called a generalized inner derivation if $f_{a,b}(x) = ax + xb$ for some fixed $a, b \in R$. It is straightforward to note that

O2010 The Korean Mathematical Society

Received December 16, 2008; Revised December 3, 2009.

²⁰⁰⁰ Mathematics Subject Classification. 16N60, 16W25, 16U80.

Key words and phrases. derivations, (σ, τ) -Lie ideals, generalized derivations.

 $f_{a,b}$ is a generalized inner derivation, then for any $x, y \in R$

$$f_{a,b}(xy) = f_{a,b}(x)y + x[y,b]$$
$$= f_{a,b}(x)y + xI_b(y)$$

where I_b is an inner derivation. In view of the above observation, the concept of generalized derivation is introduced in [14] and [8] as follows:

An additive mapping $f: R \to R$ is called a generalized derivation associated with a derivation d if

$$f(xy) = f(x)y + xd(y)$$
 for all $x, y \in R$.

One may observe that the concept of generalized derivation includes the concept of derivations and generalized inner derivations, also of the left multipliers when d = 0. Hence it should be interesting to extend some results concerning these notions to generalized derivations. Some recent results were shown on generalized derivation in [8], [14] and [1]. Furthermore, some authors have also studied generalized derivation in the theory of operator algebras and C^* -algebras (see for example [14]).

On the other hand, in [10, Definition 1], Gölbaşı and Kaya introduced the notation of right generalized derivation and left generalized derivation with associated derivation d as follows:

An additive mapping $f:R\to R$ is said to be right generalized derivation with associated derivation d if

(1.1)
$$f(xy) = f(x)y + xd(y) \text{ for all } x, y \in R$$

and f is said to be left generalized derivation with associated derivation d if

(1.2)
$$f(xy) = d(x)y + xf(y) \text{ for all } x, y \in R$$

f is said to be a generalized derivation with associated derivation d if it is both a left and right generalized derivation with associated derivation d. Of course, every derivation is generalized derivation and also, the definition of generalized derivation given in Bresar [8] is a right generalized derivation with associated derivation d according to above definition. In this context, we mention the definition of generalized derivation that means two sided generalized derivation.

In [1], Argaç and Albaş proved that if a prime ring R has (d, α) , (g, β) nonzero generalized derivations such that ad(x) = g(x)a for all $x \in R$, then one of the following possibilities holds; (i) $a \in C$ (extended centroid). (ii) There exist $p, q \in Q_r(R_C)$ (a right Martindale ring of quotients) such that $\alpha(x) = [x, p], \beta(x) = [q, x], qa \in C, p = \lambda a$, where $\lambda \in C$, for all $x \in R$. In this paper, one of our first objectives is to show that this result satisfies for generalized derivations on (σ, τ) -left Lie ideal of R.

In [12], Herstein showed that if R is a prime ring of characteristic different from two and d is a nonzero derivation such that $d(R) \subset Z$, then R must be commutative. Several authors investigated this result for Lie ideals or (σ, τ) -Lie ideals of a prime ring admitting derivation or generalized derivation (see

[7], [6], [5], [10]). We prove this theorem for (σ, τ) -left Lie ideals of prime ring and a mapping such that f(x) = xa - bx for all $x \in R$. Thus we extend [11, Lemma 1] to (σ, τ) -Lie ideals of a prime ring of R.

On the other hand, in [9], Daif and Bell proved that if a semiprime ring R has a derivation d satisfying the following condition, then I is a central ideal;

there exists a nonzero ideal I of R such that

either d([x, y]) = [x, y] for all $x, y \in I$, or d([x, y]) = -[x, y] for all $x, y \in I$.

Latter on, the author proved this result generalized derivations of semiprime rings in [2]. Finally, we prove corresponding result for (σ, τ) -Lie ideal of a prime ring with generalized derivation.

Throughout the present paper, we assume that R be a prime ring with characteristic not two, σ and τ two automorphisms and U a nonzero (σ, τ) -Lie ideal of R. We denote a generalized derivation $f: R \to R$ determined by derivation d of R by (f, d). If d = 0, then f(xy) = f(x)y for all $x, y \in R$ and there exists $q \in Q_r(R_C)$ such that f(x) = qx for all $x \in R$ by [14, Lemma 2]. So, we assume that $d \neq 0$.

