
KYUNGPOOK Math. J. 50(2010), 379-387

On Orthogonal Generalized (σ, τ)-Derivations of Semiprime
Near-Rings

Shuliang Huang
Department of Mathematics, Chuzhou University, Chuzhou Anhui, 239012, P. R.
China
e-mail : shulianghuang@sina.com

Abstract. In this paper, we present some results concerning orthogonal generalized

(σ, τ)-derivations in semiprime near-rings. These results are a generalization of results

of Bresar and Vukman, which are related to a theorem of Posner for the product of two

derivations in prime rings.

1. Introduction

As is well known, the study of derivations of near-rings was initiated by Bell and
Mason [3]. An additively written group (N,+) (not necessary abelian) equipped
with a binary operation · : N × N −→ N, (x, y) −→ xy, such that (xy)z = x(yz)
and x(y + z) = xy + xz for all x, y, z ∈ N is called a (left) near-ring. A near-ring
N is said to be zero-symmetric if 0x = 0 for all x ∈ N . Following example, due to
Beidar et al.,[5] shows that such near-rings do exist. Let V be a linear space with a
basis e1, e2, . . . , en over a field F of characteristic different from two. Define a mul-
tiplication · : V ×V −→ V by the rule vw = 0 for all v, w ∈ V with v ̸= e1, v ̸= −e1
and e1w = w, (−e1)w = −w. One can easily check that V is a left zero-symmetric
near-ring with respect to this multiplication. In view of the above multiplication
e1(e2 + e3) = e2 + e3. On the other hand, neither e2 + e3 = e1 nor e2 + e3 = −e1
since e1, e2, . . . , en is linearly independent, and hence (e2 + e3)e1 = 0. Obviously,
V is not a ring since right distributive law fails. For more natural examples of left
near-rings we refer the reader to [6]. In [4], Bresar and Vukman introduced the
notion of orthogonality for two derivations in a semiprime ring and proved some re-
sults on the orthogonal derivations of semiprime rings which are related to Posner’s
First Theorem [9]. In [2], Argac et al., introduced the notion of orthogonality for
a pair (D, d), (G, g) of generalized derivations on semiprime rings and gave several
necessary and sufficient conditions for (D, d) and (G, g) to be orthogonal. Golbasi
and Aydin [7] extended their results to orthogonal generalized (σ, τ)-derivations.
In [8], Park and Jung proved some results on orthogonal generalized derivations in
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semiprime near-rings. Motivated by the above, our purpose is to present orthogonal
generalized (σ, τ)-derivations in semiprime near-rings. In fact, our results extend
and unify some results proved in [1], [2], [7] and [8].

Throughout this paper, N will denote a zero-symmetric left near-ring. We say
that N is 2-torsion free if 2x = 0, x ∈ N , implies that x = 0. Recall that a near-ring
N is prime if xNy = {0} implies x = 0 or y = 0, and N is semiprime if xNx = {0}
implies x = 0. An additive mapping d : N −→ N is said to be a derivation on N
if d(xy) = d(x)y + xd(y) for all x, y ∈ N . An additive mapping f : N −→ N is
said to be a generalized derivation on N if there exists a derivation d on N such
that f(xy) = f(x)y + xd(y) for all x, y ∈ N , and denoted by (f, d). Let σ and τ be
two near-ring endomorphisms of N . An additive mapping d : N −→ N is called a
(σ, τ)-derivation if d(xy) = d(x)σ(y) + τ(x)d(y) holds for all x, y ∈ N . An additive
mapping F : N −→ N is called a generalized (σ, τ)-derivation if there exists a
(σ, τ)-derivation d such that F (xy) = F (x)σ(y) + τ(x)d(y) holds for all x, y ∈ N .
A generalized (σ, τ)-derivation F associated with d will denote (F, d). Note that if
d = F , then a generalized (σ, τ)-derivation F is just a (σ, τ)-derivation. If σ = τ = 1,
the identity map on N , then a generalized (σ, τ)-derivation F is simply a generalized
derivation. If σ = τ = 1 and d = F , then a generalized (σ, τ)-derivation F is
a derivation. Hence the class of generalized (σ, τ)-derivations includes those of
derivations, generalized derivations and (σ, τ)-derivations. Given an endomorphism
α of N , an additive mapping f : N −→ N is called a left (resp. right) α-centralizer
of N if f(xy) = f(x)α(y) (resp. f(xy) = α(x)f(y)) for all x, y ∈ N . Two additive
mappings d, g : N −→ N are called orthogonal if d(x)Ng(y) = {0} = g(y)Nd(x)
for all x, y ∈ N . It is obvious that a nonzero generalized (σ, τ)-derivation cannot be
orthogonal to itself in semiprime near-rings.

