DOI QR코드

DOI QR Code

ON GENERALIZED (σ, τ)-DERIVATIONS II

  • Argac, Nurcan (DEPARTMENT OF MATHEMATICS SCIENCE FACULTY EGE UNIVERSITY) ;
  • Inceboz, Hulya G. (DEPARTMENT OF MATHEMATICS SCIENCE AND ART FACULTY ADNAN MENDERES UNIVERSITY)
  • Published : 2010.05.01

Abstract

This paper continues a line investigation in [1]. Let A be a K-algebra and M an A/K-bimodule. In [5] Hamaguchi gave a necessary and sufficient condition for gDer(A, M) to be isomorphic to BDer(A, M). The main aim of this paper is to establish similar relationships for generalized ($\sigma$, $\tau$)-derivations.

Keywords

References

  1. N. Argac and E. Albas, On generalized (${\sigma},{\tau}$)-derivations, Sibirsk. Mat. Zh. 43 (2002), no. 6, 1211-1221
  2. N. Argac and E. Albas, On generalized (${\sigma},{\tau}$)-derivations, Siberian Math. J. 43 (2002), no. 6, 977–984.
  3. M. Bresar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991), no. 1, 89-93. https://doi.org/10.1017/S0017089500008077
  4. M. Bresar and J. Vukman, Jordan (${\theta}{\phi}$)-derivations, Glas. Mat. Ser. III 26(46) (1991), no. 1-2, 13-17.
  5. J. M. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), no. 2, 321-324. https://doi.org/10.2307/2040004
  6. N. Hamaguchi, Generalized d-derivations of rings without unit elements, Sci. Math. Jpn. 54 (2001), no. 2, 337-342.
  7. I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957),1104-1110. https://doi.org/10.2307/2032688
  8. I. N. Herstein, Topics in Ring Theory, The University of Chicago Press, Chicago, Ill.-London 1969.
  9. T. W. Hungerford, Algebra, Holt, Rinehart and Winston, Inc., New York-Montreal,Que.-London, 1974.
  10. A. Nakajima, On categorical properties of generalized derivations, Sci. Math. 2 (1999), no. 3, 345-352.
  11. A. Nakajima, Generalized Jordan derivations, International Symposium on Ring Theory (Kyongju, 1999), 235-243, Trends Math., Birkhauser Boston, Boston, MA, 2001.
  12. A. Nakajima, On generalized higher derivations, Turkish J. Math. 24 (2000), no. 3, 295-311.

Cited by

  1. ON (α, β, γ)-DERIVATIONS OF LIE SUPERALGEBRAS vol.10, pp.10, 2013, https://doi.org/10.1142/S0219887813500503
  2. )-derivations vol.46, pp.6, 2018, https://doi.org/10.1080/00927872.2017.1392535