2. Results

In the view of the definition of generalized derivation, one can easily notice that the following remark.

Remark 1. Let (f,d) be a generalized derivation of R. If $f\sigma = \sigma f$, $f\tau = \tau f$, then $f([x,y]_{\sigma,\tau}) = [d(x), y]_{\sigma,\tau} + [x, f(y)]_{\sigma,\tau}$ for all $x, y \in R$.

Lemma 1. [4, Lemma 3] Let R be a prime ring with char $R \neq 2$, $a \in R$ and aU = 0 (or Ua = 0).

i) If U is a (σ, τ)-right Lie ideal of R, then a = 0 or U ⊂ C_{σ,τ}.
ii) If U is a (σ, τ)-left Lie ideal of R, then a = 0 or U ⊂ Z.

Lemma 2. [3, Lemma 6] Let R be a prime ring with char $R \neq 2$ and U a (σ, τ) -left Lie ideal of R. Suppose there exists $a \in R$ such that [a, U] = 0. Then $a \in Z$ or $\sigma(u) + \tau(u) \in Z$ for all $u \in U$.

Lemma 3. [16, Theorem 2] Let R be a prime ring with char $R \neq 2$ and Ua noncentral (σ, τ) -left Lie ideal of R. Then there exist a nonzero ideal M of R such that $[R, M]_{\sigma, \tau} \subset U$ and $[R, M]_{\sigma, \tau} \nsubseteq C_{\sigma, \tau}$ or $\sigma(u) + \tau(u) \in Z$ for all $u \in U$.

Lemma 4. Let R be a prime ring with char $R \neq 2$, (f, d) a generalized derivation of R and U a noncentral (σ, τ) -left Lie ideal of R. If f(U) = 0, then $\sigma(u) + \tau(u) \in Z$ for all $u \in U$.

Proof. Suppose to the contrary that $\sigma(u) + \tau(u) \notin Z$ for some $u \in U$. By Lemma 3, there exists a nonzero ideal M of R such that $[R, M]_{\sigma,\tau} \subset U$ but $[R, M]_{\sigma,\tau} \notin C_{\sigma,\tau}$. For any $x \in R$ and $m \in M$,

$$[x,m]_{\sigma,\tau}\sigma(m) = [x\sigma(m),m]_{\sigma,\tau} \in U.$$

Then

$$0 = f([x,m]_{\sigma,\tau}\sigma(m)) = f([x,m]_{\sigma,\tau})\sigma(m) + [x,m]_{\sigma,\tau}d(\sigma(m))$$

and so (2.1)

$$[x,m]_{\sigma,\tau}d(\sigma(m)) = 0$$
 for all $x \in R, m \in M$

Replacing x by
$$xy, y \in R$$
 in (2.1) and applying (2.1), we get

$$0 = [xy,m]_{\sigma,\tau}d(\sigma(m)) = x[y,m]_{\sigma,\tau}d(\sigma(m)) + [x,\tau(m)]yd(\sigma(m)).$$

That is

 $[x, \tau(m)]Rd(\sigma(m)) = 0$ for all $x \in R, m \in M$.

Since R is a prime ring, it follows that

 $m \in Z$ or $d(\sigma(m)) = 0$ for all $m \in M$.

We set $K = \{m \in M \mid m \in Z\}$ and $L = \{m \in M \mid d(\sigma(m)) = 0\}$. Clearly each of K and L is additive subgroup of M. Moreover, M is the set-theoretic union of K and L. But a group can not be the set-theoretic union of its two proper subgroups, hence K = M or L = M. In the former case, $M \subset Z$ which forces R to be commutative. This is impossible because of $U \nsubseteq Z$. In the latter case, $d(\sigma(M)) = 0$. Since R is a prime ring and $\sigma(M)$ a nonzero ideal of R, we get d = 0, a contradiction. This completes the proof.

