KYUNGPOOK Math. J. 50(2010), 379-387

On Orthogonal Generalized (σ, τ) -Derivations of Semiprime Near-Rings

SHULIANG HUANG Department of Mathematics, Chuzhou University, Chuzhou Anhui, 239012, P. R. China e-mail: shulianghuang@sina.com

ABSTRACT. In this paper, we present some results concerning orthogonal generalized (σ, τ) -derivations in semiprime near-rings. These results are a generalization of results of Bresar and Vukman, which are related to a theorem of Posner for the product of two derivations in prime rings.

1. Introduction

As is well known, the study of derivations of near-rings was initiated by Bell and Mason [3]. An additively written group (N, +) (not necessary abelian) equipped with a binary operation $\cdot: N \times N \longrightarrow N, (x, y) \longrightarrow xy$, such that (xy)z = x(yz)and x(y+z) = xy + xz for all $x, y, z \in N$ is called a (left) near-ring. A near-ring N is said to be zero-symmetric if 0x = 0 for all $x \in N$. Following example, due to Beidar et al., [5] shows that such near-rings do exist. Let V be a linear space with a basis e_1, e_2, \ldots, e_n over a field F of characteristic different from two. Define a multiplication $\cdot: V \times V \longrightarrow V$ by the rule vw = 0 for all $v, w \in V$ with $v \neq e_1, v \neq -e_1$ and $e_1w = w$, $(-e_1)w = -w$. One can easily check that V is a left zero-symmetric near-ring with respect to this multiplication. In view of the above multiplication $e_1(e_2 + e_3) = e_2 + e_3$. On the other hand, neither $e_2 + e_3 = e_1$ nor $e_2 + e_3 = -e_1$ since e_1, e_2, \ldots, e_n is linearly independent, and hence $(e_2 + e_3)e_1 = 0$. Obviously, V is not a ring since right distributive law fails. For more natural examples of left near-rings we refer the reader to [6]. In [4], Bresar and Vukman introduced the notion of orthogonality for two derivations in a semiprime ring and proved some results on the orthogonal derivations of semiprime rings which are related to Posner's First Theorem [9]. In [2], Argac et al., introduced the notion of orthogonality for a pair (D, d), (G, q) of generalized derivations on semiprime rings and gave several necessary and sufficient conditions for (D,d) and (G,g) to be orthogonal. Golbasi and Aydin [7] extended their results to orthogonal generalized (σ, τ) -derivations. In |8|, Park and Jung proved some results on orthogonal generalized derivations in

2000 Mathematics Subject Classification: 16N60, 16Y30, 16W25.

Key words and phrases: Semiprime near-ring, orthogonal generalized (σ, τ)-derivation, α -centralizer.

Received March 19, 2010; accepted August 27, 2010.

semiprime near-rings. Motivated by the above, our purpose is to present orthogonal generalized (σ, τ) -derivations in semiprime near-rings. In fact, our results extend and unify some results proved in [1], [2], [7] and [8].

