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SOME COMMUTATIVITY THEOREMS OF PRIME RINGS

WITH GENERALIZED (σ, τ )-DERIVATION

Öznur Gölbaşı and Emine Koç

Abstract. In this paper, we extend some well known results concerning

generalized derivations of prime rings to a generalized (σ, τ)-derivation.

1. Introduction

Let R will be an associative ring with center Z, σ, τ two mappings from
R into itself. For any x, y ∈ R, we write [x, y] and [x, y]σ,τ for xy − yx and
xσ(y) − τ(y)x respectively. We set Cσ,τ = {c ∈ R | cσ(x) = τ(x)c for all
x ∈ R} and call (σ, τ)-center of R. Recall that a ring R is prime if xRy = 0
implies x = 0 or y = 0. An additive mapping d : R → R is called a derivation
if d(xy) = d(x)y+ xd(y) holds for all x, y ∈ R. For a fixed a ∈ R, the mapping
Ia : R → R given by Ia(x) = [a, x] is a derivation which is said to be an inner
derivation.

Recently, in [7], Bresar defined the following notation. An additive mapping
f : R → R is called a generalized derivation if there exists a derivation d :
R → R such that

f(xy) = f(x)y + xd(y) for all x, y ∈ R.

Basic examples are derivations and generalized inner derivations (i.e., maps
of type x → ax + xb for some a, b ∈ R). One may observe that the concept
of generalized derivations includes the concept of derivations and of the left
multipliers (i.e., f(xy) = f(x)y for all x, y ∈ R). Hence it should be interesting
to extend some results concerning these notions to generalized derivations.

Inspired by the definition (σ, τ)-derivation, the notion of generalized deriva-
tion was extended as follows: Let σ, τ be two automorphisms of R. An additive
mapping f : R → R is called a generalized (σ, τ)-derivation on R if there exists
a (σ, τ)-derivation d : R → R such that

f(xy) = f(x)σ(y) + τ(x)d(y) for all x, y ∈ R.
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Of course a generalized (1, 1)-derivation is a generalized derivation on R,
where 1 is the identity mapping on R.

Let S be a nonempty subset of R. A mapping F from R to R is called com-
mutativity preserving on a subset S of R if [x, y] = 0 implies [F (x), F (y)] = 0
for all x, y ∈ S. The mapping F is called strong commutativity preserving (scp)
on S if [F (x), F (y)] = [x, y] for all x, y ∈ S. There is also a growing literature
strong commutativity preserving (scp) maps and derivations (for reference see
[6], [5], [8], [10], [11], etc.). In [2], the authors explored the commutativity
of the ring R satisfying one of the following conditions: (i) [d(x), F (y)] = 0,
(ii) [d(x), F (y)] = ±[x, y], (iii) d(x)F (y) ± xy ∈ Z and also they proved (vi)
F (xy) ± xy ∈ Z, (vii) F (xy) ± yx ∈ Z and (viii) F (x)F (y) ± xy ∈ Z for all
x, y ∈ R in some appropriate subset of the ring R in [3]. The major purpose of
this paper is to prove these theorems for a generalized (σ, τ)-derivation of R.

Throughout the paper, we denote a generalized (σ, τ)-derivation f : R → R
determined by a (σ, τ)-derivation d of R with (f, d) and make some extensive
use of the basic commutator identities:

[x, yz] = y[x, z] + [x, y]z,

[xy, z] = [x, z]y + x[y, z],

[xy, z]σ,τ = x[y, z]σ,τ + [x, τ(z)]y = x[y, σ(z)] + [x, z]σ,τy,

[x, yz]σ,τ = τ(y)[x, z]σ,τ + [x, y]σ,τσ(z).

2. Results

Lemma 1. Let (f, d) be a generalized (σ, τ)-derivation of a prime ring R with
charR ̸= 2. If af(x) = 0 for all x ∈ R, then a = 0 or d = 0.