Lemma 5. Let R be a prime ring with char $R \neq 2$, (f, d) a generalized derivation of R and U a noncentral (σ, τ) -left Lie ideal of R. If $d(Z) \neq 0$ and $[f(U), a]_{\sigma, \tau} = 0$, then $a \in Z$ or $\sigma(u) + \tau(u) \in Z$ for all $u \in U$.

Proof. Choose $\alpha \in Z$ such that $d(\alpha) \neq 0$. It is easily seen that $d(\alpha) \in Z$. For all $x \in R, u \in U$, we get

$$0 = [f([x, u]_{\sigma, \tau} \alpha), a]_{\sigma, \tau}$$

= $[f([x, u]_{\sigma, \tau})\alpha + [x, u]_{\sigma, \tau}d(\alpha), a]_{\sigma, \tau}$
= $[f([x, u]_{\sigma, \tau}), a]_{\sigma, \tau}\alpha + f([x, u]_{\sigma, \tau})[\alpha, \sigma(a)] + [[x, u]_{\sigma, \tau}, a]_{\sigma, \tau}d(\alpha)$
+ $[x, u]_{\sigma, \tau}[d(\alpha), \sigma(a)]$

and so

 $[[x, u]_{\sigma,\tau}, a]_{\sigma,\tau} d(\alpha) = 0$ for all $x \in R, u \in U$.

Since R is prime and $0 \neq d(\alpha) \in Z$, we see that

(2.2)
$$[[x, u]_{\sigma,\tau}, a]_{\sigma,\tau} = 0 \text{ for all } x \in R, u \in U.$$

Substituting $x\sigma(u)$ for x in (2.2) and using this equation, we obtain

$$[x, u]_{\sigma,\tau}\sigma([u, a]) = 0$$
 for all $x \in R, u \in U$.

Now, taking xy instead of x in the last equation, we obtain

$$[R, \tau(u)]R\sigma([u, a]) = 0 \text{ for all } u \in U.$$

Since R is a prime ring, it follows either $u \in Z$ or [u, a] = 0 for all $u \in U$. By a standard argument one of these must hold for all $u \in U$. If $u \in Z$ for

all $u \in U$, then $U \subset Z$, and so $\sigma(u) + \tau(u) \in Z$ for all $u \in U$. If [U, a] = 0, then $a \in Z$ or $\sigma(u) + \tau(u) \in Z$ for all $u \in U$ by Lemma 2. Thus the proof is completed.

Theorem 1. Let R be a prime ring with $\operatorname{char} R \neq 2$, (f, d), (g, h) two generalized derivations of R and U a noncentral (σ, τ) -left Lie ideal of R. If f(u) v = ug(v) for all $u, v \in U$, then $\sigma(u) + \tau(u) \in Z$ for all $u \in U$.

Proof. Suppose that $\sigma(u) + \tau(u) \notin Z$ for some $u \in U$. Then there exists a nonzero ideal M of R such that $[R, M]_{\sigma, \tau} \subset U$ and $[R, M]_{\sigma, \tau} \notin C_{\sigma, \tau}$ by Lemma 3. For any $x \in R$ and $m \in M$, $\tau(m)[x, m]_{\sigma, \tau} = [\tau(m)x, m]_{\sigma, \tau} \in U$. Taking $\tau(m)[x, m]_{\sigma, \tau}$ instead of u in the hypothesis, we get

$$f\left(\tau\left(m\right)\left[x,m\right]_{\sigma,\tau}\right)v = \tau\left(m\right)\left[x,m\right]_{\sigma,\tau}g\left(v\right),$$

 $d\left(\tau\left(m\right)\right)\left[x,m\right]_{\sigma,\tau}v+\tau\left(m\right)f\left(\left[x,m\right]_{\sigma,\tau}\right)v=\tau\left(m\right)\left[x,m\right]_{\sigma,\tau}g\left(v\right).$

Using the hypothesis in the above relation, we arrive at

$$d(\tau(m))[x,m]_{\sigma,\tau}v = 0$$
 for all $m \in M, v \in U, x \in R$.