Throughout this paper, N will denote a zero-symmetric left near-ring. We say that N is 2-torsion free if $2x = 0, x \in N$, implies that x = 0. Recall that a near-ring N is prime if $xNy = \{0\}$ implies x = 0 or y = 0, and N is semiprime if $xNx = \{0\}$ implies x = 0. An additive mapping $d: N \longrightarrow N$ is said to be a derivation on N if d(xy) = d(x)y + xd(y) for all $x, y \in N$. An additive mapping $f: N \longrightarrow N$ is said to be a generalized derivation on N if there exists a derivation d on N such that f(xy) = f(x)y + xd(y) for all $x, y \in N$, and denoted by (f, d). Let σ and τ be two near-ring endomorphisms of N. An additive mapping $d: N \longrightarrow N$ is called a (σ, τ) -derivation if $d(xy) = d(x)\sigma(y) + \tau(x)d(y)$ holds for all $x, y \in N$. An additive mapping $F: N \longrightarrow N$ is called a generalized (σ, τ) -derivation if there exists a (σ, τ) -derivation d such that $F(xy) = F(x)\sigma(y) + \tau(x)d(y)$ holds for all $x, y \in N$. A generalized (σ, τ) -derivation F associated with d will denote (F, d). Note that if d = F, then a generalized (σ, τ) -derivation F is just a (σ, τ) -derivation. If $\sigma = \tau = 1$, the identity map on N, then a generalized (σ, τ) -derivation F is simply a generalized derivation. If $\sigma = \tau = 1$ and d = F, then a generalized (σ, τ) -derivation F is a derivation. Hence the class of generalized (σ, τ) -derivations includes those of derivations, generalized derivations and (σ, τ) -derivations. Given an endomorphism α of N, an additive mapping $f: N \longrightarrow N$ is called a left (resp. right) α -centralizer of N if $f(xy) = f(x)\alpha(y)$ (resp. $f(xy) = \alpha(x)f(y)$) for all $x, y \in N$. Two additive mappings $d, g: N \longrightarrow N$ are called orthogonal if $d(x)Ng(y) = \{0\} = g(y)Nd(x)$ for all $x, y \in N$. It is obvious that a nonzero generalized (σ, τ) -derivation cannot be orthogonal to itself in semiprime near-rings.

The following example shows that orthogonal generalized (σ, τ) -derivations on semiprime near-rings do exist. Let N be any prime near-ring and d a (σ, τ) derivation of N. Set $S = N \bigoplus N$, then S is semiprime near-ring. It is easy to see that $F: N \longrightarrow N$ defined by $F(xy) = a\sigma(xy) + d(xy)$ for some fixed $a \in N$, is a generalized (σ, τ) -derivation of N. Define $F_1, F_2: S \longrightarrow S$ by $F_1((x, y)) = (F(x), 0)$ and $F_2((x, y)) = (0, F(y))$, then it is straightforward to check that F_1 and F_2 are orthogonal generalized (σ, τ) -derivations on S.

2. Preliminary results

We begin with the following lemmas which will be used in the sequel.

Lemma 2.1([8, Lemma 1]). Let N be a 2-torsion free semiprime near-ring and $a, b \in N$. Then the following conditions are equivalent:

(i) axb = 0 for all $x \in N$.

(ii) bxa = 0 for all $x \in N$.

(iii) axb + bxa = 0 for all $x \in N$.

If one of the three conditions is fulfilled, then ab = ba = 0.

Lemma 2.2. Let (F, d) be a generalized (σ, τ) -derivation of near-ring N, where σ

is an automorphism of N. Then the following hold:

- (i) $(F(x)\sigma(y) + \tau(x)d(y))z = F(x)\sigma(y)z + \tau(x)d(y)z$ for all $x, y, z \in N$.
- (ii) $(d(x)\sigma(y) + \tau(x)d(y))z = d(x)\sigma(y)z + \tau(x)d(y)z$ for all $x, y, z \in N$.

Proof. (i) For all $x, y, z \in N$, on the one hand,

$$F((xy)z) = F(xy)\sigma(z) + \tau(xy)d(z) = (F(x)\sigma(y) + \tau(x)d(y))\sigma(z) + \tau(x)\tau(y)d(z).$$

On the other hand,

$$F(x(yz)) = F(x)\sigma(yz) + \tau(x)d(yz) = F(x)\sigma(y)\sigma(z) + \tau(x)d(y)\sigma(z) + \tau(x)\tau(y)d(z) +$$

Comparing these two expressions of F(xyz), we have

$$(F(x)\sigma(y) + \tau(x)d(y))\sigma(z) = F(x)\sigma(y)\sigma(z) + \tau(x)d(y)\sigma(z)$$

for all $x, y, z \in N$. Since σ is an automorphism of N, and so

$$(F(x)\sigma(y) + \tau(x)d(y))z = F(x)\sigma(y)z + \tau(x)d(y)z$$

is fulfilled for all $x, y, z \in N$.

(ii) It is proved by the same arguments as (i).