The following example shows that orthogonal generalized (σ, τ)-derivations on
semiprime near-rings do exist. Let N be any prime near-ring and d a (σ, τ)-
derivation of N . Set S = N

⊕
N , then S is semiprime near-ring. It is easy to

see that F : N −→ N defined by F (xy) = aσ(xy)+d(xy) for some fixed a ∈ N , is a
generalized (σ, τ)-derivation of N . Define F1, F2 : S −→ S by F1((x, y)) = (F (x), 0)
and F2((x, y)) = (0, F (y)), then it is straightforward to check that F1 and F2 are
orthogonal generalized (σ, τ)-derivations on S.

2. Preliminary results

We begin with the following lemmas which will be used in the sequel.

Lemma 2.1([8, Lemma 1]). Let N be a 2-torsion free semiprime near-ring and
a, b ∈ N . Then the following conditions are equivalent:

(i) axb = 0 for all x ∈ N .
(ii) bxa = 0 for all x ∈ N .
(iii) axb+ bxa = 0 for all x ∈ N .
If one of the three conditions is fulfilled, then ab = ba = 0.

Lemma 2.2. Let (F, d) be a generalized (σ, τ)-derivation of near-ring N , where σ
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is an automorphism of N . Then the following hold:
(i) (F (x)σ(y) + τ(x)d(y))z = F (x)σ(y)z + τ(x)d(y)z for all x, y, z ∈ N .
(ii) (d(x)σ(y) + τ(x)d(y))z = d(x)σ(y)z + τ(x)d(y)z for all x, y, z ∈ N .

Proof. (i) For all x, y, z ∈ N , on the one hand,

F ((xy)z) = F (xy)σ(z) + τ(xy)d(z) = (F (x)σ(y) + τ(x)d(y))σ(z) + τ(x)τ(y)d(z).

On the other hand,

F (x(yz)) = F (x)σ(yz)+ τ(x)d(yz) = F (x)σ(y)σ(z)+ τ(x)d(y)σ(z)+ τ(x)τ(y)d(z).

Comparing these two expressions of F (xyz), we have

(F (x)σ(y) + τ(x)d(y))σ(z) = F (x)σ(y)σ(z) + τ(x)d(y)σ(z)

for all x, y, z ∈ N . Since σ is an automorphism of N , and so

(F (x)σ(y) + τ(x)d(y))z = F (x)σ(y)z + τ(x)d(y)z

is fulfilled for all x, y, z ∈ N .
(ii) It is proved by the same arguments as (i). 2

3. The main results

In all that follows, unless stated otherwise, we always assume that Fσ = σF ,
Fτ = τF , dσ = σd, dτ = τd in the symbol (F, d), while σ and τ are automorphisms
of N .

Theorem 3.1. Let N be a 2-torsion free semiprime near-ring. Suppose that (F1, d1)
(resp. (F2, d2))is a generalized (σ1, τ1)-derivation (resp. (σ2, τ2)-derivation) of N .
If F1 and F2 are orthogonal, then the following conditions are true:

(i) d1 and F2 are orthogonal.
(ii) d2 and F1 are orthogonal.
(iii) d1 and d2 are orthogonal.
(iv) d1F2 = F2d1 = 0, d2F1 = F1d2 = 0, d1d2 = d2d1 = 0, F1F2 = F2F1 = 0.

Proof. (i) By hypothesis,

F1(x)zF2(y) = 0 for all x, y, z ∈ N. (1)

Application of Lemma 2.1 yields that

F1(x)F2(y) = 0 for all x, y ∈ N. (2)

Replacing x by rx in (2) and using Lemma 2.2, we get

0 = F1(rx)F2(y)

= (F1(r)σ1(x) + τ1(r)d1(x))F2(y)

= F1(r)σ1(x)F2(y) + τ1(r)d1(x)F2(y)

= τ1(r)d1(x)F2(y)



382 Shuliang Huang

for all x, y, r ∈ N . Since τ1 is an automorphism of N , we have Nd1(x)F2(y) = {0}
and hence

d1(x)F2(y) = 0 (3)

by the semiprimeness of N . Replacing x by xr in (3) and using Lemma 2.2, we
obtain

0 = d1(xr)F2(y)

= (d1(x)σ1(r) + τ1(x)d1(r))F2(y)

= d1(x)σ1(r)F2(y) + τ1(x)d1(r)F2(y)

= d1(x)σ1(r)F2(y)

for all x, y, r ∈ N . Since σ1 is an automorphism of N , we have d1(x)rF2(y) = 0 for
all x, y, r ∈ N , and so F2(y)rd1(x) = 0 by Lemma 2.1, which shows (i).