That is

$$d(\tau(m))[x,m]_{\sigma\tau}U = (0)$$
 for all $m \in M, x \in R$.

By Lemma 1, we obtain that

(2.3)
$$d(\tau(m))[x,m]_{\sigma,\tau} = 0 \text{ for all } m \in M, \ x \in R.$$

Replacing x by $xy, y \in R$ in (2.3) and using (2.3), we have

$$d(\tau(m)) x[y,\sigma(m)] = 0$$

and so

$$d(\tau(m)) R[y, \sigma(m)] = 0$$
 for all $m \in M, y \in R$.

Since R is a prime ring, it follows that

$$m \in Z$$
 or $d(\tau(m)) = 0$ for all $m \in M$.

Let $L = \{m \in M \mid m \in Z\}$ and $K = \{m \in M \mid d(\tau(m)) = 0\}$. By the same method in Lemma 4, we get d = 0, a contradiction. This completes the proof.

An immediately results of Theorem 1 we give the following corollaries.

Corollary 1. Let R be a prime ring with char $R \neq 2$, (f, d), (g, h) two generalized derivations of R and U a noncentral (σ, τ) -left Lie ideal of R. If f(u) u = ug(u) for all $u \in U$, then $\sigma(u) + \tau(u) \in Z$ for all $u \in U$.

In particular if we take f = g, then we have the following corollary, which is a generalization of [13, Theorem] for the case when characteristic of underlying ring is different from two.

Corollary 2. Let R be a prime ring with char $R \neq 2$, (f,d) a generalized derivation of R and U a noncentral (σ, τ) -left Lie ideal of R. If [u, f(u)] = 0 for all $u \in U$, then $\sigma(u) + \tau(u) \in Z$ for all $u \in U$.

Corollary 3. Let R be a prime ring with char $R \neq 2$, d, h two nonzero derivations of R and U a noncentral (σ, τ) -left Lie ideal of R. If d(u)v = uh(v) for all $u, v \in U$, then $\sigma(u) + \tau(u) \in Z$ for all $u \in U$.

Theorem 2. Let R be a prime ring with char $R \neq 2, U$ a nonzero (σ, τ) -left Lie ideal of R. Let $a, b \in R$ and $f: R \to R$ be a mapping such that f(x) = xa - bx for all $x \in R$. If $f(U) \subset U$ and $f(U) \subset Z$, then $\sigma(u) + \tau(u) \in Z$ for all $u \in U$.

Proof. By the hypothesis, for all $u \in U$, we have $f(u) = ua - bu \in Z$. Commuting this element by u, we obtain that,

(2.4) $u[a, u] = [b, u] u \text{ for all } u \in U.$

A linearization of (2.4) yields that

$$u[a, v] + v[a, u] = [b, v] u + [b, u] v.$$

Taking f(u) instead of u in the above equation, we find that

$$f(u)[a,v] + v[a, f(u)] = [b,v] f(u) + [b, f(u)] v$$

Using $f(u) \in Z$ in the last equation, we have

(2.5) $f(u)([a, v] - [b, v]) = 0 \text{ for all } u, v \in U.$

Using the primeness of R and $f(u) \in Z$ in (2.5), we conclude that

$$f(U) = 0$$
 or $[a - b, U] = (0)$

If [a - b, U] = (0), then $a - b \in Z$ or $\sigma(u) + \tau(u) \in Z$ for all $u \in U$ by Lemma 2. Now, we assume that $a - b \in Z$. From (2.4), we obtain

(2.6) $u^2a - uau = ubu - bu^2 \text{ for all } u \in U.$

Let $a - b = \alpha$, $\alpha \in \mathbb{Z}$. Writing $a = b + \alpha$ in (2.6), we have

 $u^2b + u^2\alpha - ubu - u\alpha u = ubu - bu^2,$

 $u^2b + u^2\alpha + bu^2 = 2ubu + u\alpha u$

Using $\alpha \in Z$ in the last equation, we get

$$u^{2}b + bu^{2} - 2ubu = 0,$$
$$u^{2}b - ubu = ubu - bu^{2}$$

and so

$$u\left[u,b\right] = \left[u,b\right]u.$$

That is

$$[u, [u, b]] = 0$$
 for all $u \in U$.