Proof. Replacing x by xy in the hypothesis, we have

af(xy) = af(x)σ(y) + aτ(x)d(y) = 0 for all x, y ∈ R.

By the hyphothesis, the first term is zero in this equation. Hence we obtain
that aRd(y) = 0 for all y ∈ R. By the primeness of R, we have a = 0 or
d = 0. □

The following theorems are motivated from [2].

Theorem 1. Let (f, d) be a generalized (σ, τ)-derivation of a noncommutative
prime ring R with charR ̸= 2. If [d(x), f(y)] = 0 for all x, y ∈ R, then d = 0.

Proof. If f = 0, there is nothing to prove. So, we have f ̸= 0. Assume that
[d(x), f(y)] = 0 for all x, y ∈ R. Substitute yz by y obtaining

(2.1) f(y)[d(x), σ(z)]+[d(x), τ(y)]d(z)+τ(y)[d(x), d(z)]=0 for all x, y, z ∈ R.

Taking zσ−1(d(x)) instead of z in (2.1) and using this equation, we have

(2.2)
[d(x), τ(y)]τ(z)d(σ−1(d(x))) + τ(y)[d(x), τ(z)]d(σ−1(d(x)))

+ τ(y)τ(z)[d(x), d(σ−1(d(x)))] = 0.
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Substituting ry for y in (2.2) and using (2.2), we conclude that

[d(x), τ(r)]τ(yz)d(σ−1(d(x))) = 0 for all x, y, z, r ∈ R

and so,

[d(x), τ(r)]Rd(σ−1(d(x))) = 0 for all x, r ∈ R.

By the primeness of R, we obtain that d(x) ∈ Z or d(σ−1(d(x))) = 0 for each
x ∈ R. We put K = {x ∈ R | d(x) ∈ Z} and L = {x ∈ R | d(σ−1(d(x))) = 0}.
Then it can be easily seen that K and L both are additive subgroups of R and
whose union R. Then by Brauer’s trick, either K = R or L = R. If K = R,
then d(R) ⊂ Z, and so R is a commutative ring by [4, Lemma 2]. It contradicts
our hyphothesis.

Now assume that L = R. That is d(σ−1(d(x))) = 0 for all x ∈ R. Hence
writing σ−1(d(z)) instead of z in (2.1) and using d(σ−1(d(z))) = 0, we have
f(y)[d(x), d(z)] = 0 for all x, y, z ∈ R. That is

(2.3) f(y)d(x)d(z) = f(y)d(z)d(x) for all x, y, z ∈ R.

We know that d(x)f(y) = f(y)d(x) for all x, y ∈ R by the hyphothesis. Using
this in (2.3), we get

[d(x), d(z)]f(y) = 0 for all x, y, z ∈ R.

Thus we obtain that [d(x), d(z)] = 0 for all x, z ∈ R by Lemma 1, and so, d = 0
by [9, Theorem 2 (a)]. □

In particular if we take f = d, then we have the following result which is a
generalization of [9, Theorem 2(a)] even without σd = dσ, τd = dτ assumption
on ring.

Corollary 1. Let d be a (σ, τ)-derivation of a noncommutative prime ring R
with charR ̸= 2. If [d(x), d(y)] = 0 for all x, y ∈ R, then d = 0.

Theorem 2. Let (f, d) be a generalized (σ, τ)-derivation of a noncommutative
prime ring R with charR ̸= 2. If [d(x), f(y)] = ±[x, y]σ,τ for all x, y ∈ R, then
d = 0.

Proof. If f = 0, then [x, y]σ,τ = 0 for all x, y ∈ R. Replacing x by xz, we get
x[z, σ(y)] = 0 for all x, y, z ∈ R. Thus we obtain that R is a commutative ring
by the primeness of R and so, it contradicts our hypothesis. Hence we suppose
that f ̸= 0.

