SOME COMMUTATIVITY THEOREMS OF PRIME RINGS WITH GENERALIZED (σ, τ)-DERIVATION

Öznur Gölbaşı and Emine Koç

Abstract

In this paper, we extend some well known results concerning generalized derivations of prime rings to a generalized (σ, τ)-derivation.

1. Introduction

Let R will be an associative ring with center Z, σ, τ two mappings from R into itself. For any $x, y \in R$, we write $[x, y]$ and $[x, y]_{\sigma, \tau}$ for $x y-y x$ and $x \sigma(y)-\tau(y) x$ respectively. We set $C_{\sigma, \tau}=\{c \in R \mid c \sigma(x)=\tau(x) c$ for all $x \in R\}$ and call (σ, τ)-center of R. Recall that a ring R is prime if $x R y=0$ implies $x=0$ or $y=0$. An additive mapping $d: R \rightarrow R$ is called a derivation if $d(x y)=d(x) y+x d(y)$ holds for all $x, y \in R$. For a fixed $a \in R$, the mapping $I_{a}: R \rightarrow R$ given by $I_{a}(x)=[a, x]$ is a derivation which is said to be an inner derivation.

Recently, in [7], Bresar defined the following notation. An additive mapping $f: R \rightarrow R$ is called a generalized derivation if there exists a derivation d : $R \rightarrow R$ such that

$$
f(x y)=f(x) y+x d(y) \text { for all } x, y \in R .
$$

Basic examples are derivations and generalized inner derivations (i.e., maps of type $x \rightarrow a x+x b$ for some $a, b \in R$). One may observe that the concept of generalized derivations includes the concept of derivations and of the left multipliers (i.e., $f(x y)=f(x) y$ for all $x, y \in R$). Hence it should be interesting to extend some results concerning these notions to generalized derivations.

Inspired by the definition (σ, τ)-derivation, the notion of generalized derivation was extended as follows: Let σ, τ be two automorphisms of R. An additive mapping $f: R \rightarrow R$ is called a generalized (σ, τ)-derivation on R if there exists a (σ, τ)-derivation $d: R \rightarrow R$ such that

$$
f(x y)=f(x) \sigma(y)+\tau(x) d(y) \text { for all } x, y \in R
$$

Received April 7, 2010.
2010 Mathematics Subject Classification. 16W25, 16N60, 16 U80.
Key words and phrases. prime rings, derivations, generalized derivations, generalized (σ, τ)-derivations, centralizing mappings.

Of course a generalized (1,1)-derivation is a generalized derivation on R, where 1 is the identity mapping on R.

Let S be a nonempty subset of R. A mapping F from R to R is called commutativity preserving on a subset S of R if $[x, y]=0$ implies $[F(x), F(y)]=0$ for all $x, y \in S$. The mapping F is called strong commutativity preserving (scp) on S if $[F(x), F(y)]=[x, y]$ for all $x, y \in S$. There is also a growing literature strong commutativity preserving (scp) maps and derivations (for reference see $[6],[5],[8],[10],[11]$, etc.). In [2], the authors explored the commutativity of the ring R satisfying one of the following conditions: (i) $[d(x), F(y)]=0$, (ii) $[d(x), F(y)]= \pm[x, y]$, (iii) $d(x) F(y) \pm x y \in Z$ and also they proved (vi) $F(x y) \pm x y \in Z$, (vii) $F(x y) \pm y x \in Z$ and (viii) $F(x) F(y) \pm x y \in Z$ for all $x, y \in R$ in some appropriate subset of the ring R in [3]. The major purpose of this paper is to prove these theorems for a generalized (σ, τ)-derivation of R.

Throughout the paper, we denote a generalized (σ, τ)-derivation $f: R \rightarrow R$ determined by a (σ, τ)-derivation d of R with (f, d) and make some extensive use of the basic commutator identities:

$$
\begin{aligned}
{[x, y z] } & =y[x, z]+[x, y] z \\
{[x y, z] } & =[x, z] y+x[y, z] \\
{[x y, z]_{\sigma, \tau} } & =x[y, z]_{\sigma, \tau}+[x, \tau(z)] y=x[y, \sigma(z)]+[x, z]_{\sigma, \tau} y, \\
{[x, y z]_{\sigma, \tau} } & =\tau(y)[x, z]_{\sigma, \tau}+[x, y]_{\sigma, \tau} \sigma(z)
\end{aligned}
$$

2. Results

Lemma 1. Let (f, d) be a generalized (σ, τ)-derivation of a prime ring R with $\operatorname{char} R \neq 2$. If $a f(x)=0$ for all $x \in R$, then $a=0$ or $d=0$.
Proof. Replacing x by $x y$ in the hypothesis, we have

$$
a f(x y)=a f(x) \sigma(y)+a \tau(x) d(y)=0 \quad \text { for all } x, y \in R .
$$

By the hyphothesis, the first term is zero in this equation. Hence we obtain that $a R d(y)=0$ for all $y \in R$. By the primeness of R, we have $a=0$ or $d=0$.

