• 제목/요약/키워드: gamma-starlike

검색결과 14건 처리시간 0.019초

ON THE COEFFICIENTS OF GAMMA-STARLIKE FUNCTIONS

  • Thomas, Derek K.
    • 대한수학회지
    • /
    • 제55권1호
    • /
    • pp.175-184
    • /
    • 2018
  • We give several sharp estimates for some initial coefficients problems for the so-called gamma starlike functions f, analytic and univalent in the unit disk ${\mathbb{D}}:=\{z{\in}{\mathbb{C}}:{\mid}z{\mid}<1\}$, and normalized so that f(0) = 0 = f'(0)-1, and satisfying Re $\left[\left(1+{\frac{zf^{{\prime}{\prime}}(z)}{f^{\prime}(z)}}\right)^{\gamma}\left({\frac{zf^{\prime}(z)}{f(z)}}\right)^{1-{\gamma}}\right]$ > 0.

SOME MAJORIZATION PROBLEMS ASSOCIATED WITH p-VALENTLY STARLIKE AND CONVEX FUNCTIONS OF COMPLEX ORDER

  • Altintas, Osman;Srivastava, H.M.
    • East Asian mathematical journal
    • /
    • 제17권2호
    • /
    • pp.175-183
    • /
    • 2001
  • The main object of this paper is to investigate several majorization problems involving two subclasses $S_{p,q}(\gamma)$ and $C_{p,q}(\gamma)$ of p-valently starlike and p-valently convex functions of complex order ${\gamma}{\neq}0$ in the open unit disk $\mathbb{u}$. Relevant connections of the results presented here with those given by earlier workers on the subject are also indicated.

  • PDF

ON COEFFICIENT PROBLEMS FOR STARLIKE FUNCTIONS RELATED TO VERTICAL STRIP DOMAINS

  • Kwon, Oh Sang;Sim, Young Jae
    • 대한수학회논문집
    • /
    • 제34권2호
    • /
    • pp.451-464
    • /
    • 2019
  • In the present paper, we find the sharp bound for the fourth coefficient of starlike functions f which are normalized by f(0) = 0 = f'(0) - 1 and satisfy the following two-sided inequality: $$1+{\frac{{\gamma}-{\pi}}{2\;{\sin}\;{\gamma}}}\;<\;{\Re}\{{\frac{zf^{\prime}(z)}{f(z)}}\}\;<\;1+{\frac{{\gamma}}{2\;{\sin}\;{\gamma}}},\;z{\in}{\mathbb{D}}$$, where ${\mathbb{D}}:=\{z{\in}{\mathbb{C}}:{\left|z\right|}<1\}$ is the unit disk and ${\gamma}$ is a real number such that ${\pi}/2{\leq}{\gamma}<{\pi}$. Moreover, the sharp bound for the fifth coefficient of f defined above with ${\gamma}$ in a subset of [${\pi}/2,{\pi}$) also will be found.

ON CERTAIN SUBCLASSES OF STARLIKE FUNCTIONS

  • Kwon, Oh-Sang
    • 대한수학회논문집
    • /
    • 제10권2호
    • /
    • pp.305-315
    • /
    • 1995
  • The class $R_{\gamma-1,p}(A,B,\alpha)$ for $-1 \leq B < A \leq 1,\gamma > (B -1)p+(A_B)(p-\alpha)/1-B$ and $0 \leq \alpha < p$ consisting of p-valently analytic functions in the open unit disc is defined with the help of convolution technique. We study containment property, integral transforms and a sufficient condition for an analytic function to be in $R_{\gamma-1,p}(A,B,\alpha)$.

  • PDF

Certain Subclasses of Bi-Starlike and Bi-Convex Functions of Complex Order

  • MAGESH, NANJUNDAN;BALAJI, VITTALRAO KUPPARAOo
    • Kyungpook Mathematical Journal
    • /
    • 제55권3호
    • /
    • pp.705-714
    • /
    • 2015
  • In this paper, we introduce and investigate an interesting subclass $M_{\Sigma}({\gamma},{\lambda},{\delta},{\varphi})$ of analytic and bi-univalent functions of complex order in the open unit disk ${\mathbb{U}}$. For functions belonging to the class $M_{\Sigma}({\gamma},{\lambda},{\delta},{\varphi})$ we investigate the coefficient estimates on the first two Taylor-Maclaurin coefficients ${\mid}{\alpha}_2{\mid}$ and ${\mid}{\alpha}_3{\mid}$. The results presented in this paper would generalize and improve some recent works of [1],[5],[9].