Assume that [d(x), f(y)] = ±[x, y]σ,τ for all x, y ∈ R. Replacing y by yz in
the hypothesis, we have

(2.4)
f(y)[d(x), σ(z)] + [d(x), τ(y)]d(z) + τ(y)[d(x), d(z)]

=± τ(y)[x, z]σ,τ for all x, y, z ∈ R.
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Substitute zσ−1(d(x)) instead of z in the above relation, we obtain gives

[d(x), τ(y)]τ(z)d(σ−1(d(x))) + τ(y)[d(x), τ(z)]d(σ−1(d(x)))

+ τ(y)τ(z)[d(x), d(σ−1(d(x)))]

= ± τ(y)τ(z)[x, σ−1(d(x))]σ,τ for all x, y, z ∈ R.

Taking yr instead of y in this equation, we get

[d(x), τ(y)]τ(rz)d(σ−1(d(x))) = 0 for all x, y, z, r ∈ R.

Since R is a prime ring, we obtain that

d(x) ∈ Z or d(σ−1(d(x))) = 0 for each x ∈ R.

By a standart argument one of these must hold for all x ∈ R. Since R is
noncommutative the first possibility gives d = 0 by [4, Lemma 2]. Hence we
assume that d(σ−1(d(x))) = 0 for all x ∈ R. Writing σ−1(d(x)) instead of x in
(2.4) and using this, we get τ(y)[σ−1(d(x)), z]σ,τ = 0 for all x, y, z ∈ R, and so

[σ−1(d(x)), z]σ,τ = 0 for all x, z ∈ R. Hence

0 = [σ−1(d(xy)), z]σ,τ = [σ−1(d(x))y + σ−1(τ(x))σ−1(d(y)), z]σ,τ

= [σ−1(d(x)), z]σ,τ y + σ−1(d(x))[y, σ(z)]

+ σ−1(τ(x))[σ−1(d(y)), z]σ,τ + [σ−1(τ(x)), τ(z)]σ−1(d(y)).

Thus we obtain that

σ−1(d(x))[y, σ(z)] + [σ−1(τ(x)), τ(z)]σ−1(d(y)) = 0 for all x, y, z ∈ R.

Replacing z by σ−1(y) in this equation, we conclude that

[σ−1(τ(x)), τ(σ−1(y))]σ−1(d(y)) = 0 for all x, y ∈ R.

Again replacing x by xz yields that

[σ−1(τ(x)), τ(σ−1(y))]Rσ−1(d(y)) = 0 for all x, y ∈ R.

By the primeness of R and σ, τ ∈ AutR, we have y ∈ Z or d(y) = 0 for each
y ∈ R. We set K = {y ∈ R | y ∈ Z} and L = {y ∈ R | d(y) = 0}. Clearly
each of K and L is an additive subgroup of R. Morever, R is the set-theoretic
union of K and L. But a group can not be the set-theoretic union of two proper
subgroups, hence K = R or L = R. If L = R, then d(R) = 0, and so R is a
commutative ring by [4, Lemma 2]. Hence R is a commutative ring for any
cases. □

Corollary 2. Let d be a (σ, τ)-derivation of a noncommutative prime ring R
with charR ̸= 2. If [d(x), d(y)] = ±[x, y]σ,τ for all x, y ∈ R, then d = 0.

The following theorems are motivated from [2].

Theorem 3. Let (f, d) be a generalized (σ, τ)-derivation of a prime ring R
with charR ̸= 2. If d(x)f(y)− xσ(y) ∈ Cσ,τ for all x, y ∈ R, and if d ̸= 0, then
R is a commutative ring.
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Proof. If f = 0, then xσ(y) ∈ Cσ,τ for all x, y ∈ R. In particular, [xσ(y), y]σ,τ =
0 for all x, y ∈ R and hence [x, y]σ,τσ(y) = 0 for all x, y ∈ R. Replacing
x by xz, we get [x, τ(y)]zσ(y) = 0 for all x, y, z ∈ R. Hence it follows then
[x, τ(y)]Rσ(y) = 0 for all x, y ∈ R. Thus the primeness of R forces that for
each y ∈ R, either y ∈ Z or y = 0. But y = 0 also implies that y ∈ Z. Hence in
both cases we find that R is a commutative ring.

