SOME COMMUTATIVITY THEOREMS OF PRIME RINGS WITH GENERALIZED (σ, τ) -DERIVATION

Öznur Gölbaşı and Emine Koç

ABSTRACT. In this paper, we extend some well known results concerning generalized derivations of prime rings to a generalized (σ, τ) -derivation.

1. Introduction

Let R will be an associative ring with center Z, σ, τ two mappings from R into itself. For any $x, y \in R$, we write [x, y] and $[x, y]_{\sigma, \tau}$ for xy - yx and $x\sigma(y) - \tau(y)x$ respectively. We set $C_{\sigma,\tau} = \{c \in R \mid c\sigma(x) = \tau(x)c$ for all $x \in R\}$ and call (σ, τ) -center of R. Recall that a ring R is prime if xRy = 0 implies x = 0 or y = 0. An additive mapping $d : R \to R$ is called a derivation if d(xy) = d(x)y + xd(y) holds for all $x, y \in R$. For a fixed $a \in R$, the mapping $I_a : R \to R$ given by $I_a(x) = [a, x]$ is a derivation which is said to be an inner derivation.

Recently, in [7], Bresar defined the following notation. An additive mapping $f: R \to R$ is called a generalized derivation if there exists a derivation $d: R \to R$ such that

$$f(xy) = f(x)y + xd(y) \text{ for all } x, y \in R.$$

Basic examples are derivations and generalized inner derivations (i.e., maps of type $x \to ax + xb$ for some $a, b \in R$). One may observe that the concept of generalized derivations includes the concept of derivations and of the left multipliers (i.e., f(xy) = f(x)y for all $x, y \in R$). Hence it should be interesting to extend some results concerning these notions to generalized derivations.

Inspired by the definition (σ, τ) -derivation, the notion of generalized derivation was extended as follows: Let σ, τ be two automorphisms of R. An additive mapping $f: R \to R$ is called a generalized (σ, τ) -derivation on R if there exists a (σ, τ) -derivation $d: R \to R$ such that

$$f(xy) = f(x)\sigma(y) + \tau(x)d(y)$$
 for all $x, y \in R$.

O2011 The Korean Mathematical Society

Received April 7, 2010.

²⁰¹⁰ Mathematics Subject Classification. 16W25, 16N60, 16U80.

Key words and phrases. prime rings, derivations, generalized derivations, generalized (σ, τ) -derivations, centralizing mappings.

Of course a generalized (1,1)-derivation is a generalized derivation on R, where 1 is the identity mapping on R.

Let S be a nonempty subset of R. A mapping F from R to R is called commutativity preserving on a subset S of R if [x, y] = 0 implies [F(x), F(y)] = 0for all $x, y \in S$. The mapping F is called strong commutativity preserving (scp) on S if [F(x), F(y)] = [x, y] for all $x, y \in S$. There is also a growing literature strong commutativity preserving (scp) maps and derivations (for reference see [6], [5], [8], [10], [11], etc.). In [2], the authors explored the commutativity of the ring R satisfying one of the following conditions: (i) [d(x), F(y)] = 0, (ii) $[d(x), F(y)] = \pm [x, y]$, (iii) $d(x)F(y) \pm xy \in Z$ and also they proved (vi) $F(xy) \pm xy \in Z$, (vii) $F(xy) \pm yx \in Z$ and (viii) $F(x)F(y) \pm xy \in Z$ for all $x, y \in R$ in some appropriate subset of the ring R in [3]. The major purpose of this paper is to prove these theorems for a generalized (σ, τ) -derivation of R.

Throughout the paper, we denote a generalized (σ, τ) -derivation $f: R \to R$ determined by a (σ, τ) -derivation d of R with (f, d) and make some extensive use of the basic commutator identities:

$$\begin{split} &[x, yz] = y[x, z] + [x, y]z, \\ &[xy, z] = [x, z]y + x[y, z], \\ &[xy, z]_{\sigma,\tau} = x[y, z]_{\sigma,\tau} + [x, \tau(z)]y = x[y, \sigma(z)] + [x, z]_{\sigma,\tau}y, \\ &[x, yz]_{\sigma,\tau} = \tau(y)[x, z]_{\sigma,\tau} + [x, y]_{\sigma,\tau}\sigma(z). \end{split}$$

2. Results

Lemma 1. Let (f, d) be a generalized (σ, τ) -derivation of a prime ring R with char $R \neq 2$. If af(x) = 0 for all $x \in R$, then a = 0 or d = 0.