3. The main results

In all that follows, unless stated otherwise, we always assume that $F\sigma = \sigma F$, $F\tau = \tau F$, $d\sigma = \sigma d$, $d\tau = \tau d$ in the symbol (F, d), while σ and τ are automorphisms of N.

Theorem 3.1. Let N be a 2-torsion free semiprime near-ring. Suppose that (F_1, d_1) (resp. (F_2, d_2)) is a generalized (σ_1, τ_1) -derivation (resp. (σ_2, τ_2) -derivation) of N. If F_1 and F_2 are orthogonal, then the following conditions are true:

(i) d_1 and F_2 are orthogonal.

(ii) d_2 and F_1 are orthogonal.

(iii) d_1 and d_2 are orthogonal. (iv) $d_1F_2 = F_2d_1 = 0$, $d_2F_1 = F_1d_2 = 0$, $d_1d_2 = d_2d_1 = 0$, $F_1F_2 = F_2F_1 = 0$.

Proof. (i) By hypothesis,

$$F_1(x)zF_2(y) = 0 \text{ for all } x, y, z \in N.$$
(1)

Application of Lemma 2.1 yields that

$$F_1(x)F_2(y) = 0 \text{ for all } x, y \in N.$$

$$\tag{2}$$

Replacing x by rx in (2) and using Lemma 2.2, we get

$$0 = F_1(rx)F_2(y)$$

= $(F_1(r)\sigma_1(x) + \tau_1(r)d_1(x))F_2(y)$
= $F_1(r)\sigma_1(x)F_2(y) + \tau_1(r)d_1(x)F_2(y)$
= $\tau_1(r)d_1(x)F_2(y)$

381

Shuliang Huang

for all $x, y, r \in N$. Since τ_1 is an automorphism of N, we have $Nd_1(x)F_2(y) = \{0\}$ and hence

$$d_1(x)F_2(y) = 0 (3)$$

by the semiprimeness of N. Replacing x by xr in (3) and using Lemma 2.2, we obtain

$$0 = d_1(xr)F_2(y)$$

= $(d_1(x)\sigma_1(r) + \tau_1(x)d_1(r))F_2(y)$
= $d_1(x)\sigma_1(r)F_2(y) + \tau_1(x)d_1(r)F_2(y)$
= $d_1(x)\sigma_1(r)F_2(y)$

for all $x, y, r \in N$. Since σ_1 is an automorphism of N, we have $d_1(x)rF_2(y) = 0$ for all $x, y, r \in N$, and so $F_2(y)rd_1(x) = 0$ by Lemma 2.1, which shows (i).

(ii) Using the same arguments in the proof of (i), we prove (ii).

(*iii*) Replacing x, y by xr, ys respectively in (2) and using Lemma 2.2, for all $x, y, r, s \in N$, we have

$$0 = F_1(xr)F_2(ys)$$

= $(F_1(x)\sigma_1(r) + \tau_1(x)d_1(r))(F_2(y)\sigma_2(s) + \tau_2(y)d_2(s))$
= $F_1(x)\sigma_1(r)(F_2(y)\sigma_2(s) + \tau_2(y)d_2(s)) + \tau_1(x)d_1(r)(F_2(y)\sigma_2(s) + \tau_2(y)d_2(s))$
= $\tau_1(x)d_1(r)\tau_2(y)d_2(s)$

where the last equation uses the orthogonality of F_1 and F_2 , d_1 and F_2 , d_2 and F_1 .

Since τ_1 is an automorphism of N, the last relation gives $Nd_1(r)\tau_2(y)d_2(s) = \{0\}$ and hence $d_1(r)\tau_2(y)d_2(s) = 0$ by the semiprimeness of N. This implies that $d_1(r)td_2(s) = 0$ since τ_1 is also an automorphism of N. We have $d_2(s)td_1(r) = 0$ by Lemma 2.1 for all $r, s, t \in N$. Thus, d_1 and d_2 are orthogonal.