Hence, onward we assume that f ̸= 0. Suppose that d(x)f(y)−xσ(y) ∈ Cσ,τ

for all x, y ∈ R. Replacing y by yz, obtaining

(d(x)f(y)− xσ(y))σ(z) + d(x)τ(y)d(z) ∈ Cσ,τ for all x, y, z ∈ R.

Then it is clear that [(d(x)f(y) − xσ(y))σ(z) + d(x)τ(y)d(z), z]σ,τ = 0 for all
x, y, z ∈ R by the definition of Cσ,τ . Hence

(2.5) [d(x)τ(y)d(z), z]σ,τ = 0 for all x, y, z ∈ R.

That is d(x)[τ(y)d(z), z]σ,τ + [d(x), τ(z)]τ(y)d(z) = 0 for all x, y, z ∈ R. Taking

τ−1(d(t))y instead of y in this gives

[d(x), τ(z)]d(t)τ(y)d(z) = 0 for all x, y, z, t ∈ R.

By the primeness of R and τ ∈ AutR, we have either [d(x), τ(z)]d(t) = 0 or
d(z) = 0 for each z ∈ R. We set K = {z ∈ R | [d(x), τ(z)]d(t) = 0 for all
x, t ∈ R} and L = {z ∈ R | d(z) = 0}. Then it can be easily seen that K and L
both are additive subgroups of R and whose union R. Then by Brauer’s trick,
either K = R or L = R. If L = R, then d(R) = 0, and so R is a commutative
ring by [4, Lemma 2].

Now let K = R. Hence [d(x), τ(z)]d(t) = 0 for all x, z, t ∈ R. Hence 0 =
[d(x), τ(rz)]d(t) = [d(x), τ(r)]τ(z)d(t)+τ(r)[d(x), τ(z)]d(t) for all x, z, t, r ∈ R.
Since the second summand is zero, it is clear that

[d(x), r]Rd(t) = 0 for all r, x, t ∈ R.

By the primeness of R, we have d(R) ⊂ Z or d(R) = 0, and so d(R) ⊂ Z. Thus
the proof completed by [4, Lemma 2]. □

Corollary 3. Let d be a nonzero (σ, τ)-derivation of a prime ring R with
charR ̸= 2. If d(x)d(y)−xσ(y) ∈ C

σ,τ
for all x, y ∈ R, then R is a commutative

ring.

Proceeding on the same lines with necessary variations we can prove the
following theorem.

Theorem 4. Let (f, d) be a generalized (σ, τ)-derivation of a prime ring R
with charR ̸= 2. If d(x)f(y) + xσ(y) ∈ Cσ,τ for all x, y ∈ R, and if d ̸= 0, then
R is a commutative ring.

Corollary 4. Let d be a nonzero (σ, τ)-derivation of a prime ring R with
charR ̸= 2. If d(x)d(y)+xσ(y) ∈ Cσ,τ for all x, y ∈ R, then R is a commutative
ring.
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Theorem 5. Let (f, d) be a generalized (σ, τ)-derivation of a prime ring R
with charR ̸= 2. If f(xy)− xσ(y) ∈ Cσ,τ for all x, y ∈ R, and if d ̸= 0, then R
is a commutative ring.

Proof. If f = 0, then xσ(y) ∈ Cσ,τ for all x, y ∈ R. Using the same arguments
in the begining of the proof of Theorem 3, we get the required result.

Assume that f ̸= 0 and f(xy)− xσ(y) ∈ Cσ,τ for all x, y ∈ R. That is

(2.6) f(x)σ(y) + τ(x)d(y)− xσ(y) ∈ Cσ,τ for all x, y ∈ R.