Proof. Replacing x by xy in the hypothesis, we have

r

1

r

$$af(xy) = af(x)\sigma(y) + a\tau(x)d(y) = 0$$
 for all $x, y \in R$.

By the hyphothesis, the first term is zero in this equation. Hence we obtain that aRd(y) = 0 for all $y \in R$. By the primeness of R, we have a = 0 or d = 0.

The following theorems are motivated from [2].

Theorem 1. Let (f, d) be a generalized (σ, τ) -derivation of a noncommutative prime ring R with char $R \neq 2$. If [d(x), f(y)] = 0 for all $x, y \in R$, then d = 0.

Proof. If f = 0, there is nothing to prove. So, we have $f \neq 0$. Assume that [d(x), f(y)] = 0 for all $x, y \in R$. Substitute yz by y obtaining

 $(2.1) \ f(y)[d(x), \sigma(z)] + [d(x), \tau(y)]d(z) + \tau(y)[d(x), d(z)] = 0 \text{ for all } x, y, z \in R.$

Taking $z\sigma^{-1}(d(x))$ instead of z in (2.1) and using this equation, we have

(2.2)
$$\begin{bmatrix} d(x), \tau(y) \end{bmatrix} \tau(z) d(\sigma^{-1}(d(x))) + \tau(y) [d(x), \tau(z)] d(\sigma^{-1}(d(x))) \\ + \tau(y) \tau(z) [d(x), d(\sigma^{-1}(d(x)))] = 0$$

Substituting ry for y in (2.2) and using (2.2), we conclude that

$$[d(x), \tau(r)]\tau(yz)d(\sigma^{-1}(d(x))) = 0 \quad \text{for all } x, y, z, r \in R$$

and so,

$$[d(x), \tau(r)]Rd(\sigma^{-1}(d(x))) = 0 \quad \text{for all } x, r \in R.$$

By the primeness of R, we obtain that $d(x) \in Z$ or $d(\sigma^{-1}(d(x))) = 0$ for each $x \in R$. We put $K = \{x \in R \mid d(x) \in Z\}$ and $L = \{x \in R \mid d(\sigma^{-1}(d(x))) = 0\}$. Then it can be easily seen that K and L both are additive subgroups of R and whose union R. Then by Brauer's trick, either K = R or L = R. If K = R, then $d(R) \subset Z$, and so R is a commutative ring by [4, Lemma 2]. It contradicts our hyphothesis.

Now assume that L = R. That is $d(\sigma^{-1}(d(x))) = 0$ for all $x \in R$. Hence writing $\sigma^{-1}(d(z))$ instead of z in (2.1) and using $d(\sigma^{-1}(d(z))) = 0$, we have f(y)[d(x), d(z)] = 0 for all $x, y, z \in R$. That is

(2.3)
$$f(y)d(x)d(z) = f(y)d(z)d(x) \text{ for all } x, y, z \in R.$$

We know that d(x)f(y) = f(y)d(x) for all $x, y \in R$ by the hyphothesis. Using this in (2.3), we get

[d(x), d(z)]f(y) = 0 for all $x, y, z \in R$.

Thus we obtain that [d(x), d(z)] = 0 for all $x, z \in R$ by Lemma 1, and so, d = 0 by [9, Theorem 2 (a)].

In particular if we take f = d, then we have the following result which is a generalization of [9, Theorem 2(a)] even without $\sigma d = d\sigma, \tau d = d\tau$ assumption on ring.

Corollary 1. Let d be a (σ, τ) -derivation of a noncommutative prime ring R with char $R \neq 2$. If [d(x), d(y)] = 0 for all $x, y \in R$, then d = 0.

Theorem 2. Let (f,d) be a generalized (σ,τ) -derivation of a noncommutative prime ring R with char $R \neq 2$. If $[d(x), f(y)] = \pm [x, y]_{\sigma,\tau}$ for all $x, y \in R$, then d = 0.