The following theorems are motivated from [2].
Theorem 1. Let (f, d) be a generalized (σ, τ)-derivation of a noncommutative prime ring R with char $R \neq 2$. If $[d(x), f(y)]=0$ for all $x, y \in R$, then $d=0$.

Proof. If $f=0$, there is nothing to prove. So, we have $f \neq 0$. Assume that $[d(x), f(y)]=0$ for all $x, y \in R$. Substitute $y z$ by y obtaining
(2.1) $f(y)[d(x), \sigma(z)]+[d(x), \tau(y)] d(z)+\tau(y)[d(x), d(z)]=0$ for all $x, y, z \in R$.

Taking $z \sigma^{-1}(d(x))$ instead of z in (2.1) and using this equation, we have

$$
\begin{align*}
{[d(x), \tau(y)] \tau(z) d\left(\sigma^{-1}(d(x))\right) } & +\tau(y)[d(x), \tau(z)] d\left(\sigma^{-1}(d(x))\right) \\
& +\tau(y) \tau(z)\left[d(x), d\left(\sigma^{-1}(d(x))\right)\right]=0 \tag{2.2}
\end{align*}
$$

Substituting $r y$ for y in (2.2) and using (2.2), we conclude that

$$
[d(x), \tau(r)] \tau(y z) d\left(\sigma^{-1}(d(x))\right)=0 \quad \text { for all } x, y, z, r \in R
$$

and so,

$$
[d(x), \tau(r)] R d\left(\sigma^{-1}(d(x))\right)=0 \quad \text { for all } x, r \in R
$$

By the primeness of R, we obtain that $d(x) \in Z$ or $d\left(\sigma^{-1}(d(x))\right)=0$ for each $x \in R$. We put $K=\{x \in R \mid d(x) \in Z\}$ and $L=\left\{x \in R \mid d\left(\sigma^{-1}(d(x))\right)=0\right\}$. Then it can be easily seen that K and L both are additive subgroups of R and whose union R. Then by Brauer's trick, either $K=R$ or $L=R$. If $K=R$, then $d(R) \subset Z$, and so R is a commutative ring by [4, Lemma 2]. It contradicts our hyphothesis.

Now assume that $L=R$. That is $d\left(\sigma^{-1}(d(x))\right)=0$ for all $x \in R$. Hence writing $\sigma^{-1}(d(z))$ instead of z in (2.1) and using $d\left(\sigma^{-1}(d(z))\right)=0$, we have $f(y)[d(x), d(z)]=0$ for all $x, y, z \in R$. That is

$$
\begin{equation*}
f(y) d(x) d(z)=f(y) d(z) d(x) \quad \text { for all } x, y, z \in R . \tag{2.3}
\end{equation*}
$$

We know that $d(x) f(y)=f(y) d(x)$ for all $x, y \in R$ by the hyphothesis. Using this in (2.3), we get

$$
[d(x), d(z)] f(y)=0 \quad \text { for all } x, y, z \in R
$$

Thus we obtain that $[d(x), d(z)]=0$ for all $x, z \in R$ by Lemma 1 , and so, $d=0$ by $[9$, Theorem 2 (a)].

In particular if we take $f=d$, then we have the following result which is a generalization of [9, Theorem 2(a)] even without $\sigma d=d \sigma, \tau d=d \tau$ assumption on ring.

Corollary 1. Let d be $a(\sigma, \tau)$-derivation of a noncommutative prime ring R with $\operatorname{char} R \neq 2$. If $[d(x), d(y)]=0$ for all $x, y \in R$, then $d=0$.

Theorem 2. Let (f, d) be a generalized (σ, τ)-derivation of a noncommutative prime ring R with char $R \neq 2$. If $[d(x), f(y)]= \pm[x, y]_{\sigma, \tau}$ for all $x, y \in R$, then $d=0$.

