• Title/Summary/Keyword: gate-oxide breakdown

Search Result 103, Processing Time 0.029 seconds

Prediction of gate oxide breakdwon under constant current stresses (정전류 스트레스 하에서 게이트 산화막의 항복 특성 예측)

  • 정태식;최우영;이상돈;윤재석;김재영;김봉렬
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.7
    • /
    • pp.162-170
    • /
    • 1996
  • A breakdown model of gate oxides under constant current stresses is proposed. This model directly relates the oxide lifetime to the stress current density, and includes statistical nature of oxide breakdown using the concept of "effective oxide thinning". It is shown tha this model can reliably predict the TDDB characteristics for any current stress levels and oxide areas.

  • PDF

The AC Breakdown Properties of Gate Oxide Layer in MOSFET (MOSFET에서 Gate Oxide층의 교류 절연파괴 특성)

  • Park, Jung-Goo;Song, Jung-Woo;Ko, Si-Hyoen;Cho, Kyung-Soon;Shin, Jong-Yeol;Lee, Yong-Woo;Hong, Jin-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.941-943
    • /
    • 1999
  • In this paper, the AC breakdown properties to investigate the electrical properties of gate oxide layer in MOSFET was studied. 5 inch arsenic epi-wafer is selected as an experimental specimen, the power MOSFET of a general MOS structure was made. In order to analyze the physical properties of the specimen, the SIMS(secondary ion mass spectroscopy) was used. As the experimental condition, the experiment al of the AC breakdown characteristics was performed when the thickness of gate oxide layer is $600[\AA]$ and $800[\AA]$, the resistivity is $1.2[\Omega{\cdot}cm]$, $1.5[\Omega{\cdot}cm]$ and $1.8[\Omega{\cdot}cm]$, and the diffusion time is 110[min] and 150[min] in temperature $30[^{\circ}C]{\sim}100[^{\circ}C]$. From the analysis result of the SIMS spectrum, it is confirmed that the dielectric strength is decreased by contribution of the impurities ad dition as increasing in thickness of the gate oxide layer in MOSFET.

  • PDF

Development of Low-Vgs N-LDMOS Structure with Double Gate Oxide for Improving Rsp

  • Jeong, Woo-Yang;Yi, Keun-Man
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.6
    • /
    • pp.193-195
    • /
    • 2009
  • This paper aims to develop a low gate source voltage ($V_{gs}$) N-LDMOS element that is fully operational at a CMOS Logic Gate voltage (3.3 or 5 V) realized using the 0.35 μm BCDMOS process. The basic structure of the N-LDMOS element presented here has a Low $V_{gs}$ LDMOS structure to which the thickness of a logic gate oxide is applied. Additional modification has been carried out in order to obtain features of an improved breakdown voltage and a specific on resistance ($R_{sp}$). A N-LDMOS element can be developed with improved features of breakdown voltage and specific on resistance, which is an important criterion for power elements by means of using a proper structure and appropriate process modification. In this paper, the structure has been made to withstand the excessive electrical field on the drain side by applying the double gate oxide structure to the channel area, to improve the specific on resistance in addition to providing a sufficient breakdown voltage margin. It is shown that the resulting modified N-LDMOS structure with the feature of the specific on resistance is improved by 31%, and so it is expected that optimized power efficiencies and the size-effectiveness can be obtained.

Analysis for Breakdown Voltage of Double Gate MOSFET according to Device Parameters (소자파라미터에 따른 DGMOSFET의 항복전압분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.372-377
    • /
    • 2013
  • This paper have presented the breakdown voltage for double gate(DG) MOSFET. The analytical solution of Poisson's equation and Fulop's breakdown condition have been used to analyze for breakdown voltage. The double gate(DG) MOSFET has the advantage to reduce the short channel effects as improving the current controllability of gate. But we need the study for the breakdown voltage of DGMOSFET since the decrease of the breakdown voltage is unavoidable. To approximate with experimental values, we have used the Gaussian function as charge distribution for Poisson's equation, and the change of breakdown voltage has been observed for device geometry. Since this potential model has been verified in the previous papers, we have used this model to analyze the breakdown voltage. As a result to observe the breakdown voltage, the smaller channel length and the higher doping concentration become, the smaller the breakdown voltage becomes. Also we have observed the change of the breakdown voltage for gate oxide thickness and channel thickness.

Dielectric Brekdown Chatacteristecs of the Gate Oxide for Ti-Polycide Gate (Ti-Ploycide 게이트에서 게이트산화막의 전연파괴특성)

  • Go, Jong-U;Go, Jong-U;Go, Jong-U;Go, Jong-U;Park, Jin-Seong;Go, Jong-U
    • Korean Journal of Materials Research
    • /
    • v.3 no.6
    • /
    • pp.638-644
    • /
    • 1993
  • The degradation of dielectric breakdown field of 8nm-thick gate oxide ($SiO_2$) for Tipolycide MOS(meta1-oxide-semiconductor) capacitor with different annealing conditions and thickness of the polysilicon film on gate oxide was investigated. The degree of degradation in dielectric breakdown strength of the gate oxide for Ti-polycide gate became more severe with increasing annealing temperature and time, especially, for the case that thickness of the polysilicon film remained on the gate oxide after silicidation was reduced. The gate oxide degradation may be occurred by annealing although there is no direct contact of Ti-silicide with gate oxide. From SIMS analysis, it was confirmed that the degration of gate oxide during annealing was due to the diffusion of titanium atoms into the gate oxide film through polysilicon from the titanium silicide film.