(iv) It follows from (iii) that d_1 and d_2 are orthogonal. Hence

$$0 = d_1(d_2(x)zd_1(y)) = d_1d_2(x)\sigma_1(z)\sigma_1d_1(y) + \tau_1d_2(x)d_1(zd_1(y))$$

for all $x, y, z \in N$. Using the facts that $d_1\sigma_1 = \sigma_1 d_1$, $\tau_1 d_2 = d_2\tau_1$ and the orthogonality of d_1 and d_2 , the last relation reduces to $d_1 d_2(x)\sigma_1(z)d_1\sigma_1(y) = 0$ and hence

$$d_1 d_2(x) N d_1(y) = \{0\}$$
(4)

since τ_1 is an automorphism of N. Replacing y by $d_2(x)$ in (4), we get $d_1d_2(x)Nd_1d_2(x) = \{0\}$ and hence $d_1d_2 = 0$ by the semiprimeness of N.

Similarly, since each of the equalities: $d_2(d_1(x)zd_2(y)) = 0$, $d_1(F_2(x)zd_1(y)) = 0$, $F_2(d_1(x)zF_2(y)) = 0$, $d_2(F_1(x)zd_2(y)) = 0$, $F_1(d_2(x)zF_1(y)) = 0$, $F_1(F_2(x)zF_1(y)) = 0$ and $F_2(F_1(x)zF_2(y)) = 0$ holds for all $x, y, z \in N$, we have $d_2d_1 = d_1F_2 = F_2d_1 = d_2F_1 = F_1d_2 = F_1F_2 = F_2F_1 = 0$, respectively. \Box

Theorem 3.2. Let N be a 2-torsion free semiprime near-ring. Suppose that (F_1, d_1)

382

(resp. (F_2, d_2)) is a generalized (σ_1, τ_1) -derivation (resp. (σ_2, τ_2) -derivation) of N. Then the following conditions are equivalent:

(i) F_1 and F_2 are orthogonal.

(*ii*) $F_1(x)F_2(y) = d_1(x)F_2(y) = 0$ for all $x, y \in N$.

(*iii*) $F_2(x)F_1(y) = d_2(x)F_1(y) = 0$ for all $x, y \in N$.

Proof. $(i) \Longrightarrow (ii)$ It is obvious by Theorem 3.1.

 $(ii) \Longrightarrow (i)$ We are given that $F_1(x)F_2(y) = 0$ for all $x, y \in N$. Replacing x by xz in the above equation and using Lemma 2.2, we find that

$$\begin{array}{rcl} 0 &=& F_1(xz)F_2(y) \\ &=& (F_1(x)\sigma_1(z) + \tau_1(x)d_1(z))F_2(y) \\ &=& F_1(x)\sigma_1(z)F_2(y) + \tau_1(x)d_1(z)F_2(y) \\ &=& F_1(x)\sigma_1(z)F_2(y), \end{array}$$

where the last equality uses the fact $d_1(x)F_2(y) = 0$ for all $x, y \in N$. Since σ_1 is an automorphism of N, we have $F_1(x)zF_2(y) = 0$ and hence $F_2(y)zF_1(x) = 0$ for all $x, y, z \in N$, by Lemma 2.1. Thus, F_1 and F_2 are orthogonal.

 $(i) \iff (iii)$ The proof is similar to $(i) \iff (ii)$. \Box

When $\sigma_1 = \sigma_2 = \sigma$ and $\tau_1 = \tau_2 = \tau$, we can prove the following:

Theorem 3.3. Let N be a 2-torsion free semiprime near-ring. Suppose that both (F_1, d_1) and (F_2, d_2) are generalized (σ, τ) -derivations of N. Then F_1 and F_2 are orthogonal if and only if (F_1F_2, d_1d_2) is a generalized (σ^2, τ^2) -derivation and $F_1(x)F_2(y) = 0$ for all $x, y \in N$.