Substitute yz instead of y in (2.6) obtaining

(f(x)σ(y) + τ(x)d(y)− xσ(y))σ(z) + τ(x)τ(y)d(z) ∈ Cσ,τ for all x, y, z ∈ R.

By the definition of Cσ,τ , commutting this term with z gives

[τ(x)τ(y)d(z), z]σ,τ = 0 for all x, y, z ∈ R.

Replacing y by ty in this equation and using this, we get

τ([x, z])τ(ty)d(z) = 0 for all x, y, z, t ∈ R.

Since τ is an automorphism of R, we have

[x, z]Rd(z) = 0 for all x, z ∈ R.

Using the same arguments in the proof of Theorem 2, we find the required
result. □

Corollary 5. Let d be a nonzero (σ, τ)-derivation of a prime ring R with
charR ̸= 2. If d(xy) − xσ(y) ∈ Cσ,τ for all x, y ∈ R, then R is a commutative
ring.

Theorem 6. Let (f, d) be a generalized (σ, τ)-derivation of a prime ring R
with charR ̸= 2. If f(xy) + xσ(y) ∈ Cσ,τ for all x, y ∈ R, and if d ̸= 0, then R
is a commutative ring.

Proof. If f is a generalized derivation satisfying the property f(xy) + xσ(y) ∈
Cσ,τ for all x, y ∈ R, then (−f) satisfies the condition (−f)(xy)+xσ(y) ∈ Cσ,τ

for all x, y ∈ R, and hence by Theorem 5, R is a commutative ring. □

Corollary 6. Let d be a nonzero (σ, τ)-derivation of a prime ring R with
charR ̸= 2. If d(xy) + xσ(y) ∈ Cσ,τ for all x, y ∈ R, then R is a commutative
ring.

Theorem 7. Let (f, d) be a generalized (σ, τ)-derivation of a prime ring R
with charR ̸= 2. If f(xy)− yσ(x) ∈ Cσ,τ for all x, y ∈ R, and if d ̸= 0, then R
is a commutative ring.

Proof. If f = 0, then yσ(x) ∈ Cσ,τ for all x, y ∈ R. Using the same arguments
in the begining of the proof of Theorem 3, we get the required result.

Suppose that f ̸= 0 and f(xy)− yσ(x) ∈ Cσ,τ for all x, y ∈ R. That is

(2.7) f(x)σ(y) + τ(x)d(y)− yσ(x) ∈ Cσ,τ for all x, y ∈ R.
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Replacing x by xy in (2.7) yields that

f(xy)σ(y) + τ(x)τ(y)d(y)− yσ(x)σ(y) ∈ Cσ,τ for all x, y ∈ R.

Then it is clear that [f(xy)σ(y) + τ(x)τ(y)d(y) − yσ(x)σ(y), y]σ,τ = 0 for all
x, y ∈ R by the definition of C

σ,τ
. Hence

[τ(x)τ(y)d(y), y]σ,τ = 0 for all x, y ∈ R,

and so

(2.8) [τ(x), y]σ,τ τ(y)d(y) + τ(x)[τ(y)d(y), σ(y)] = 0 for all x, y ∈ R.

Substitute xr instead of x in (2.8) and using this, we arrive at

τ([x, y])τ(ry)d(y) = 0 for all x, y, r ∈ R,

and so

[x, y]Rτ(y)d(y) = 0 for all x, y ∈ R.

By the primeness of R, we have y ∈ Z or τ(y)d(y) = 0 for each y ∈ R.
Let y ∈ Z. By the hypothesis, we have

[f(x)σ(y) + τ(x)d(y)− yσ(x), z]σ,τ = 0 for all x ∈ R.

Expanding this equation and using σ(y), d(y), y ∈ Z, we arrive at

[f(x), z]σ,τσ(y) + [τ(x), z]σ,τ d(y)− y[σ(x), z]σ,τ = 0 for all x, z ∈ R.

Replacing x by xy in this equation and using this, we have

[τ(x), z]σ,τ τ(y)d(y) = 0 for all x, z ∈ R.