Proof. If $f=0$, then $[x, y]_{\sigma, \tau}=0$ for all $x, y \in R$. Replacing x by $x z$, we get $x[z, \sigma(y)]=0$ for all $x, y, z \in R$. Thus we obtain that R is a commutative ring by the primeness of R and so, it contradicts our hypothesis. Hence we suppose that $f \neq 0$.

Assume that $[d(x), f(y)]= \pm[x, y]_{\sigma, \tau}$ for all $x, y \in R$. Replacing y by $y z$ in the hypothesis, we have

$$
\begin{align*}
& f(y)[d(x), \sigma(z)]+[d(x), \tau(y)] d(z)+\tau(y)[d(x), d(z)] \\
= & \pm \tag{2.4}\\
& \tau(y)[x, z]_{\sigma, \tau} \quad \text { for all } x, y, z \in R .
\end{align*}
$$

Substitute $z \sigma^{-1}(d(x))$ instead of z in the above relation, we obtain gives

$$
\begin{aligned}
& {[d(x), \tau(y)] \tau(z) d\left(\sigma^{-1}(d(x))\right)+\tau(y)[d(x), \tau(z)] d\left(\sigma^{-1}(d(x))\right) } \\
& +\tau(y) \tau(z)\left[d(x), d\left(\sigma^{-1}(d(x))\right)\right] \\
= & \pm \tau(y) \tau(z)\left[x, \sigma^{-1}(d(x))\right]_{\sigma, \tau} \quad \text { for all } x, y, z \in R .
\end{aligned}
$$

Taking $y r$ instead of y in this equation, we get

$$
[d(x), \tau(y)] \tau(r z) d\left(\sigma^{-1}(d(x))\right)=0 \quad \text { for all } x, y, z, r \in R
$$

Since R is a prime ring, we obtain that

$$
d(x) \in Z \text { or } d\left(\sigma^{-1}(d(x))\right)=0 \quad \text { for each } x \in R
$$

By a standart argument one of these must hold for all $x \in R$. Since R is noncommutative the first possibility gives $d=0$ by [4, Lemma 2]. Hence we assume that $d\left(\sigma^{-1}(d(x))\right)=0$ for all $x \in R$. Writing $\sigma^{-1}(d(x))$ instead of x in (2.4) and using this, we get $\tau(y)\left[\sigma^{-1}(d(x)), z\right]_{\sigma, \tau}=0$ for all $x, y, z \in R$, and so $\left[\sigma^{-1}(d(x)), z\right]_{\sigma, \tau}=0$ for all $x, z \in R$. Hence

$$
\begin{aligned}
0= & {\left[\sigma^{-1}(d(x y)), z\right]_{\sigma, \tau}=\left[\sigma^{-1}(d(x)) y+\sigma^{-1}(\tau(x)) \sigma^{-1}(d(y)), z\right]_{\sigma, \tau} } \\
= & {\left[\sigma^{-1}(d(x)), z\right]_{\sigma, \tau} y+\sigma^{-1}(d(x))[y, \sigma(z)] } \\
& +\sigma^{-1}(\tau(x))\left[\sigma^{-1}(d(y)), z\right]_{\sigma, \tau}+\left[\sigma^{-1}(\tau(x)), \tau(z)\right] \sigma^{-1}(d(y)) .
\end{aligned}
$$

Thus we obtain that

$$
\sigma^{-1}(d(x))[y, \sigma(z)]+\left[\sigma^{-1}(\tau(x)), \tau(z)\right] \sigma^{-1}(d(y))=0 \text { for all } x, y, z \in R
$$

Replacing z by $\sigma^{-1}(y)$ in this equation, we conclude that

$$
\left[\sigma^{-1}(\tau(x)), \tau\left(\sigma^{-1}(y)\right)\right] \sigma^{-1}(d(y))=0 \quad \text { for all } x, y \in R .
$$

Again replacing x by $x z$ yields that

$$
\left[\sigma^{-1}(\tau(x)), \tau\left(\sigma^{-1}(y)\right)\right] R \sigma^{-1}(d(y))=0 \quad \text { for all } x, y \in R
$$

By the primeness of R and $\sigma, \tau \in \operatorname{Aut} R$, we have $y \in Z$ or $d(y)=0$ for each $y \in R$. We set $K=\{y \in R \mid y \in Z\}$ and $L=\{y \in R \mid d(y)=0\}$. Clearly each of K and L is an additive subgroup of R. Morever, R is the set-theoretic union of K and L. But a group can not be the set-theoretic union of two proper subgroups, hence $K=R$ or $L=R$. If $L=R$, then $d(R)=0$, and so R is a commutative ring by [4, Lemma 2]. Hence R is a commutative ring for any cases.