CERTAIN CLASSES OF UNIVALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS

  • Lee, Sang-Keun
    • East Asian mathematical journal
    • /
    • 제5권2호
    • /
    • pp.135-150
    • /
    • 1989
  • In this paper, we define new classes $S*({\alpha},{\beta},{\gamma})$ and $C*({\alpha},{\beta},{\gamma})$ of T, the class of analytic and univalent functions with negative coefficients. We have sharp results concerning coefficients, distortion of functions belonging to these classes along with a. representation formular for the function in $S*({\alpha},{\beta},{\gamma})$ and $C*({\alpha},{\beta},{\gamma})$. Furthermore, we improve the results of Libera for the class of starlike functions having negative coefficients.

  • PDF

ANALYTIC FUNCTIONS WITH CONIC DOMAINS ASSOCIATED WITH CERTAIN GENERALIZED q-INTEGRAL OPERATOR

  • Om P. Ahuja;Asena Cetinkaya;Naveen Kumar Jain
    • 대한수학회논문집
    • /
    • 제38권4호
    • /
    • pp.1111-1126
    • /
    • 2023
  • In this paper, we define a new subclass of k-uniformly starlike functions of order γ (0 ≤ γ < 1) by using certain generalized q-integral operator. We explore geometric interpretation of the functions in this class by connecting it with conic domains. We also investigate q-sufficient coefficient condition, q-Fekete-Szegö inequalities, q-Bieberbach-De Branges type coefficient estimates and radius problem for functions in this class. We conclude this paper by introducing an analogous subclass of k-uniformly convex functions of order γ by using the generalized q-integral operator. We omit the results for this new class because they can be directly translated from the corresponding results of our main class.

PRODUCT AND CONVOLUTION OF CERTAIN UNIVALENT FUNCTIONS

  • Jain, Naveen Kumar;Ravichandran, V.
    • 호남수학학술지
    • /
    • 제38권4호
    • /
    • pp.701-724
    • /
    • 2016
  • For $f_i$ belonging to various subclasses of univalent functions, we investigate the product given by $h(z)=z{\prod_{i=1}^{n}}(f_i(z)/z)^{{\gamma}_i}$.The largest radius ${\rho}$ is determined such that $h({\rho}z)/{\rho}$ is starlike of order ${\beta}$, $0{\leq}{\beta}$ < 1 or to belong to other subclasses of univalent functions. We also determine the sharp radius of starlikeness of order ${\beta}$and other radius for the convolution f*g of two starlike functions f, g.

SOME EXTENSION RESULTS CONCERNING ANALYTIC AND MEROMORPHIC MULTIVALENT FUNCTIONS

  • Ebadian, Ali;Masih, Vali Soltani;Najafzadeh, Shahram
    • 대한수학회보
    • /
    • 제56권4호
    • /
    • pp.911-927
    • /
    • 2019
  • Let $\mathscr{B}^{{\eta},{\mu}}_{p,n}\;({\alpha});\;({\eta},{\mu}{\in}{\mathbb{R}},\;n,\;p{\in}{\mathbb{N}})$ denote all functions f class in the unit disk ${\mathbb{U}}$ as $f(z)=z^p+\sum_{k=n+p}^{\infty}a_kz^k$ which satisfy: $$\|\[{\frac{f^{\prime}(z)}{pz^{p-1}}}\]^{\eta}\;\[\frac{z^p}{f(z)}\]^{\mu}-1\| <1-{\frac{\alpha}{p}};\;(z{\in}{\mathbb{U}},\;0{\leq}{\alpha}<p)$$. And $\mathscr{M}^{{\eta},{\mu}}_{p,n}\;({\alpha})$ indicates all meromorphic functions h in the punctured unit disk $\mathbb{U}^*$ as $h(z)=z^{-p}+\sum_{k=n-p}^{\infty}b_kz^k$ which satisfy: $$\|\[{\frac{h^{\prime}(z)}{-pz^{-p-1}}}\]^{\eta}\;\[\frac{1}{z^ph(z)}\]^{\mu}-1\|<1-{\frac{\alpha}{p}};\;(z{\in}{\mathbb{U}},\;0{\leq}{\alpha}<p)$$. In this paper several sufficient conditions for some classes of functions are investigated. The authors apply Jack's Lemma, to obtain this conditions. Furthermore, sufficient conditions for strongly starlike and convex p-valent functions of order ${\gamma}$ and type ${\beta}$, are also considered.