Proof. If f = 0, then $[x, y]_{\sigma,\tau} = 0$ for all $x, y \in R$. Replacing x by xz, we get $x[z, \sigma(y)] = 0$ for all $x, y, z \in R$. Thus we obtain that R is a commutative ring by the primeness of R and so, it contradicts our hypothesis. Hence we suppose that $f \neq 0$.

Assume that $[d(x), f(y)] = \pm [x, y]_{\sigma, \tau}$ for all $x, y \in R$. Replacing y by yz in the hypothesis, we have

(2.4)
$$\begin{aligned} f(y)[d(x),\sigma(z)] + [d(x),\tau(y)]d(z) + \tau(y)[d(x),d(z)] \\ = \pm \,\tau(y)[x,z]_{\sigma,\tau} \quad \text{for all } x,y,z \in R. \end{aligned}$$

Substitute $z\sigma^{-1}(d(x))$ instead of z in the above relation, we obtain gives

$$\begin{aligned} &[d(x), \tau(y)]\tau(z)d(\sigma^{-1}(d(x))) + \tau(y)[d(x), \tau(z)]d(\sigma^{-1}(d(x))) \\ &+ \tau(y)\tau(z)[d(x), d(\sigma^{-1}(d(x)))] \\ &= \pm \tau(y)\tau(z)[x, \sigma^{-1}(d(x))]_{\sigma,\tau} \quad \text{for all } x, y, z \in R. \end{aligned}$$

Taking yr instead of y in this equation, we get

$$[d(x), \tau(y)]\tau(rz)d(\sigma^{-1}(d(x))) = 0 \quad \text{for all } x, y, z, r \in R.$$

Since R is a prime ring, we obtain that

$$d(x) \in Z$$
 or $d(\sigma^{-1}(d(x))) = 0$ for each $x \in R$

By a standart argument one of these must hold for all $x \in R$. Since R is noncommutative the first possibility gives d = 0 by [4, Lemma 2]. Hence we assume that $d(\sigma^{-1}(d(x))) = 0$ for all $x \in R$. Writing $\sigma^{-1}(d(x))$ instead of x in (2.4) and using this, we get $\tau(y)[\sigma^{-1}(d(x)), z]_{\sigma,\tau} = 0$ for all $x, y, z \in R$, and so $[\sigma^{-1}(d(x)), z]_{\sigma,\tau} = 0$ for all $x, z \in R$. Hence

$$\begin{split} 0 &= [\sigma^{-1}(d(xy)), z]_{\sigma,\tau} = [\sigma^{-1}(d(x))y + \sigma^{-1}(\tau(x))\sigma^{-1}(d(y)), z]_{\sigma,\tau} \\ &= [\sigma^{-1}(d(x)), z]_{\sigma,\tau}y + \sigma^{-1}(d(x))[y, \sigma(z)] \\ &+ \sigma^{-1}(\tau(x))[\sigma^{-1}(d(y)), z]_{\sigma,\tau} + [\sigma^{-1}(\tau(x)), \tau(z)]\sigma^{-1}(d(y)). \end{split}$$

Thus we obtain that

$$\sigma^{-1}(d(x))[y,\sigma(z)] + [\sigma^{-1}(\tau(x)),\tau(z)]\sigma^{-1}(d(y)) = 0 \text{ for all } x, y, z \in R.$$

Replacing z by $\sigma^{-1}(y)$ in this equation, we conclude that

$$[\sigma^{-1}(\tau(x)), \tau(\sigma^{-1}(y))]\sigma^{-1}(d(y)) = 0 \text{ for all } x, y \in R.$$

Again replacing x by xz yields that

$$[\sigma^{-1}(\tau(x)),\tau(\sigma^{-1}(y))]R\sigma^{-1}(d(y)) = 0 \quad \text{for all } x,y \in R.$$

By the primeness of R and $\sigma, \tau \in \operatorname{Aut} R$, we have $y \in Z$ or d(y) = 0 for each $y \in R$. We set $K = \{y \in R \mid y \in Z\}$ and $L = \{y \in R \mid d(y) = 0\}$. Clearly each of K and L is an additive subgroup of R. Morever, R is the set-theoretic union of K and L. But a group can not be the set-theoretic union of two proper subgroups, hence K = R or L = R. If L = R, then d(R) = 0, and so R is a commutative ring by [4, Lemma 2]. Hence R is a commutative ring for any cases.