(ii) Using the same arguments in the proof of (i), we prove (ii).
(iii) Replacing x, y by xr, ys respectively in (2) and using Lemma 2.2, for all

x, y, r, s ∈ N , we have

0 = F1(xr)F2(ys)

= (F1(x)σ1(r) + τ1(x)d1(r))(F2(y)σ2(s) + τ2(y)d2(s))

= F1(x)σ1(r)(F2(y)σ2(s) + τ2(y)d2(s)) + τ1(x)d1(r)(F2(y)σ2(s) + τ2(y)d2(s))

= τ1(x)d1(r)τ2(y)d2(s)

where the last equation uses the orthogonality of F1 and F2, d1 and F2, d2 and F1.
Since τ1 is an automorphism of N , the last relation gives Nd1(r)τ2(y)d2(s) =

{0} and hence d1(r)τ2(y)d2(s) = 0 by the semiprimeness of N . This implies that
d1(r)td2(s) = 0 since τ1 is also an automorphism of N . We have d2(s)td1(r) = 0 by
Lemma 2.1 for all r, s, t ∈ N . Thus, d1 and d2 are orthogonal.

(iv) It follows from (iii) that d1 and d2 are orthogonal. Hence

0 = d1(d2(x)zd1(y)) = d1d2(x)σ1(z)σ1d1(y) + τ1d2(x)d1(zd1(y))

for all x, y, z ∈ N . Using the facts that d1σ1 = σ1d1, τ1d2 = d2τ1 and the or-
thogonality of d1 and d2, the last relation reduces to d1d2(x)σ1(z)d1σ1(y) = 0 and
hence

d1d2(x)Nd1(y) = {0} (4)

since τ1 is an automorphism of N . Replacing y by d2(x) in (4), we get
d1d2(x)Nd1d2(x) = {0} and hence d1d2 = 0 by the semiprimeness of N .

Similarly, since each of the equalities: d2(d1(x)zd2(y)) = 0, d1(F2(x)zd1(y)) =
0, F2(d1(x)zF2(y)) = 0, d2(F1(x)zd2(y)) = 0, F1(d2(x)zF1(y)) = 0, F1(F2(x)zF1(y)) =
0 and F2(F1(x)zF2(y)) = 0 holds for all x, y, z ∈ N , we have d2d1 = d1F2 = F2d1 =
d2F1 = F1d2 = F1F2 = F2F1 = 0, respectively. 2

Theorem 3.2. Let N be a 2-torsion free semiprime near-ring. Suppose that (F1, d1)
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(resp. (F2, d2)) is a generalized (σ1, τ1)-derivation (resp. (σ2, τ2)-derivation) of N .
Then the following conditions are equivalent:

(i) F1 and F2 are orthogonal.
(ii) F1(x)F2(y) = d1(x)F2(y) = 0 for all x, y ∈ N .
(iii) F2(x)F1(y) = d2(x)F1(y) = 0 for all x, y ∈ N .

Proof. (i) =⇒ (ii) It is obvious by Theorem 3.1.
(ii) =⇒ (i) We are given that F1(x)F2(y) = 0 for all x, y ∈ N . Replacing x by

xz in the above equation and using Lemma 2.2, we find that

0 = F1(xz)F2(y)

= (F1(x)σ1(z) + τ1(x)d1(z))F2(y)

= F1(x)σ1(z)F2(y) + τ1(x)d1(z)F2(y)

= F1(x)σ1(z)F2(y),

where the last equality uses the fact d1(x)F2(y) = 0 for all x, y ∈ N . Since σ1 is an
automorphism of N , we have F1(x)zF2(y) = 0 and hence F2(y)zF1(x) = 0 for all
x, y, z ∈ N , by Lemma 2.1. Thus, F1 and F2 are orthogonal.

(i) ⇐⇒ (iii) The proof is similar to (i) ⇐⇒ (ii). 2

When σ1 = σ2 = σ and τ1 = τ2 = τ , we can prove the following:

Theorem 3.3. Let N be a 2-torsion free semiprime near-ring. Suppose that
both (F1, d1) and (F2, d2) are generalized (σ, τ)-derivations of N . Then F1 and
F2 are orthogonal if and only if (F1F2, d1d2) is a generalized (σ2, τ2)-derivation
and F1(x)F2(y) = 0 for all x, y ∈ N .