Corollary 2. Let d be a (σ, τ)-derivation of a noncommutative prime ring R with $\operatorname{char} R \neq 2$. If $[d(x), d(y)]= \pm[x, y]_{\sigma, \tau}$ for all $x, y \in R$, then $d=0$.

The following theorems are motivated from [2].
Theorem 3. Let (f, d) be a generalized (σ, τ)-derivation of a prime ring R with $\operatorname{char} R \neq 2$. If $d(x) f(y)-x \sigma(y) \in C_{\sigma, \tau}$ for all $x, y \in R$, and if $d \neq 0$, then R is a commutative ring.

Proof. If $f=0$, then $x \sigma(y) \in C_{\sigma, \tau}$ for all $x, y \in R$. In particular, $[x \sigma(y), y]_{\sigma, \tau}=$ 0 for all $x, y \in R$ and hence $[x, y]_{\sigma, \tau} \sigma(y)=0$ for all $x, y \in R$. Replacing x by $x z$, we get $[x, \tau(y)] z \sigma(y)=0$ for all $x, y, z \in R$. Hence it follows then $[x, \tau(y)] R \sigma(y)=0$ for all $x, y \in R$. Thus the primeness of R forces that for each $y \in R$, either $y \in Z$ or $y=0$. But $y=0$ also implies that $y \in Z$. Hence in both cases we find that R is a commutative ring.

Hence, onward we assume that $f \neq 0$. Suppose that $d(x) f(y)-x \sigma(y) \in C_{\sigma, \tau}$ for all $x, y \in R$. Replacing y by $y z$, obtaining

$$
(d(x) f(y)-x \sigma(y)) \sigma(z)+d(x) \tau(y) d(z) \in C_{\sigma, \tau} \quad \text { for all } x, y, z \in R
$$

Then it is clear that $[(d(x) f(y)-x \sigma(y)) \sigma(z)+d(x) \tau(y) d(z), z]_{\sigma, \tau}=0$ for all $x, y, z \in R$ by the definition of $C_{\sigma, \tau}$. Hence

$$
\begin{equation*}
[d(x) \tau(y) d(z), z]_{\sigma, \tau}=0 \quad \text { for all } x, y, z \in R . \tag{2.5}
\end{equation*}
$$

That is $d(x)[\tau(y) d(z), z]_{\sigma, \tau}+[d(x), \tau(z)] \tau(y) d(z)=0$ for all $x, y, z \in R$. Taking $\tau^{-1}(d(t)) y$ instead of y in this gives

$$
[d(x), \tau(z)] d(t) \tau(y) d(z)=0 \quad \text { for all } x, y, z, t \in R
$$

By the primeness of R and $\tau \in$ Aut R, we have either $[d(x), \tau(z)] d(t)=0$ or $d(z)=0$ for each $z \in R$. We set $K=\{z \in R \mid[d(x), \tau(z)] d(t)=0$ for all $x, t \in R\}$ and $L=\{z \in R \mid d(z)=0\}$. Then it can be easily seen that K and L both are additive subgroups of R and whose union R. Then by Brauer's trick, either $K=R$ or $L=R$. If $L=R$, then $d(R)=0$, and so R is a commutative ring by [4, Lemma 2].

Now let $K=R$. Hence $[d(x), \tau(z)] d(t)=0$ for all $x, z, t \in R$. Hence $0=$ $[d(x), \tau(r z)] d(t)=[d(x), \tau(r)] \tau(z) d(t)+\tau(r)[d(x), \tau(z)] d(t)$ for all $x, z, t, r \in R$. Since the second summand is zero, it is clear that

$$
[d(x), r] R d(t)=0 \quad \text { for all } r, x, t \in R
$$

By the primeness of R, we have $d(R) \subset Z$ or $d(R)=0$, and so $d(R) \subset Z$. Thus the proof completed by [4, Lemma 2].
Corollary 3. Let d be a nonzero (σ, τ)-derivation of a prime ring R with $\operatorname{char} R \neq 2$. If $d(x) d(y)-x \sigma(y) \in C_{\sigma, \tau}$ for all $x, y \in R$, then R is a commutative ring.

