Browse > Article
http://dx.doi.org/10.4134/JKMS.2010.47.3.495

ON GENERALIZED (σ, τ)-DERIVATIONS II  

Argac, Nurcan (DEPARTMENT OF MATHEMATICS SCIENCE FACULTY EGE UNIVERSITY)
Inceboz, Hulya G. (DEPARTMENT OF MATHEMATICS SCIENCE AND ART FACULTY ADNAN MENDERES UNIVERSITY)
Publication Information
Journal of the Korean Mathematical Society / v.47, no.3, 2010 , pp. 495-504 More about this Journal
Abstract
This paper continues a line investigation in [1]. Let A be a K-algebra and M an A/K-bimodule. In [5] Hamaguchi gave a necessary and sufficient condition for gDer(A, M) to be isomorphic to BDer(A, M). The main aim of this paper is to establish similar relationships for generalized ($\sigma$, $\tau$)-derivations.
Keywords
derivation; Lie derivation; exact sequence;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 N. Argac and E. Albas, On generalized (${\sigma},{\tau}$)-derivations, Sibirsk. Mat. Zh. 43 (2002), no. 6, 1211-1221
2 N. Argac and E. Albas, On generalized (${\sigma},{\tau}$)-derivations, Siberian Math. J. 43 (2002), no. 6, 977–984.
3 M. Bresar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991), no. 1, 89-93.   DOI
4 M. Bresar and J. Vukman, Jordan (${\theta}{\phi}$)-derivations, Glas. Mat. Ser. III 26(46) (1991), no. 1-2, 13-17.
5 A. Nakajima, On generalized higher derivations, Turkish J. Math. 24 (2000), no. 3, 295-311.
6 I. N. Herstein, Topics in Ring Theory, The University of Chicago Press, Chicago, Ill.-London 1969.
7 J. M. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), no. 2, 321-324.   DOI
8 N. Hamaguchi, Generalized d-derivations of rings without unit elements, Sci. Math. Jpn. 54 (2001), no. 2, 337-342.
9 I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957),1104-1110.   DOI
10 T. W. Hungerford, Algebra, Holt, Rinehart and Winston, Inc., New York-Montreal,Que.-London, 1974.
11 A. Nakajima, Generalized Jordan derivations, International Symposium on Ring Theory (Kyongju, 1999), 235-243, Trends Math., Birkhauser Boston, Boston, MA, 2001.
12 A. Nakajima, On categorical properties of generalized derivations, Sci. Math. 2 (1999), no. 3, 345-352.