Proof. Suppose that (F1F2, d1d2) is a generalized (σ2, τ2)-derivation and F1(x)F2(y) =
0 for all x, y ∈ N . On the one hand,

F1F2(xy) = F1F2(x)σ
2(y) + τ2(x)d1(x)d2(y) for all x, y ∈ N. (5)

On the other hand, F1F2(xy) = F1(F2(x)σ(y) + τ(x)d2(y)), which implies that

F1F2(xy) = F1F2(x)σ
2(y) + τF2(x)d1σ(y) + F1τ(x)σd2(y) + τ2(x)d1(x)d2(y). (6)

Comparing (5) with (6), we have τF2(x)d1σ(y)+F1τ(x)σd2(y) = 0 for all x, y ∈ N .
Since F2τ = τF2, d2σ = σd2 and σ, τ are automorphisms of N , the above equation
can be rewritten as

F2(x)d1(y) + F1(x)d2(y) = 0 for all x, y ∈ N. (7)

Recalling our hypothesis, F1(x)F2(y) = 0 for all x, y ∈ N , we have

0 = F1(x)F2(yz) = F1(x)F2(y)σ(z) + F1(x)τ(y)d2(z) = F1(x)τ(y)d2(z)

for all x, y, z ∈ N . Since τ is an automorphism of N , we have F1(x)yd2(z) = 0 for
all x, y, z ∈ N . Making use of Lemma 2.1, we arrive at

F1(x)d2(y) = 0 for all x, y ∈ N. (8)
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Comparing (7) with (8), we see that

F2(x)d1(y) = 0 for all x, y ∈ N. (9)

Replacing y by rs in (9), we have

0 = F2(x)d1(ys) = F2(x)d1(y)σ(s) + F2(x)τ(r)d1(s) = F2(x)τ(r)d1(s)

for all x, y, r, s ∈ N . Since τ is an automorphism of N , the last relation yields that
F2(x)rd1(s) = 0 and hence d1(s)F2(x) = 0 by Lemma 2.1. Now we conclude that
F1(x)F2(y) = 0 = d1(x)F2(y) for all x, y ∈ N . Therefore, from Theorem 3.2, we
obtain the result. Conversely, if F1 and F2 are orthogonal, then it follows from
Theorem 3.1 that F1F2 = d1d2 = 0, as required. 2

Theorem 3.4. Let N be a 2-torsion free semiprime near-ring. Suppose that both
(F1, d1) and (F2, d2) are generalized (σ, τ)-derivations of N . If both F1, d2 are
orthogonal and F2, d1 are orthogonal, then the following holds:

(i) d1d2 = 0 and F1F2 is a left σ1σ2-centralizer of N .
(ii) d2d1 = 0 and F2F1 is a left σ2σ1-centralizer of N .

Proof. (i) Since F1 and d2 are orthogonal, we have

F1(x)yd2(z) = 0 for all x, y, z ∈ N. (10)

Replacing x by rx in (10) and using Lemma 2.2, we get

0 = F1(rx)yd2(z) = F1(r)σ1(x)yd2(z) + τ1(r)d1(x)yd2(z) = τ1(r)d1(x)yd2(z)

for all x, y, z, r ∈ N . Since τ1 is an automorphism of N , from the last rela-
tion Nd1(x)yd2(z) = {0} and hence d1(x)yd2(z) = 0 for all x, y, z ∈ N , by the
semiprimeness of N . Consequently, d1 and d2 are orthogonal and so d1d2 = 0 ac-
cording to Theorem 3.1. On the other hand, by hypothesis, since F1, d2 are orthog-
onal and F2, d1 are orthogonal, we obtain that F1(x)d2(y) = 0 and F2(x)d1(y) = 0
for all x, y ∈ N . Noting that the fact F2τ1 = τ1F2 and d2σ1 = σ1d2, for all x, y ∈ N ,
we find that

F1F2(xy) = F1(F2(x)σ2(y) + τ2(x)d2(y))

= F1F2(x)σ1σ2(y) + τ1F2(x)d1σ2(y) + F1τ2(x)σ1d2(y) + τ1τ2(x)d1d2(y)

= F1F2(x)σ1σ2(y) + F2τ1(x)d1σ2(y) + F1τ2(x)d2σ1(y) + τ1τ2(x)d1d2(y)

= F1F2(x)σ1σ2(y)

(ii) It can be proved by using the same techniques. 2

Corollary 3.1([6, Theorem 2]). Let N be a 2-torsion free semiprime near-ring.
Suppose that both (f, d) and (g, δ) are generalized derivations of N . If both f and δ
are orthogonal and g and d are orthogonal, then we have

(i) dδ = 0 and fg is a left centralizer of N .
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(ii) δd = 0 and gf is a left centralizer of N .