Proof. Suppose that (F_1F_2, d_1d_2) is a generalized (σ^2, τ^2) -derivation and $F_1(x)F_2(y) = 0$ for all $x, y \in N$. On the one hand,

$$F_1F_2(xy) = F_1F_2(x)\sigma^2(y) + \tau^2(x)d_1(x)d_2(y) \text{ for all } x, y \in N.$$
(5)

On the other hand, $F_1F_2(xy) = F_1(F_2(x)\sigma(y) + \tau(x)d_2(y))$, which implies that

$$F_1F_2(xy) = F_1F_2(x)\sigma^2(y) + \tau F_2(x)d_1\sigma(y) + F_1\tau(x)\sigma d_2(y) + \tau^2(x)d_1(x)d_2(y).$$
 (6)

Comparing (5) with (6), we have $\tau F_2(x)d_1\sigma(y) + F_1\tau(x)\sigma d_2(y) = 0$ for all $x, y \in N$. Since $F_2\tau = \tau F_2$, $d_2\sigma = \sigma d_2$ and σ, τ are automorphisms of N, the above equation can be rewritten as

$$F_2(x)d_1(y) + F_1(x)d_2(y) = 0 \text{ for all } x, y \in N.$$
(7)

Recalling our hypothesis, $F_1(x)F_2(y) = 0$ for all $x, y \in N$, we have

$$0 = F_1(x)F_2(yz) = F_1(x)F_2(y)\sigma(z) + F_1(x)\tau(y)d_2(z) = F_1(x)\tau(y)d_2(z)$$

for all $x, y, z \in N$. Since τ is an automorphism of N, we have $F_1(x)yd_2(z) = 0$ for all $x, y, z \in N$. Making use of Lemma 2.1, we arrive at

$$F_1(x)d_2(y) = 0 \text{ for all } x, y \in N.$$
(8)

Comparing (7) with (8), we see that

$$F_2(x)d_1(y) = 0 \text{ for all } x, y \in N.$$

$$\tag{9}$$

Replacing y by rs in (9), we have

$$0 = F_2(x)d_1(ys) = F_2(x)d_1(y)\sigma(s) + F_2(x)\tau(r)d_1(s) = F_2(x)\tau(r)d_1(s)$$

for all $x, y, r, s \in N$. Since τ is an automorphism of N, the last relation yields that $F_2(x)rd_1(s) = 0$ and hence $d_1(s)F_2(x) = 0$ by Lemma 2.1. Now we conclude that $F_1(x)F_2(y) = 0 = d_1(x)F_2(y)$ for all $x, y \in N$. Therefore, from Theorem 3.2, we obtain the result. Conversely, if F_1 and F_2 are orthogonal, then it follows from Theorem 3.1 that $F_1F_2 = d_1d_2 = 0$, as required. \Box

Theorem 3.4. Let N be a 2-torsion free semiprime near-ring. Suppose that both (F_1, d_1) and (F_2, d_2) are generalized (σ, τ) -derivations of N. If both F_1 , d_2 are orthogonal and F_2 , d_1 are orthogonal, then the following holds:

- (i) $d_1d_2 = 0$ and F_1F_2 is a left $\sigma_1\sigma_2$ -centralizer of N.
- (ii) $d_2d_1 = 0$ and F_2F_1 is a left $\sigma_2\sigma_1$ -centralizer of N.

Proof. (i) Since F_1 and d_2 are orthogonal, we have

$$F_1(x)yd_2(z) = 0 \text{ for all } x, y, z \in N.$$

$$\tag{10}$$

Replacing x by rx in (10) and using Lemma 2.2, we get

$$0 = F_1(rx)yd_2(z) = F_1(r)\sigma_1(x)yd_2(z) + \tau_1(r)d_1(x)yd_2(z) = \tau_1(r)d_1(x)yd_2(z)$$

for all $x, y, z, r \in N$. Since τ_1 is an automorphism of N, from the last relation $Nd_1(x)yd_2(z) = \{0\}$ and hence $d_1(x)yd_2(z) = 0$ for all $x, y, z \in N$, by the semiprimeness of N. Consequently, d_1 and d_2 are orthogonal and so $d_1d_2 = 0$ according to Theorem 3.1. On the other hand, by hypothesis, since F_1 , d_2 are orthogonal and F_2 , d_1 are orthogonal, we obtain that $F_1(x)d_2(y) = 0$ and $F_2(x)d_1(y) = 0$ for all $x, y \in N$. Noting that the fact $F_2\tau_1 = \tau_1F_2$ and $d_2\sigma_1 = \sigma_1d_2$, for all $x, y \in N$, we find that