Corollary 2. Let d be a (σ, τ) -derivation of a noncommutative prime ring R with char $R \neq 2$. If $[d(x), d(y)] = \pm [x, y]_{\sigma, \tau}$ for all $x, y \in R$, then d = 0.

The following theorems are motivated from [2].

Theorem 3. Let (f,d) be a generalized (σ,τ) -derivation of a prime ring R with char $R \neq 2$. If $d(x)f(y) - x\sigma(y) \in C_{\sigma,\tau}$ for all $x, y \in R$, and if $d \neq 0$, then R is a commutative ring.

Proof. If f = 0, then $x\sigma(y) \in C_{\sigma,\tau}$ for all $x, y \in R$. In particular, $[x\sigma(y), y]_{\sigma,\tau} = 0$ for all $x, y \in R$ and hence $[x, y]_{\sigma,\tau}\sigma(y) = 0$ for all $x, y \in R$. Replacing x by xz, we get $[x, \tau(y)]z\sigma(y) = 0$ for all $x, y, z \in R$. Hence it follows then $[x, \tau(y)]R\sigma(y) = 0$ for all $x, y \in R$. Thus the primeness of R forces that for each $y \in R$, either $y \in Z$ or y = 0. But y = 0 also implies that $y \in Z$. Hence in both cases we find that R is a commutative ring.

Hence, onward we assume that $f \neq 0$. Suppose that $d(x)f(y) - x\sigma(y) \in C_{\sigma,\tau}$ for all $x, y \in R$. Replacing y by yz, obtaining

$$(d(x)f(y) - x\sigma(y))\sigma(z) + d(x)\tau(y)d(z) \in C_{\sigma,\tau} \quad \text{for all } x, y, z \in R.$$

Then it is clear that $[(d(x)f(y) - x\sigma(y))\sigma(z) + d(x)\tau(y)d(z), z]_{\sigma,\tau} = 0$ for all $x, y, z \in R$ by the definition of $C_{\sigma,\tau}$. Hence

(2.5)
$$[d(x)\tau(y)d(z),z]_{\sigma,\tau} = 0 \quad \text{for all } x, y, z \in R.$$

That is $d(x)[\tau(y)d(z), z]_{\sigma,\tau} + [d(x), \tau(z)]\tau(y)d(z) = 0$ for all $x, y, z \in R$. Taking $\tau^{-1}(d(t))y$ instead of y in this gives

$$[d(x), \tau(z)]d(t)\tau(y)d(z) = 0 \quad \text{for all } x, y, z, t \in R.$$

By the primeness of R and $\tau \in \operatorname{Aut} R$, we have either $[d(x), \tau(z)]d(t) = 0$ or d(z) = 0 for each $z \in R$. We set $K = \{z \in R \mid [d(x), \tau(z)]d(t) = 0$ for all $x, t \in R\}$ and $L = \{z \in R \mid d(z) = 0\}$. Then it can be easily seen that K and L both are additive subgroups of R and whose union R. Then by Brauer's trick, either K = R or L = R. If L = R, then d(R) = 0, and so R is a commutative ring by [4, Lemma 2].

Now let K = R. Hence $[d(x), \tau(z)]d(t) = 0$ for all $x, z, t \in R$. Hence $0 = [d(x), \tau(rz)]d(t) = [d(x), \tau(r)]\tau(z)d(t) + \tau(r)[d(x), \tau(z)]d(t)$ for all $x, z, t, r \in R$. Since the second summand is zero, it is clear that

$$[d(x), r]Rd(t) = 0$$
 for all $r, x, t \in R$

By the primeness of R, we have $d(R) \subset Z$ or d(R) = 0, and so $d(R) \subset Z$. Thus the proof completed by [4, Lemma 2].

Corollary 3. Let d be a nonzero (σ, τ) -derivation of a prime ring R with $\operatorname{char} R \neq 2$. If $d(x)d(y) - x\sigma(y) \in C_{\sigma,\tau}$ for all $x, y \in R$, then R is a commutative ring.

Proceeding on the same lines with necessary variations we can prove the following theorem.