  • PDF

The DC Breakdown Properties of Gate Oxide in MOSFET (MOSFET에서 gate oxide의 직류 절연파괴 특성)

  • 박정구;이종필;이수원;홍진웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.44-48
    • /
    • 1999
  • In order to the investigate for the DC(forward-reverse) breakdown properties of gate oxide in MOSFET, we are manufactured the specimen as following. The resistivity is 1.2($\Omega$ $.$ cm), 1.5($\Omega$ $.$ cm) and 1.8($\Omega$ $.$ cm) when thickness is 600(${\AA}$), and the diffusion time is both 110[min] and 150[min] when thickness is 600[${\AA}$]. In DC dielectric strength due to the each resistivity, it is confirmed that almost of the leakage current and breakdown current is flowed through n+ source when positive bias is applied, but is flowed through P region when negative bias is applied. It is thought that the dielectric strength due to the diffusion time is the contribution as increasing of p region.

  • PDF

Analysis of Gate-Oxide Breakdown in CMOS Combinational Logics

  • Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.17-22
    • /
    • 2019
  • As CMOS technology scales down, reliability is becoming an important concern for VLSI designers. This paper analyzes gate-oxide breakdowns (i.e., the time-dependent dielectric-breakdown (TDDB) aging effect) as a reliability issue for combinational circuits with 45-nm technology. This paper shows simulation results for the noise margin, delay, and power using a single inverter-chain circuit, as well as the International Symposium on Circuits and Systems (ISCAS)'85 benchmark circuits. The delay and power variations in the presence of TDDB are also discussed in the paper. Finally, we propose a novel method to compensate for the logic failure due to dielectric breakdowns: We used a higher supply voltage and a negative ground voltage for the circuit. The proposed method was verified using the ISCAS'85 benchmark circuits.

The Impact of TDDB Failure on Nanoscale CMOS Digital Circuits

  • Kim, Yeon-Bo;Kim, Kyung-Ki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.3
    • /
    • pp.27-34
    • /
    • 2012
  • This paper presents the impact of time dependent dielectric breakdown (TDDB, also called as gate oxide breakdown) failure on nanoscale digital CMOS Circuits. Recently, TDDB for ultra-thin gate oxides has been considered as one of the critical reliability issues which can lead to performance degradation or logic failures in nanoscale CMOS devices. Also, leakage power in the standby mode can be increased significantly. In this paper, TDDB aging effects on large CMOS digital circuits in the 45nm technology are analyzed. Simulation results show that TDDB effect on MOSFET circuits can result in more significant increase of power consumption compared to delay increase.

The Analysis of Breakdown Voltage for the Double-gate MOSFET Using the Gaussian Doping Distribution

  • Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.2
    • /
    • pp.200-204
    • /
    • 2012
  • This study has presented the analysis of breakdown voltage for a double-gate metal-oxide semiconductor field-effect transistor (MOSFET) based on the doping distribution of the Gaussian function. The double-gate MOSFET is a next generation transistor that shrinks the short channel effects of the nano-scaled CMOSFET. The degradation of breakdown voltage is a highly important short channel effect with threshold voltage roll-off and an increase in subthreshold swings. The analytical potential distribution derived from Poisson's equation and the Fulop's avalanche breakdown condition have been used to calculate the breakdown voltage of a double-gate MOSFET for the shape of the Gaussian doping distribution. This analytical potential model is in good agreement with the numerical model. Using this model, the breakdown voltage has been analyzed for channel length and doping concentration with parameters such as projected range and standard projected deviation of Gaussian function. As a result, since the breakdown voltage is greatly changed for the shape of the Gaussian function, the channel doping distribution of a double-gate MOSFET has to be carefully designed.

A Study on Switching Characteristics of 1,200V Trench Gate Field stop IGBT Process Variables (1,200V 급 Trench Gate Field stop IGBT 공정변수에 따른 스위칭 특성 연구)

  • Jo, Chang Hyeon;Kim, Dea Hee;Ahn, Byoung Sup;Kang, Ey Goo
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.350-355
    • /
    • 2021
  • IGBT is a power semiconductor device that contains both MOSFET and BJT structures, and it has fast switching speed of MOSFET, high breakdown voltage and high current of BJT characteristics. IGBT is a device that targets the requirements of an ideal power semiconductor device with high breakdown voltage, low VCE-SAT, fast switching speed and high reliability. In this paper, we analyzed Gate oxide thickness, Trench Gate Width, and P+Emitter width, which are the top process parameters of 1,200V Trench Gate Field Stop IGBT, and suggested the optimized top process parameters. Using the Synopsys T-CAD Simulator, we designed IGBT devices with electrical characteristics that has breakdown voltage of 1,470 V, VCE-SAT 2.17 V, Eon 0.361 mJ and Eoff 1.152 mJ.