$$F_{1}F_{2}(xy) = F_{1}(F_{2}(x)\sigma_{2}(y) + \tau_{2}(x)d_{2}(y))$$

$$= F_{1}F_{2}(x)\sigma_{1}\sigma_{2}(y) + \tau_{1}F_{2}(x)d_{1}\sigma_{2}(y) + F_{1}\tau_{2}(x)\sigma_{1}d_{2}(y) + \tau_{1}\tau_{2}(x)d_{1}d_{2}(y)$$

$$= F_{1}F_{2}(x)\sigma_{1}\sigma_{2}(y) + F_{2}\tau_{1}(x)d_{1}\sigma_{2}(y) + F_{1}\tau_{2}(x)d_{2}\sigma_{1}(y) + \tau_{1}\tau_{2}(x)d_{1}d_{2}(y)$$

$$= F_{1}F_{2}(x)\sigma_{1}\sigma_{2}(y)$$

(ii) It can be proved by using the same techniques.

Corollary 3.1([6, Theorem 2]). Let N be a 2-torsion free semiprime near-ring. Suppose that both (f, d) and (g, δ) are generalized derivations of N. If both f and δ are orthogonal and g and d are orthogonal, then we have

(i) $d\delta = 0$ and fg is a left centralizer of N.

384

On Orthogonal Generalized (σ, τ) -Derivations of Semiprime Rear-Rings

(ii) $\delta d = 0$ and gf is a left centralizer of N.

Proof. Take $\sigma_1 = \tau_1 = \sigma_2 = \tau_2 = 1$ in Theorem 3.4, where $1: N \longrightarrow N$ is the identity map of N.

The following result, without the assumption of $F\sigma = \sigma F$, $F\tau = \tau F$, $d\sigma = \sigma d$, $d\tau = \tau d$, is of independent interest.

Theorem 3.5. Let N be a 2-torsion free semiprime near-ring. If (F, d) is a generalized (σ, τ) -derivation of N such that F(x)F(y) = 0 for all $x, y \in N$, then F = d = 0.

Proof. We are given that F(x)F(y) = 0 for all $x, y \in N$. Writing yz for y in the above equation, we obtain

$$0 = F(x)F(yz) = F(x)F(y)\sigma(z) + F(x)\tau(y)d(z) = F(x)\tau(y)d(z)$$

for all $x, y, z \in N$. Since τ is an automorphism of N, we obtain F(x)yd(z) = 0 and so

$$d(z)F(x) = 0\tag{11}$$

385

by Lemma 2.1. Replacing x by xz in (11), we get $0 = d(z)F(xz) = d(z)F(x)\sigma(z) + d(z)\tau(x)d(z) = d(z)\tau(x)d(z)$ for all $x, z \in N$. Since τ is an automorphism of N, we have d(z)Nd(z)=0 and so d=0 by the semiprimeness of N. Now using hypothesis and Lemma 2.2, we get $0 = F(xz)F(y) = F(x)\sigma(z)F(y) + \tau(x)d(z)F(y) = F(x)\sigma(z)F(y)$ for all $x, y, z \in N$, and hence $F(x)NF(y) = \{0\}$, in particular, $F(x)NF(x) = \{0\}$ for all $x \in N$. The semiprimeness of N forces that F = 0, as required.

Corollary 3.2([6, Theorem 3]). Let N be a 2-torsion free semiprime near-ring. If (f,d) is a generalized derivation of N such that f(x)f(y) = 0 for all $x, y \in N$, then f = d = 0.

Proof. Setting $\sigma = \tau = 1$ in Theorem 3.5, we obtain the result of the corollary. \Box

The following example shows that the hypothesis of semiprimeness is essential in Theorem 3.1(iv), Theorems 3.4-3.5 and Corollaries 3.1-3.2.