Theorem 4. Let (f, d) be a generalized (σ, τ) -derivation of a prime ring R with char $R \neq 2$. If $d(x)f(y) + x\sigma(y) \in C_{\sigma,\tau}$ for all $x, y \in R$, and if $d \neq 0$, then R is a commutative ring.

Corollary 4. Let d be a nonzero (σ, τ) -derivation of a prime ring R with $\operatorname{char} R \neq 2$. If $d(x)d(y) + x\sigma(y) \in C_{\sigma,\tau}$ for all $x, y \in R$, then R is a commutative ring.

Theorem 5. Let (f,d) be a generalized (σ,τ) -derivation of a prime ring R with char $R \neq 2$. If $f(xy) - x\sigma(y) \in C_{\sigma,\tau}$ for all $x, y \in R$, and if $d \neq 0$, then R is a commutative ring.

Proof. If f = 0, then $x\sigma(y) \in C_{\sigma,\tau}$ for all $x, y \in R$. Using the same arguments in the beginnig of the proof of Theorem 3, we get the required result.

Assume that $f \neq 0$ and $f(xy) - x\sigma(y) \in C_{\sigma,\tau}$ for all $x, y \in R$. That is

(2.6)
$$f(x)\sigma(y) + \tau(x)d(y) - x\sigma(y) \in C_{\sigma\tau} \text{ for all } x, y \in R.$$

Substitute yz instead of y in (2.6) obtaining

$$(f(x)\sigma(y) + \tau(x)d(y) - x\sigma(y))\sigma(z) + \tau(x)\tau(y)d(z) \in C_{\sigma,\tau} \text{ for all } x, y, z \in R.$$

By the definition of $C_{\sigma,\tau}$, commutting this term with z gives

 $[\tau(x)\tau(y)d(z), z]_{\sigma,\tau} = 0 \text{ for all } x, y, z \in R.$

Replacing y by ty in this equation and using this, we get

$$\tau([x, z])\tau(ty)d(z) = 0 \text{ for all } x, y, z, t \in R.$$

Since τ is an automorphism of R, we have

$$[x, z]Rd(z) = 0$$
 for all $x, z \in R$.

Using the same arguments in the proof of Theorem 2, we find the required result. $\hfill \Box$

Corollary 5. Let d be a nonzero (σ, τ) -derivation of a prime ring R with char $R \neq 2$. If $d(xy) - x\sigma(y) \in C_{\sigma,\tau}$ for all $x, y \in R$, then R is a commutative ring.

Theorem 6. Let (f,d) be a generalized (σ,τ) -derivation of a prime ring R with char $R \neq 2$. If $f(xy) + x\sigma(y) \in C_{\sigma,\tau}$ for all $x, y \in R$, and if $d \neq 0$, then R is a commutative ring.

Proof. If f is a generalized derivation satisfying the property $f(xy) + x\sigma(y) \in C_{\sigma,\tau}$ for all $x, y \in R$, then (-f) satisfies the condition $(-f)(xy) + x\sigma(y) \in C_{\sigma,\tau}$ for all $x, y \in R$, and hence by Theorem 5, R is a commutative ring.

Corollary 6. Let d be a nonzero (σ, τ) -derivation of a prime ring R with char $R \neq 2$. If $d(xy) + x\sigma(y) \in C_{\sigma,\tau}$ for all $x, y \in R$, then R is a commutative ring.

Theorem 7. Let (f,d) be a generalized (σ,τ) -derivation of a prime ring R with char $R \neq 2$. If $f(xy) - y\sigma(x) \in C_{\sigma,\tau}$ for all $x, y \in R$, and if $d \neq 0$, then R is a commutative ring.

Proof. If f = 0, then $y\sigma(x) \in C_{\sigma,\tau}$ for all $x, y \in R$. Using the same arguments in the beginnig of the proof of Theorem 3, we get the required result.