Proceeding on the same lines with necessary variations we can prove the following theorem.

Theorem 4. Let (f, d) be a generalized (σ, τ)-derivation of a prime ring R with $\operatorname{char} R \neq 2$. If $d(x) f(y)+x \sigma(y) \in C_{\sigma, \tau}$ for all $x, y \in R$, and if $d \neq 0$, then R is a commutative ring.

Corollary 4. Let d be a nonzero (σ, τ)-derivation of a prime ring R with $\operatorname{char} R \neq 2$. If $d(x) d(y)+x \sigma(y) \in C_{\sigma, \tau}$ for all $x, y \in R$, then R is a commutative ring.

Theorem 5. Let (f, d) be a generalized (σ, τ)-derivation of a prime ring R with $\operatorname{char} R \neq 2$. If $f(x y)-x \sigma(y) \in C_{\sigma, \tau}$ for all $x, y \in R$, and if $d \neq 0$, then R is a commutative ring.
Proof. If $f=0$, then $x \sigma(y) \in C_{\sigma, \tau}$ for all $x, y \in R$. Using the same arguments in the begining of the proof of Theorem 3, we get the required result.

Assume that $f \neq 0$ and $f(x y)-x \sigma(y) \in C_{\sigma, \tau}$ for all $x, y \in R$. That is

$$
\begin{equation*}
f(x) \sigma(y)+\tau(x) d(y)-x \sigma(y) \in C_{\sigma, \tau} \text { for all } x, y \in R \tag{2.6}
\end{equation*}
$$

Substitute $y z$ instead of y in (2.6) obtaining

$$
(f(x) \sigma(y)+\tau(x) d(y)-x \sigma(y)) \sigma(z)+\tau(x) \tau(y) d(z) \in C_{\sigma, \tau} \text { for all } x, y, z \in R
$$

By the definition of $C_{\sigma, \tau}$, commutting this term with z gives

$$
[\tau(x) \tau(y) d(z), z]_{\sigma, \tau}=0 \text { for all } x, y, z \in R
$$

Replacing y by $t y$ in this equation and using this, we get

$$
\tau([x, z]) \tau(t y) d(z)=0 \text { for all } x, y, z, t \in R
$$

Since τ is an automorphism of R, we have

$$
[x, z] R d(z)=0 \text { for all } x, z \in R
$$

Using the same arguments in the proof of Theorem 2, we find the required result.

Corollary 5. Let d be a nonzero (σ, τ)-derivation of a prime ring R with $\operatorname{char} R \neq 2$. If $d(x y)-x \sigma(y) \in C_{\sigma, \tau}$ for all $x, y \in R$, then R is a commutative ring.
Theorem 6. Let (f, d) be a generalized (σ, τ)-derivation of a prime ring R with $\operatorname{char} R \neq 2$. If $f(x y)+x \sigma(y) \in C_{\sigma, \tau}$ for all $x, y \in R$, and if $d \neq 0$, then R is a commutative ring.

Proof. If f is a generalized derivation satisfying the property $f(x y)+x \sigma(y) \in$ $C_{\sigma, \tau}$ for all $x, y \in R$, then $(-f)$ satisfies the condition $(-f)(x y)+x \sigma(y) \in C_{\sigma, \tau}$ for all $x, y \in R$, and hence by Theorem $5, R$ is a commutative ring.

Corollary 6. Let d be a nonzero (σ, τ)-derivation of a prime ring R with $\operatorname{char} R \neq 2$. If $d(x y)+x \sigma(y) \in C_{\sigma, \tau}$ for all $x, y \in R$, then R is a commutative ring.

Theorem 7. Let (f, d) be a generalized (σ, τ)-derivation of a prime ring R with $\operatorname{char} R \neq 2$. If $f(x y)-y \sigma(x) \in C_{\sigma, \tau}$ for all $x, y \in R$, and if $d \neq 0$, then R is a commutative ring.

Proof. If $f=0$, then $y \sigma(x) \in C_{\sigma, \tau}$ for all $x, y \in R$. Using the same arguments in the begining of the proof of Theorem 3, we get the required result.