Example 3.1. Let S be any near-ring and $N = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \mid a, b \in S \right\}$. We define maps $d_1, d_2 : N \to N$ as follows: $d_1 \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}$ and $d_2 \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -b \\ 0 & 0 \end{pmatrix}$. Then it is easy to see that d_1 and d_2 are nonzero orthogonal derivations of N satisfying $d_1(x)d_2(y) = 0$ for all $x, y \in N$. We know that a derivation is a special type of generalized (σ, τ) -derivation namely $\sigma = \tau = 1$ and d = E in the

special type of generalized (σ, τ) -derivation, namely, $\sigma = \tau = 1$ and d = F in the symbol (F, d). However, it is straightforward to check that neither $d_1d_2 = 0$ nor $d_2d_1 = 0$.

The following example demonstrates that Theorem 3.2 fails if we omit the semiprimeness of N.

Example 3.2. Let S be any near-ring and $N = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b, c \in S \right\}$. Define maps $d_1, d_2 : N \to N$ as follows: $d_1 \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} -a & b \\ 0 & 0 \end{pmatrix}$ and $d_2 \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} 0 & a-c \\ 0 & 0 \end{pmatrix}$. It is easy to check that d_1 and d_2 are nonzero derivations of N such that $d_2(x)d_1(y) = 0$, however $d_1(x)d_2(y) \neq 0$ for all $x, y \in N$.

The following example shows that the hypothesis of semiprimeness is crucial in Theorem 3.3.

Example 3.3. Let *S* be any near-ring and $N = \left\{ \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} | a, b, c \in S \right\}$. Define maps *F*, $d: R \longrightarrow R$ and σ , $\tau: R \longrightarrow R$ as follows: $F \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $d \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & a & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $\sigma \begin{pmatrix} 0 & a & b \\ 0 & 0 & -c \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -a & b \\ 0 & 0 & -c \\ 0 & 0 & 0 \end{pmatrix} \tau \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -a & -b \\ 0 & 0 & -c \\ 0 & 0 & 0 \end{pmatrix}$. One can verify that (F, d) is a generalized (σ, τ) -derivation of *N* which is orthogonal

One can verify that (F, d) is a generalized (σ, τ) -derivation of N which is orthogonal to itself, but (F^2, d^2) is not a generalized (σ^2, τ^2) -derivation of N.

Acknowledgments. The author would like to thank Professor Dr. Shakir Ali for his valuable advice and encouragement. Thanks are also due to the referee for her/his useful suggestions and comments. This paper is supported by the Natural Science Research Foundation of Anhui Provincial Education Department(No. KJ2010B144) of P. R. China

References

- [1] M. Ashraf, A. Ali and S. Ali, (σ, τ) -derivations on prime near-rings, Arch. Math., (Brno), **40**(2004), 281–286.
- [2] N. Argac, A. Nakajima and E. Albas, On orthogonal generalized derivations of semiprime rings, Turk J. Math., 28(2004), 185-194.
- [3] H. E. Bell and G. Mason, On derivations in near-rings, Near-rings and Near-fields, 1987, 31-35.
- [4] M. Bresar and J. Vukman, Orthogonal derivations and an extension of a theorem of Posner, Rad. Math., 5(1989), 237-246.

- [5] K. I. Beidar, Y. Fong, W. F. Ke and S. Y. Liang, Near-ring multiplication on groups, Comm. Algebra, 23(1995), 999-1015.
- [6] J. R. Clay, Nearrings geneses and applications, Oxford University Press, New York, 1992.
- [7] O. Golbasi and N. Aydin, Orthogonal generalized (σ, τ) -derivations of semiprime rings, Siberian Mathematical Journal, **48**(2007), 979-983.
- [8] K. H. Park and Y. S. Jung, Semiprime near-rings with orthogonal derivations, J. Korea Soc. Math. Edu. Ser.B: Pure Appl. Math., 13(2006), 303-310.
- [9] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8(1957), 1093-1100.