Hence [τ(tx), z]σ,τ τ(y)d(y) = τ(t)[τ(x), z]σ,τ τ(y)d(y)+τ([t, z])τ(x)τ(y)d(y) = 0
for all x, z, t ∈ R. Since the first summand is zero, it is clear that

[t, z]Rτ(y)d(y) = 0 for all t, z ∈ R.

Thus we obtain that R is a commutative ring or τ(y)d(y) = 0. The second
case using σ(y) ∈ Z and the primeness of R, we have y = 0 or τ(y)d(y) = 0,
and so τ(y)d(y) = 0. Thus we obtain that for all y ∈ R, τ(y)d(y) = 0 for any
cases.

Let τ(y)d(y) = 0 for all y ∈ R. Hence

τ(x+ y)d(x+ y) = τ(x)d(x) + τ(x)d(y) + τ(y)d(y) + τ(y)d(x) = 0

and so

τ(x)d(y) + τ(y)d(x) = 0 for all x, y ∈ R.

Taking yt instead of y in this equation, we obtain that

τ(x)d(y)σ(t) + τ([x, y])d(t) = 0.

Again writing tz by t yields that τ([x, y])Rd(z) = 0. Since R is a prime ring,
we have R is a commutative ring or d(R) = 0. In the second case gives R is a
commutative ring by [4, Lemma 2]. This complete the proof. □
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Corollary 7. Let d be a nonzero (σ, τ)-derivation of a prime ring R with
charR ̸= 2. If d(xy) − yσ(x) ∈ Cσ,τ for all x, y ∈ R, then R is a commutative
ring.

Using similar arguments as above, we can prove the following:

Theorem 8. Let (f, d) be a generalized (σ, τ)-derivation of a prime ring R
with charR ̸= 2. If f(xy) + yσ(x) ∈ Cσ,τ for all x, y ∈ R, and if d ̸= 0, then R
is a commutative ring.

Corollary 8. Let d be a nonzero (σ, τ)-derivation of a prime ring R with
charR ̸= 2. If d(xy) + yσ(x) ∈ Cσ,τ for all x, y ∈ R, then R is a commutative
ring.

Theorem 9. Let (f, d) be a generalized (σ, τ)-derivation of a prime ring R
with charR ̸= 2. If f(x)f(y)− xσ(y) ∈ Cσ,τ for all x, y ∈ R, and if d ̸= 0, then
R is a commutative ring.

Proof. If f = 0, then xσ(y) ∈ Cσ,τ for all x, y ∈ R. Using the same arguments
in the begining of the proof of Theorem 3, we get the required result.

Assume that f ̸= 0. Replacing y by yz in the hypothesis yields that

(2.9) f(x)f(y)σ(z)− f(x)τ(y)d(z)− xσ(y)σ(z) ∈ Cσ,τ for all x, y, z ∈ R.

By the definition of Cσ,τ , we have

(2.10) [f(x)τ(y)d(z), z]σ,τ = 0 for all x, y, z ∈ R.

Writing τ−1(f(t))y by y in the last relation gives

[f(x), τ(z)]f(t)Rd(z) = 0 for all x, z, t ∈ R.

By the primeness of R, we have either [f(x), τ(z)]f(t) = 0 or d(z) = 0 for
each z ∈ R. We set K = {z ∈ R | [f(x), τ(z)]f(t) = 0 for all x, t ∈ R} and
L = {z ∈ R | d(z) = 0}. Then it can be easily seen that K and L both are
additive subgroups of R and whose union R. Then by Brauer’s trick, either
K = R or L = R. If L = R, then d(R) = 0, and so R is a commutative ring by
[4, Lemma 2].

Now let assume K = R. Thus [f(x), τ(z)]f(t) = 0 for all x, t ∈ R. Hence

[f(x), τ(yz)]f(t) = [f(x), τ(y)]τ(z)f(t) + τ(y)[f(x), τ(z)]f(t) = 0

for all x, z, t ∈ R.
Since the second summand is zero, it is clear that

[f(x), τ(y)]Rf(t) = 0 for all x, y, t ∈ R.