Suppose that $f \neq 0$ and $f(x y)-y \sigma(x) \in C_{\sigma, \tau}$ for all $x, y \in R$. That is

$$
\begin{equation*}
f(x) \sigma(y)+\tau(x) d(y)-y \sigma(x) \in C_{\sigma, \tau} \quad \text { for all } x, y \in R \tag{2.7}
\end{equation*}
$$

Replacing x by $x y$ in (2.7) yields that

$$
f(x y) \sigma(y)+\tau(x) \tau(y) d(y)-y \sigma(x) \sigma(y) \in C_{\sigma, \tau} \text { for all } x, y \in R .
$$

Then it is clear that $[f(x y) \sigma(y)+\tau(x) \tau(y) d(y)-y \sigma(x) \sigma(y), y]_{\sigma, \tau}=0$ for all $x, y \in R$ by the definition of $C_{\sigma, \tau}$. Hence

$$
[\tau(x) \tau(y) d(y), y]_{\sigma, \tau}=0 \quad \text { for all } x, y \in R,
$$

and so

$$
\begin{equation*}
[\tau(x), y]_{\sigma, \tau} \tau(y) d(y)+\tau(x)[\tau(y) d(y), \sigma(y)]=0 \text { for all } x, y \in R \tag{2.8}
\end{equation*}
$$

Substitute $x r$ instead of x in (2.8) and using this, we arrive at

$$
\tau([x, y]) \tau(r y) d(y)=0 \quad \text { for all } x, y, r \in R
$$

and so

$$
[x, y] R \tau(y) d(y)=0 \quad \text { for all } x, y \in R .
$$

By the primeness of R, we have $y \in Z$ or $\tau(y) d(y)=0$ for each $y \in R$.
Let $y \in Z$. By the hypothesis, we have

$$
[f(x) \sigma(y)+\tau(x) d(y)-y \sigma(x), z]_{\sigma, \tau}=0 \quad \text { for all } x \in R .
$$

Expanding this equation and using $\sigma(y), d(y), y \in Z$, we arrive at

$$
[f(x), z]_{\sigma, \tau} \sigma(y)+[\tau(x), z]_{\sigma, \tau} d(y)-y[\sigma(x), z]_{\sigma, \tau}=0 \quad \text { for all } x, z \in R .
$$

Replacing x by $x y$ in this equation and using this, we have

$$
[\tau(x), z]_{\sigma, \tau} \tau(y) d(y)=0 \quad \text { for all } x, z \in R
$$

Hence $[\tau(t x), z]_{\sigma, \tau} \tau(y) d(y)=\tau(t)[\tau(x), z]_{\sigma, \tau} \tau(y) d(y)+\tau([t, z]) \tau(x) \tau(y) d(y)=0$ for all $x, z, t \in R$. Since the first summand is zero, it is clear that

$$
[t, z] R \tau(y) d(y)=0 \quad \text { for all } t, z \in R .
$$

Thus we obtain that R is a commutative ring or $\tau(y) d(y)=0$. The second case using $\sigma(y) \in Z$ and the primeness of R, we have $y=0$ or $\tau(y) d(y)=0$, and so $\tau(y) d(y)=0$. Thus we obtain that for all $y \in R, \tau(y) d(y)=0$ for any cases.

Let $\tau(y) d(y)=0$ for all $y \in R$. Hence

$$
\tau(x+y) d(x+y)=\tau(x) d(x)+\tau(x) d(y)+\tau(y) d(y)+\tau(y) d(x)=0
$$

and so

$$
\tau(x) d(y)+\tau(y) d(x)=0 \quad \text { for all } x, y \in R .
$$

Taking $y t$ instead of y in this equation, we obtain that

$$
\tau(x) d(y) \sigma(t)+\tau([x, y]) d(t)=0
$$

Again writing $t z$ by t yields that $\tau([x, y]) R d(z)=0$. Since R is a prime ring, we have R is a commutative ring or $d(R)=0$. In the second case gives R is a commutative ring by [4, Lemma 2]. This complete the proof.

Corollary 7. Let d be a nonzero (σ, τ)-derivation of a prime ring R with $\operatorname{char} R \neq 2$. If $d(x y)-y \sigma(x) \in C_{\sigma, \tau}$ for all $x, y \in R$, then R is a commutative ring.

Using similar arguments as above, we can prove the following:
Theorem 8. Let (f, d) be a generalized (σ, τ)-derivation of a prime ring R with $\operatorname{char} R \neq 2$. If $f(x y)+y \sigma(x) \in C_{\sigma, \tau}$ for all $x, y \in R$, and if $d \neq 0$, then R is a commutative ring.
Corollary 8. Let d be a nonzero (σ, τ)-derivation of a prime ring R with $\operatorname{char} R \neq 2$. If $d(x y)+y \sigma(x) \in C_{\sigma, \tau}$ for all $x, y \in R$, then R is a commutative ring.