Suppose that $f \neq 0$ and $f(xy) - y\sigma(x) \in C_{\sigma,\tau}$ for all $x, y \in R$. That is

(2.7)
$$f(x)\sigma(y) + \tau(x)d(y) - y\sigma(x) \in C_{\sigma,\tau} \text{ for all } x, y \in R.$$

Replacing x by xy in (2.7) yields that

$$f(xy)\sigma(y) + \tau(x)\tau(y)d(y) - y\sigma(x)\sigma(y) \in C_{\sigma,\tau} \text{ for all } x, y \in R.$$

Then it is clear that $[f(xy)\sigma(y) + \tau(x)\tau(y)d(y) - y\sigma(x)\sigma(y), y]_{\sigma,\tau} = 0$ for all $x, y \in R$ by the definition of $C_{\sigma,\tau}$. Hence

$$[\tau(x)\tau(y)d(y), y]_{\sigma,\tau} = 0 \quad \text{for all } x, y \in R,$$

and so

$$(2.8) \qquad [\tau(x), y]_{\sigma,\tau}\tau(y)d(y) + \tau(x)[\tau(y)d(y), \sigma(y)] = 0 \text{ for all } x, y \in R.$$

Substitute xr instead of x in (2.8) and using this, we arrive at

$$\tau([x,y])\tau(ry)d(y) = 0$$
 for all $x, y, r \in R$,

and so

$$[x, y]R\tau(y)d(y) = 0$$
 for all $x, y \in R$.

By the primeness of R, we have $y \in Z$ or $\tau(y)d(y) = 0$ for each $y \in R$. Let $y \in Z$. By the hypothesis, we have

$$[f(x)\sigma(y) + \tau(x)d(y) - y\sigma(x), z]_{\sigma,\tau} = 0 \text{ for all } x \in R.$$

Expanding this equation and using $\sigma(y), d(y), y \in \mathbb{Z}$, we arrive at

$$[f(x),z]_{\scriptscriptstyle\sigma,\tau}\sigma(y)+[\tau(x),z]_{\scriptscriptstyle\sigma,\tau}d(y)-y[\sigma(x),z]_{\scriptscriptstyle\sigma,\tau}=0\quad\text{for all }x,z\in R.$$

Replacing x by xy in this equation and using this, we have

$$\tau(x), z]_{\sigma,\tau} \tau(y) d(y) = 0 \text{ for all } x, z \in R.$$

Hence $[\tau(tx), z]_{\sigma,\tau} \tau(y) d(y) = \tau(t) [\tau(x), z]_{\sigma,\tau} \tau(y) d(y) + \tau([t, z]) \tau(x) \tau(y) d(y) = 0$ for all $x, z, t \in \mathbb{R}$. Since the first summand is zero, it is clear that

$$[t, z]R\tau(y)d(y) = 0$$
 for all $t, z \in R$

Thus we obtain that R is a commutative ring or $\tau(y)d(y) = 0$. The second case using $\sigma(y) \in Z$ and the primeness of R, we have y = 0 or $\tau(y)d(y) = 0$, and so $\tau(y)d(y) = 0$. Thus we obtain that for all $y \in R$, $\tau(y)d(y) = 0$ for any cases.

Let $\tau(y)d(y) = 0$ for all $y \in R$. Hence

$$\tau(x+y)d(x+y) = \tau(x)d(x) + \tau(x)d(y) + \tau(y)d(y) + \tau(y)d(x) = 0$$

and so

$$\tau(x)d(y) + \tau(y)d(x) = 0$$
 for all $x, y \in R$.

Taking yt instead of y in this equation, we obtain that

$$\tau(x)d(y)\sigma(t) + \tau([x,y])d(t) = 0.$$

Again writing tz by t yields that $\tau([x, y])Rd(z) = 0$. Since R is a prime ring, we have R is a commutative ring or d(R) = 0. In the second case gives R is a commutative ring by [4, Lemma 2]. This complete the proof.

Corollary 7. Let d be a nonzero (σ, τ) -derivation of a prime ring R with char $R \neq 2$. If $d(xy) - y\sigma(x) \in C_{\sigma,\tau}$ for all $x, y \in R$, then R is a commutative ring.

Using similar arguments as above, we can prove the following:

Theorem 8. Let (f,d) be a generalized (σ,τ) -derivation of a prime ring R with char $R \neq 2$. If $f(xy) + y\sigma(x) \in C_{\sigma,\tau}$ for all $x, y \in R$, and if $d \neq 0$, then R is a commutative ring.

