References
-
N. Argac and E. Albas, On generalized (
${\sigma},{\tau}$ )-derivations, Sibirsk. Mat. Zh. 43 (2002), no. 6, 1211-1221 -
N. Argac and E. Albas, On generalized (
${\sigma},{\tau}$ )-derivations, Siberian Math. J. 43 (2002), no. 6, 977–984. - M. Bresar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991), no. 1, 89-93. https://doi.org/10.1017/S0017089500008077
-
M. Bresar and J. Vukman, Jordan (
${\theta}{\phi}$ )-derivations, Glas. Mat. Ser. III 26(46) (1991), no. 1-2, 13-17. - J. M. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), no. 2, 321-324. https://doi.org/10.2307/2040004
- N. Hamaguchi, Generalized d-derivations of rings without unit elements, Sci. Math. Jpn. 54 (2001), no. 2, 337-342.
- I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957),1104-1110. https://doi.org/10.2307/2032688
- I. N. Herstein, Topics in Ring Theory, The University of Chicago Press, Chicago, Ill.-London 1969.
- T. W. Hungerford, Algebra, Holt, Rinehart and Winston, Inc., New York-Montreal,Que.-London, 1974.
- A. Nakajima, On categorical properties of generalized derivations, Sci. Math. 2 (1999), no. 3, 345-352.
- A. Nakajima, Generalized Jordan derivations, International Symposium on Ring Theory (Kyongju, 1999), 235-243, Trends Math., Birkhauser Boston, Boston, MA, 2001.
- A. Nakajima, On generalized higher derivations, Turkish J. Math. 24 (2000), no. 3, 295-311.
Cited by
- ON (α, β, γ)-DERIVATIONS OF LIE SUPERALGEBRAS vol.10, pp.10, 2013, https://doi.org/10.1142/S0219887813500503
- )-derivations vol.46, pp.6, 2018, https://doi.org/10.1080/00927872.2017.1392535