Theorem 9. Let (f, d) be a generalized (σ, τ)-derivation of a prime ring R with $\operatorname{char} R \neq 2$. If $f(x) f(y)-x \sigma(y) \in C_{\sigma, \tau}$ for all $x, y \in R$, and if $d \neq 0$, then R is a commutative ring.

Proof. If $f=0$, then $x \sigma(y) \in C_{\sigma, \tau}$ for all $x, y \in R$. Using the same arguments in the begining of the proof of Theorem 3, we get the required result.

Assume that $f \neq 0$. Replacing y by $y z$ in the hypothesis yields that

$$
\begin{equation*}
f(x) f(y) \sigma(z)-f(x) \tau(y) d(z)-x \sigma(y) \sigma(z) \in C_{\sigma, \tau} \quad \text { for all } x, y, z \in R \tag{2.9}
\end{equation*}
$$

By the definition of $C_{\sigma, \tau}$, we have

$$
\begin{equation*}
[f(x) \tau(y) d(z), z]_{\sigma, \tau}=0 \quad \text { for all } x, y, z \in R \tag{2.10}
\end{equation*}
$$

Writing $\tau^{-1}(f(t)) y$ by y in the last relation gives

$$
[f(x), \tau(z)] f(t) R d(z)=0 \quad \text { for all } x, z, t \in R
$$

By the primeness of R, we have either $[f(x), \tau(z)] f(t)=0$ or $d(z)=0$ for each $z \in R$. We set $K=\{z \in R \mid[f(x), \tau(z)] f(t)=0$ for all $x, t \in R\}$ and $L=\{z \in R \mid d(z)=0\}$. Then it can be easily seen that K and L both are additive subgroups of R and whose union R. Then by Brauer's trick, either $K=R$ or $L=R$. If $L=R$, then $d(R)=0$, and so R is a commutative ring by [4, Lemma 2].

Now let assume $K=R$. Thus $[f(x), \tau(z)] f(t)=0$ for all $x, t \in R$. Hence

$$
[f(x), \tau(y z)] f(t)=[f(x), \tau(y)] \tau(z) f(t)+\tau(y)[f(x), \tau(z)] f(t)=0
$$

for all $x, z, t \in R$.
Since the second summand is zero, it is clear that

$$
[f(x), \tau(y)] R f(t)=0 \quad \text { for all } x, y, t \in R
$$

By the primeness of R gives $f(R) \subset Z$ or $f(R)=0$. Hence we have $f(R) \subset Z$ for any cases. Meanwhile according to (2.10), we have

$$
f(x)[\tau(y) d(z), z]_{\sigma, \tau}+[f(x), \tau(z)] \tau(y) d(z)=0,
$$

and so

$$
f(x)[\tau(y) d(z), z]_{\sigma, \tau}=0 \quad \text { for all } x, y, z \in R
$$

Using $f(x) \in Z$, we conclude that

$$
f(x)=0 \text { or }[\tau(y) d(z), z]_{\sigma, \tau}=0 \quad \text { for all } x, y, z \in R
$$

Since $f \neq 0$, we suppose that $[\tau(y) d(z), z]_{\sigma, \tau}=0$ for all $y, z \in R$. That is

$$
\tau(y)[d(z), z]_{\sigma, \tau}+[\tau(y), \tau(z)] d(z)=0 \quad \text { for all } y, z \in R
$$

Writing $y r$ by y in the last relation gives

$$
\tau([y, z]) R d(z)=0 \quad \text { for all } y, z \in R
$$

Using the primeness of R, we obtain the following alternative: for all $z \in R$ we have either $z \in Z$ or $d(z)=0$. By a standart argument one of these must hold for all $z \in R$. Using [4, Lemma 2], we conclude that R is a commutative ring.

Corollary 9. Let d be a nonzero (σ, τ)-derivation of a prime ring R with $\operatorname{char} R \neq 2$. If $d(x) d(y)-x \sigma(y) \in C_{\sigma, \tau}$ for all $x, y \in R$, then R is a commutative ring.

Using similar arguments as above, we can prove the following:
Theorem 10. Let (f, d) be a generalized (σ, τ)-derivation of a prime ring R with $\operatorname{char} R \neq 2$. If $f(x) f(y)+x \sigma(y) \in C_{\sigma, \tau}$ for all $x, y \in R$, and if $d \neq 0$, then R is a commutative ring.