Corollary 8. Let d be a nonzero (σ, τ) -derivation of a prime ring R with char $R \neq 2$. If $d(xy) + y\sigma(x) \in C_{\sigma,\tau}$ for all $x, y \in R$, then R is a commutative ring.

Theorem 9. Let (f, d) be a generalized (σ, τ) -derivation of a prime ring R with char $R \neq 2$. If $f(x)f(y) - x\sigma(y) \in C_{\sigma,\tau}$ for all $x, y \in R$, and if $d \neq 0$, then R is a commutative ring.

Proof. If f = 0, then $x\sigma(y) \in C_{\sigma,\tau}$ for all $x, y \in R$. Using the same arguments in the beginnig of the proof of Theorem 3, we get the required result.

Assume that $f \neq 0$. Replacing y by yz in the hypothesis yields that

(2.9) $f(x)f(y)\sigma(z) - f(x)\tau(y)d(z) - x\sigma(y)\sigma(z) \in C_{\sigma,\tau}$ for all $x, y, z \in R$. By the definition of $C_{\sigma,\tau}$, we have

(2.10) $[f(x)\tau(y)d(z), z]_{\sigma,\tau} = 0 \quad \text{for all } x, y, z \in R.$

Writing $\tau^{-1}(f(t))y$ by y in the last relation gives

 $[f(x), \tau(z)]f(t)Rd(z) = 0$ for all $x, z, t \in R$.

By the primeness of R, we have either $[f(x), \tau(z)]f(t) = 0$ or d(z) = 0 for each $z \in R$. We set $K = \{z \in R \mid [f(x), \tau(z)]f(t) = 0$ for all $x, t \in R\}$ and $L = \{z \in R \mid d(z) = 0\}$. Then it can be easily seen that K and L both are additive subgroups of R and whose union R. Then by Brauer's trick, either K = R or L = R. If L = R, then d(R) = 0, and so R is a commutative ring by [4, Lemma 2].

Now let assume
$$K = R$$
. Thus $[f(x), \tau(z)]f(t) = 0$ for all $x, t \in R$. Hence

$$[f(x), \tau(yz)]f(t) = [f(x), \tau(y)]\tau(z)f(t) + \tau(y)[f(x), \tau(z)]f(t) = 0$$

for all $x, z, t \in R$.

Since the second summand is zero, it is clear that

$$[f(x), \tau(y)]Rf(t) = 0$$
 for all $x, y, t \in R$.

By the primeness of R gives $f(R) \subset Z$ or f(R) = 0. Hence we have $f(R) \subset Z$ for any cases. Meanwhile according to (2.10), we have

$$f(x)[\tau(y)d(z), z]_{\sigma,\tau} + [f(x), \tau(z)]\tau(y)d(z) = 0,$$

and so

$$f(x)[\tau(y)d(z), z]_{\sigma,\tau} = 0$$
 for all $x, y, z \in R$.

Using $f(x) \in Z$, we conclude that

$$f(x) = 0$$
 or $[\tau(y)d(z), z]_{\sigma,\tau} = 0$ for all $x, y, z \in R$.

Since $f \neq 0$, we suppose that $[\tau(y)d(z), z]_{\sigma,\tau} = 0$ for all $y, z \in R$. That is

 $\tau(y)[d(z), z]_{\sigma,\tau} + [\tau(y), \tau(z)]d(z) = 0 \quad \text{for all } y, z \in R.$

Writing yr by y in the last relation gives

$$\tau([y, z])Rd(z) = 0$$
 for all $y, z \in R$.

Using the primeness of R, we obtain the following alternative: for all $z \in R$ we have either $z \in Z$ or d(z) = 0. By a standart argument one of these must hold for all $z \in R$. Using [4, Lemma 2], we conclude that R is a commutative ring.

Corollary 9. Let d be a nonzero (σ, τ) -derivation of a prime ring R with $\operatorname{char} R \neq 2$. If $d(x)d(y) - x\sigma(y) \in C_{\sigma,\tau}$ for all $x, y \in R$, then R is a commutative ring.

Using similar arguments as above, we can prove the following:

Theorem 10. Let (f,d) be a generalized (σ,τ) -derivation of a prime ring R with char $R \neq 2$. If $f(x)f(y) + x\sigma(y) \in C_{\sigma,\tau}$ for all $x, y \in R$, and if $d \neq 0$, then R is a commutative ring.