This yields that $[u, d_b(u)] = 0$, where $d_b : R \to R$, $d_b(x) = [x, b]$ is an inner derivation of R. Therefore $\sigma(u) + \tau(u) \in Z$ for all $u \in U$ or $d_b = 0$ by Corollary 2.

If $d_b = 0$, then $b \in Z$. We have $f(u) = ua - bu = u(a - b) \in Z$, by the hypothesis. Since $a - b \in Z$ and R is a prime ring, we obtain that $U \subset Z$ or a - b = 0.

Now, we assume that a = b. Using $b \in Z$, we get

f(x) = xa - bx = xb - bx = 0 for all $x \in R$.

As a result f = 0, and so f(U) = 0. Hence $\sigma(u) + \tau(u) \in Z$ for all $u \in U$ according to Lemma 4. This completes the proof.

Corollary 4. Let R be a prime ring with char $R \neq 2, U$ a nonzero (σ, τ) -Lie ideal of R and $a \in R$. If $[U, a]_{\sigma, \tau} \subset Z$, then $a \in Z$ or $\sigma(u) + \tau(u) \in Z$ for all $u \in U$.

Proof. Let f be a mapping such that $f(x) = [x, a]_{\sigma, \tau} = x\sigma(a) - \tau(a)x$ for all $x \in R$. Since U is a (σ, τ) - Lie ideal, we have $f(U) \subset U$. By Theorem 2, we get $\sigma(u) + \tau(u) \in Z$ for all $u \in U$.

We can give a following corollary in view of Corollary 4, which is a generalization of [11, Lemma 1].

Corollary 5. Let R be a prime ring with char $R \neq 2, U$ a nonzero (σ, τ) -Lie ideal of R. If $[U, U]_{\sigma, \tau} \subset Z$, then $\sigma(u) + \tau(u) \in Z$ for all $u \in U$.

Theorem 3. Let R be a prime ring with char $R \neq 2, U$ a nonzero (σ, τ) -Lie ideal of R, (f, d) a generalized derivation of R such that $f\sigma = \sigma f$, $f\tau = \tau f$ and $d(Z) \neq 0$. If (f, d) satisfies one of the following conditions, then $\sigma(u) + \tau(u) \in Z$ for all $u \in U$.

i) $f([u,v]_{\sigma,\tau}) = [u,v]_{\sigma,\tau}$ for all $u, v \in U$.

ii) $f([u,v]_{\sigma,\tau}) = -[u,v]_{\sigma,\tau}$ for all $u, v \in U$.

iii) For each $u, v \in U$, either $f([u, v]_{\sigma, \tau}) = [u, v]_{\sigma, \tau}$ or $f([u, v]_{\sigma, \tau}) = -[u, v]_{\sigma, \tau}$.

Proof. i) By the hypothesis, we obtain

(2.7)
$$f([u,v]_{\sigma,\tau}) = [d(u),v]_{\sigma,\tau} + [u,f(v)]_{\sigma,\tau} = [u,v]_{\sigma,\tau} \text{ for all } u,v \in U.$$

Replacing v by $[v, w]_{\sigma,\tau}$, $w \in U$ in (2.7), we get

 $[d(u), [v, w]_{\sigma,\tau},]_{\sigma,\tau} + [u, f([v, w]_{\sigma,\tau},)]_{\sigma,\tau} = [u, [v, w]_{\sigma,\tau},]_{\sigma,\tau}.$

Using the hypothesis, we have

$$[d(u), [v, w]_{\sigma,\tau},]_{\sigma,\tau} + [u, [v, w]_{\sigma,\tau},]_{\sigma,\tau} = [u, [v, w]_{\sigma,\tau},]_{\sigma,\tau}$$

and so

$$[d(u), [v, w]_{\sigma,\tau},]_{\sigma,\tau} = 0 \text{ for all } u, v, w \in U.$$

That is

$$\Big[d(U),[U,U]_{\sigma,\tau}\Big]_{\sigma,\tau}=(0).$$

By Lemma 5, we conclude that, $[U, U]_{\sigma,\tau} \subset Z$ or $\sigma(u) + \tau(u) \in Z$ for all $u \in U$. If $[U, U]_{\sigma,\tau} \subset Z$, then we have already $\sigma(u) + \tau(u) \in Z$ for all $u \in U$ by Corollary 5.