Corollary 10. Let d be a nonzero (σ, τ)-derivation of a prime ring R with $\operatorname{char} R \neq 2$. If $d(x) d(y)+x \sigma(y) \in C_{\sigma, \tau}$ for all $x, y \in R$, then R is a commutative ring.

Theorem 11. Let (f, d) and (g, h) be two generalized (σ, τ)-derivations of a prime ring R with char $R \neq 2$. If $f(x) \sigma(y)=\tau(x) g(y)$ for all $x, y \in R$, then R is a commutative ring.

Proof. If either $f=0$ or $g=0$, then we get $\tau(x) g(y)=0$ for all $x, y \in R$ $(f(x) \sigma(y)=0$ for all $x, y \in R$). Replacing y by $y z$ (or x by $x z$), we have $\tau(x y) h(z)=0$, (or $\tau(x) d(z) \sigma(y)=0)$ for all $x, y, z \in R$. By the primeness of R, we have $h=0$ (or $d=0$). Thus R is a commutative ring by [4, Lemma 2]. So we may assume that $f \neq 0$ and $g \neq 0$.

Now let $f(x) \sigma(y)=\tau(x) g(y)$ for all $x, y \in R$. Replacing x by $x z$, we get $f(x z) \sigma(y)=\tau(x z) g(y)$ for all $x, y, z \in R$. Hence we find that

$$
f(x) \sigma(z) \sigma(y)+\tau(x) d(z) \sigma(y)=\tau(x) \tau(z) g(y) \quad \text { for all } x, y, z \in R
$$

Using our hypothesis, the above relation yields that

$$
\tau(x)(g(z) \sigma(y)+d(z) \sigma(y)-\tau(z) g(y))=0
$$

and so

$$
\begin{equation*}
g(z) \sigma(y)+d(z) \sigma(y)-\tau(z) g(y)=0 \quad \text { for all } y, z \in R \tag{2.11}
\end{equation*}
$$

Replacing y by $y r$ in (2.11) and using this, we get

$$
\tau(z y) h(r)=0 \quad \text { for all } y, z, r \in R .
$$

Since R is a prime ring and $\tau \in \operatorname{Aut} R$, we obtain that $h(R)=0$. Thus R is a commutative ring by [4, Lemma 2].

References

[1] N. Argaç, A. Kaya, and A. Kisir, (σ, τ)-derivations in prime rings, Math. J. Okayama Univ. 29 (1987), 173-177.
[2] M. Ashraf, A. Asma, and R. Rekha, On generalized derivations of prime rings, Southeast Asian Bull. Math. 29 (2005), no. 4, 669-675.
[3] M. Ashraf, A. Asma, and A. Shakir, Some commutativity theorems for rings with generalized derivations, Southeast Asian Bull. Math. 31 (2007), no. 3, 415-421.
[4] N. Aydın and K. Kaya, Some generalizations in prime rings with (σ, τ)-derivation, Doğa Mat. 16 (1992), no. 3, 169-176.
[5] H. E. Bell and M. N. Daif, On commutativity and strong commutativity-preserving maps, Canad. Math. Bull. 37 (1994), no. 4, 443-447.
[6] H. E. Bell and W. S. Martindale, Centralizing mappings of semiprime rings, Canad. Math. Bull. 30 (1987), no. 1, 92-101.
[7] M. Bresar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991), no. 1, 89-93.
[8] , Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), no. 2, 525-546.
[9] J. C. Chang, On (α, β)-derivations of prime rings, Chinese Journal Math. 22 (1991), no. 1, 21-30.
[10] M. N. Daif and H. E. Bell, Remarks on derivations on semiprime rings, Internat. J. Math. Math. Sci. 15 (1992), no. 1, 205-206.
[11] Q. Deng and M. Ashraf, On strong commutativity preserving mappings, Results Math. 30 (1996), no. 3-4, 259-263.

Öznur Gölbaşi
Department of Mathematics
Faculty of Science
Cumhuriyet University
Sivas 58140, Turkey
E-mail address: ogolbasi@cumhuriyet.edu.tr
Emine Koç
Department of Mathematics
Faculty of Science
Cumhuriyet University
Sivas 58140, Turkey
E-mail address: eminekoc@cumhuriyet.edu.tr