Corollary 10. Let d be a nonzero (σ, τ) -derivation of a prime ring R with $\operatorname{char} R \neq 2$. If $d(x)d(y) + x\sigma(y) \in C_{\sigma,\tau}$ for all $x, y \in R$, then R is a commutative ring.

Theorem 11. Let (f, d) and (g, h) be two generalized (σ, τ) -derivations of a prime ring R with char $R \neq 2$. If $f(x)\sigma(y) = \tau(x)g(y)$ for all $x, y \in R$, then R is a commutative ring.

Proof. If either f = 0 or g = 0, then we get $\tau(x)g(y) = 0$ for all $x, y \in R$ $(f(x)\sigma(y) = 0$ for all $x, y \in R$). Replacing y by yz (or x by xz), we have $\tau(xy)h(z) = 0$, (or $\tau(x)d(z)\sigma(y) = 0$) for all $x, y, z \in R$. By the primeness of R, we have h = 0 (or d = 0). Thus R is a commutative ring by [4, Lemma 2]. So we may assume that $f \neq 0$ and $g \neq 0$.

Now let $f(x)\sigma(y) = \tau(x)g(y)$ for all $x, y \in R$. Replacing x by xz, we get $f(xz)\sigma(y) = \tau(xz)g(y)$ for all $x, y, z \in R$. Hence we find that

$$f(x)\sigma(z)\sigma(y) + \tau(x)d(z)\sigma(y) = \tau(x)\tau(z)g(y) \quad \text{for all } x, y, z \in R.$$

Using our hypothesis, the above relation yields that

$$\tau(x)(g(z)\sigma(y) + d(z)\sigma(y) - \tau(z)g(y)) = 0,$$

and so

(2.11)
$$g(z)\sigma(y) + d(z)\sigma(y) - \tau(z)g(y) = 0 \text{ for all } y, z \in R.$$

Replacing y by yr in (2.11) and using this, we get

$$\tau(zy)h(r) = 0$$
 for all $y, z, r \in R$.

Since R is a prime ring and $\tau \in \text{Aut}R$, we obtain that h(R) = 0. Thus R is a commutative ring by [4, Lemma 2].

References

- [1] N. Argaç, A. Kaya, and A. Kisir, (σ, τ) -derivations in prime rings, Math. J. Okayama Univ. **29** (1987), 173–177.
- [2] M. Ashraf, A. Asma, and R. Rekha, On generalized derivations of prime rings, Southeast Asian Bull. Math. 29 (2005), no. 4, 669–675.
- [3] M. Ashraf, A. Asma, and A. Shakir, Some commutativity theorems for rings with generalized derivations, Southeast Asian Bull. Math. 31 (2007), no. 3, 415–421.
- [4] N. Aydın and K. Kaya, Some generalizations in prime rings with (σ, τ)-derivation, Doğa Mat. 16 (1992), no. 3, 169–176.
- [5] H. E. Bell and M. N. Daif, On commutativity and strong commutativity-preserving maps, Canad. Math. Bull. 37 (1994), no. 4, 443–447.
- [6] H. E. Bell and W. S. Martindale, Centralizing mappings of semiprime rings, Canad. Math. Bull. 30 (1987), no. 1, 92–101.
- [7] M. Bresar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991), no. 1, 89–93.
- [8] _____, Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), no. 2, 525–546.
- [9] J. C. Chang, On (α, β)-derivations of prime rings, Chinese Journal Math. 22 (1991), no. 1, 21–30.
- [10] M. N. Daif and H. E. Bell, Remarks on derivations on semiprime rings, Internat. J. Math. Math. Sci. 15 (1992), no. 1, 205–206.
- [11] Q. Deng and M. Ashraf, On strong commutativity preserving mappings, Results Math. 30 (1996), no. 3-4, 259–263.

ÖZNUR GÖLBAŞI DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE CUMHURIYET UNIVERSITY SIVAS 58140, TURKEY *E-mail address*: ogolbasi@cumhuriyet.edu.tr

Emine Koç Department of Mathematics Faculty of Science Cumhuriyet University Sivas 58140, Turkey *E-mail address*: eminekoc@cumhuriyet.edu.tr