Proof. Take σ1 = τ1 = σ2 = τ2 = 1 in Theorem 3.4, where 1 : N −→ N is the
identity map of N . 2

The following result, without the assumption of Fσ = σF , Fτ = τF , dσ = σd,
dτ = τd, is of independent interest.

Theorem 3.5. Let N be a 2-torsion free semiprime near-ring. If (F, d) is a general-
ized (σ, τ)-derivation of N such that F (x)F (y) = 0 for all x, y ∈ N , then F = d = 0.

Proof. We are given that F (x)F (y) = 0 for all x, y ∈ N . Writing yz for y in the
above equation, we obtain

0 = F (x)F (yz) = F (x)F (y)σ(z) + F (x)τ(y)d(z) = F (x)τ(y)d(z)

for all x, y, z ∈ N . Since τ is an automorphism of N , we obtain F (x)yd(z) = 0 and
so

d(z)F (x) = 0 (11)

by Lemma 2.1. Replacing x by xz in (11), we get 0 = d(z)F (xz) = d(z)F (x)σ(z)+
d(z)τ(x)d(z) = d(z)τ(x)d(z) for all x, z ∈ N . Since τ is an automorphism of N ,
we have d(z)Nd(z)=0 and so d = 0 by the semiprimeness of N . Now using hy-
pothesis and Lemma 2.2, we get 0 = F (xz)F (y) = F (x)σ(z)F (y)+ τ(x)d(z)F (y) =
F (x)σ(z)F (y) for all x, y, z ∈ N , and hence F (x)NF (y) = {0}, in particular,
F (x)NF (x) = {0} for all x ∈ N . The semiprimeness of N forces that F = 0, as
required. 2

Corollary 3.2([6, Theorem 3]). Let N be a 2-torsion free semiprime near-ring. If
(f, d) is a generalized derivation of N such that f(x)f(y) = 0 for all x, y ∈ N , then
f = d = 0.

Proof. Setting σ = τ = 1 in Theorem 3.5, we obtain the result of the corollary. 2

The following example shows that the hypothesis of semiprimeness is essential
in Theorem 3.1(iv),Theorems 3.4-3.5 and Corollaries 3.1-3.2.

Example 3.1. Let S be any near-ring and N =

{(
a b
0 0

)
| a, b ∈ S

}
. We define

maps d1, d2 : N → N as follows: d1

(
a b
0 0

)
=

(
0 b
0 0

)
and d2

(
a b
0 0

)
=(

0 −b
0 0

)
. Then it is easy to see that d1 and d2 are nonzero orthogonal derivations

of N satisfying d1(x)d2(y) = 0 for all x, y ∈ N . We know that a derivation is a
special type of generalized (σ, τ)-derivation, namely, σ = τ = 1 and d = F in the
symbol (F, d). However, it is straightforward to check that neither d1d2 = 0 nor
d2d1 = 0.
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The following example demonstrates that Theorem 3.2 fails if we omit the
semiprimeness of N .

Example 3.2. Let S be any near-ring and N =

{(
a b
0 c

)
| a, b, c ∈ S

}
. Define

maps d1, d2 : N → N as follows: d1

(
a b
0 c

)
=

(
−a b
0 0

)
and d2

(
a b
0 c

)
=(

0 a− c
0 0

)
. It is easy to check that d1 and d2 are nonzero derivations of N such

that d2(x)d1(y) = 0, however d1(x)d2(y) ̸= 0 for all x, y ∈ N .

The following example shows that the hypothesis of semiprimeness is crucial in
Theorem 3.3.

Example 3.3. Let S be any near-ring and N=


 0 a b

0 0 c
0 0 0

 |a, b, c ∈ S

. De-

fine maps F, d : R −→ R and σ, τ : R −→ R as follows:

F

 0 a b
0 0 c
0 0 0

 =

 0 0 b
0 0 0
0 0 0

 , d

 0 a b
0 0 c
0 0 0

 =

 0 a 0
0 0 0
0 0 0

 ,

σ

 0 a b
0 0 c
0 0 0

 =

 0 −a b
0 0 −c
0 0 0

 τ

 0 a b
0 0 c
0 0 0

 =

 0 −a −b
0 0 −c
0 0 0

 .

One can verify that (F, d) is a generalized (σ, τ)-derivation of N which is orthogonal
to itself, but (F 2, d2) is not a generalized (σ2, τ2)-derivation of N .
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