- ii) can be proved by using the same techniques.
- iii) For each $w \in U$, we put

$$U_w = \{ v \in U \mid f([w, v]_{\sigma, \tau}) = [w, v]_{\sigma, \tau} \}$$

and

$$U_w^* = \{ v \in U \mid f([w, v]_{\sigma, \tau}) = -[w, v]_{\sigma, \tau} \}.$$

Then additive group U is the union of its two subgroups U_w and U_w^* . But a group cannot be the union of its proper subgroups, hence $U = U_w$ or $U = U_w^*$. By using the same method as used in (i) or (ii), we get the required result. \Box

References

- E. Albaş and N. Argaç, Generalized derivations of prime rings, Algebra Colloq. 11 (2004), no. 3, 399–410.
- [2] N. Argaç, On prime and semiprime rings with derivations, Algebra Colloq. 13 (2006), no. 3, 371–380.
- [3] N. Aydın, On one sided (σ, τ) -Lie ideals in prime rings, Turkish J. Math. **21** (1997), no. 3, 295–301.
- [4] N. Aydın and H. Kandamar, (σ, τ) -Lie ideals in prime rings, Turkish J. Math. **18** (1994), no. 2, 143–148.
- [5] N. Aydın, K. Kaya, and Ö. Gölbaşı, Some results on one-sided generalized Lie ideals with derivation, Math. Notes (Miskolc) 3 (2002), no. 2, 83–89.
- [6] N. Aydın and M. Soytürk, (σ, τ) -Lie ideals in prime rings with derivation, Turkish J. Math. **19** (1995), no. 3, 239–244.
- [7] J. Bergen, I. N. Herstein, and J. W. Kerr, Lie ideals and derivations of prime rings, J. Algebra 71 (1981), no. 1, 259–267.
- [8] M. Bresar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991), no. 1, 89–93.
- M. N. Daif and H. E. Bell, Remarks on derivations on semiprime rings, Internat. J. Math. Math. Sci. 15 (1992), no. 1, 205–206.
- [10] Ö. Gölbaşı and K. Kaya, On Lie ideals with generalized derivations, Sibirsk. Mat. Zh. 47 (2006), no. 5, 1052–1057; translation in Siberian Math. J. 47 (2006), no. 5, 862–866.
- [11] I. N. Herstein, On the Lie structure of an associative ring, J. Algebra 14 (1970), 561– 571.
- [12] _____, A note on derivations, Canad. Math. Bull. **21** (1978), no. 3, 369–370.
- [13] _____, A note on derivations. II, Canad. Math. Bull. 22 (1979), no. 4, 509-511.
- [14] B. Hvala, Generalized derivations in rings, Comm. Algebra 26 (1998), no. 4, 1147–1166.
- [15] K. Kaya, (σ, τ) -Lie ideals in prime rings, An. Univ. Timisoara Ser. Stiinte Math. **30** (1992), no. 2-3, 251–255.
- [16] K. Kaya and N. Aydın, Some results in generalized Lie ideals, Albasapr Sci. J. Isued by Jordan University for Woman 3 (1999), no. 1, 53–61.
- [17] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100.

ÖZNUR GÖLBAŞI DEPARTMENT OF MATHEMATICS FACULTY OF ARTS AND SCIENCE CUMHURIYET UNIVERSITY SIVAS, TURKEY *E-mail address:* ogolbasi@cumhuriyet.edu.tr

EMINE KOÇ DEPARTMENT OF MATHEMATICS FACULTY OF ARTS AND SCIENCE CUMHURIYET UNIVERSITY SIVAS, TURKEY *E-mail address*: eminekoc@cumhuriyet.edu.tr