By the primeness of R gives f(R) ⊂ Z or f(R) = 0. Hence we have f(R) ⊂ Z
for any cases. Meanwhile according to (2.10), we have

f(x)[τ(y)d(z), z]σ,τ + [f(x), τ(z)]τ(y)d(z) = 0,

and so
f(x)[τ(y)d(z), z]σ,τ = 0 for all x, y, z ∈ R.
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Using f(x) ∈ Z, we conclude that

f(x) = 0 or [τ(y)d(z), z]σ,τ = 0 for all x, y, z ∈ R.

Since f ̸= 0, we suppose that [τ(y)d(z), z]σ,τ = 0 for all y, z ∈ R. That is

τ(y)[d(z), z]σ,τ + [τ(y), τ(z)]d(z) = 0 for all y, z ∈ R.

Writing yr by y in the last relation gives

τ([y, z])Rd(z) = 0 for all y, z ∈ R.

Using the primeness of R, we obtain the following alternative: for all z ∈ R
we have either z ∈ Z or d(z) = 0. By a standart argument one of these must
hold for all z ∈ R. Using [4, Lemma 2], we conclude that R is a commutative
ring. □

Corollary 9. Let d be a nonzero (σ, τ)-derivation of a prime ring R with
charR ̸= 2. If d(x)d(y)−xσ(y) ∈ Cσ,τ for all x, y ∈ R, then R is a commutative
ring.

Using similar arguments as above, we can prove the following:

Theorem 10. Let (f, d) be a generalized (σ, τ)-derivation of a prime ring R
with charR ̸= 2. If f(x)f(y) + xσ(y) ∈ Cσ,τ for all x, y ∈ R, and if d ̸= 0, then
R is a commutative ring.

Corollary 10. Let d be a nonzero (σ, τ)-derivation of a prime ring R with
charR ̸= 2. If d(x)d(y)+xσ(y) ∈ C

σ,τ
for all x, y ∈ R, then R is a commutative

ring.

Theorem 11. Let (f, d) and (g, h) be two generalized (σ, τ)-derivations of a
prime ring R with charR ̸= 2. If f(x)σ(y) = τ(x)g(y) for all x, y ∈ R, then R
is a commutative ring.

Proof. If either f = 0 or g = 0, then we get τ(x)g(y) = 0 for all x, y ∈ R
(f(x)σ(y) = 0 for all x, y ∈ R). Replacing y by yz (or x by xz), we have
τ(xy)h(z) = 0, (or τ(x)d(z)σ(y) = 0) for all x, y, z ∈ R. By the primeness of
R, we have h = 0 (or d = 0). Thus R is a commutative ring by [4, Lemma 2].
So we may assume that f ̸= 0 and g ̸= 0.

Now let f(x)σ(y) = τ(x)g(y) for all x, y ∈ R. Replacing x by xz, we get
f(xz)σ(y) = τ(xz)g(y) for all x, y, z ∈ R. Hence we find that

f(x)σ(z)σ(y) + τ(x)d(z)σ(y) = τ(x)τ(z)g(y) for all x, y, z ∈ R.

Using our hypothesis, the above relation yields that

τ(x)(g(z)σ(y) + d(z)σ(y)− τ(z)g(y)) = 0,

and so

(2.11) g(z)σ(y) + d(z)σ(y)− τ(z)g(y) = 0 for all y, z ∈ R.



454 ÖZNUR GÖLBAŞI AND EMINE KOÇ

Replacing y by yr in (2.11) and using this, we get

τ(zy)h(r) = 0 for all y, z, r ∈ R.

Since R is a prime ring and τ ∈ AutR, we obtain that h(R) = 0. Thus R is a
commutative ring by [4, Lemma 2]. □
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