# SOME MAJORIZATION PROBLEMS ASSOCLATED WITH $p$-VALENTLY STARLIKE AND CONVEX FUNCTIONS OF COMPLEX ORDER 

Osman Altintaş and H. M. Srivastava

Abstract The main object of this paper is to investigate several majorization problems melving two subclasses $\mathcal{S}_{p, q}(\gamma)$ and $\mathcal{C}_{p, q}(\gamma)$ of $p$-valently starhke and $p$-valently convex functions of complex order $\gamma \neq 0$ in the open unt disk $\mathbb{U}$. Relevant connections of the results presented here with those given by earler workers on the subject are also indicated

## 1. Introduction and Definitions

Let the functions $f(z)$ and $g(z)$ be analytuc in the open unit disk

$$
\mathbb{U}:=\{z: z \in \mathbb{C} \text { and }|z|<1\} .
$$

Following the pioneering work of MacGregor [6], we say that $f(z)$ is majorized by $g(z)$ in $\mathbb{U}$ and write

$$
\begin{equation*}
f(z) \ll g(z) \quad(z \in \mathbb{U}) \tag{1.1}
\end{equation*}
$$

if there exists a function $\varphi(z)$, analytic in $\mathbb{U}$, such that

$$
\begin{equation*}
|\varphi(z)| \leqq 1 \text { and } f(z)=\varphi(z) g(z) \quad(z \in \mathbb{U}) \tag{1.2}
\end{equation*}
$$

The majorization (1.1) is closely related to the concept of quasisubordination between analytic functions in $\mathbb{U}$, which was considered

[^0]recently by (for example) Altintaş and Owa [1]. Altintaş et al. [2], on the other hand, investigated several majorization problems involving a number of subclasses of analytic functions in $\mathbb{U}$. In the present sequel to the work of Altintas et al. [2], we propose to investigate the corresponding majorization problems associated with the classes $\mathcal{S}_{p, q}(\gamma)$ and $\mathcal{C}_{p, q}(\gamma)$ of $p$-valently starlike and $p$-valently convex functions of complex order $\gamma \neq 0$ in $\mathbb{U}$, which are introduced below.

Let $\mathcal{A}_{p}$ denote the class of functions $f$ normalized by

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n} \quad(p \in \mathbb{N}:=\{1,2,3, \ldots\}), \tag{1.3}
\end{equation*}
$$

which are analytic and $p$-valent in $\mathbb{U}$. Also let

$$
\begin{equation*}
\mathcal{A}:=\mathcal{A}_{1} . \tag{1.4}
\end{equation*}
$$

A function $f \in \mathcal{A}_{p}$ is said to be in the class $\mathcal{S}_{p, q}(\gamma)$ of $p$-valently starlike functions of complex order $\gamma \neq 0$ in $\mathbb{U}$ if and only if

$$
\begin{equation*}
\mathfrak{R}\left\{1+\frac{1}{\gamma}\left(\frac{z f^{(q+1)}(z)}{f^{(q)}(z)}-p+q\right)\right\}>0 \tag{1.5}
\end{equation*}
$$

$\left(z \in \mathbb{U} ; p \in \mathbb{N} ; q \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\} ; \gamma \in \mathbb{C} \backslash\{0\} ;|2 \gamma-p+q| \leqq p-q\right)$, where, as usual, $f^{(q)}(z)$ denotes the derivative of $f(z)$ with respect to $z$ of order $q \in \mathbb{N}_{0}$. Furthermore, a function $f \in \mathcal{A}_{p}$ is said to be in the class $\mathcal{C}_{p, q}(\gamma)$ of $p$-valently convex functions of complex order $\gamma \neq 0$ in $\mathbb{U}$ if and only if

$$
\begin{equation*}
\mathfrak{R}\left\{1+\frac{1}{\gamma}\left(\frac{z f^{(q+2)}(z)}{f^{(q+1)}(z)}-p+q\right)\right\}>0 \tag{1.6}
\end{equation*}
$$

$$
\left(z \in \mathbb{U} ; p \in \mathbb{N} ; q \in \mathbb{N}_{0} ; \gamma \in \mathbb{C} \backslash\{0\} ;|2 \gamma-p+q| \leqq p-q\right)
$$

Clearly, we have the following relationships:

$$
\begin{equation*}
\mathcal{S}_{1,0}(\gamma)=\mathcal{S}(\gamma) \text { and } \mathcal{C}_{1,0}(\gamma)=\mathcal{C}(\gamma) \quad(\gamma \in \mathbb{C} \backslash\{0\}) \tag{1.7}
\end{equation*}
$$

where $\mathcal{S}(\gamma)$ and $\mathcal{C}(\gamma)$ are the classes of starlike and convex functions of complex order $\gamma \neq 0$ in $\mathbb{U}$, which were considered earlier by Nasr and Aouf $[8]$ and Wiatrowski [12], respectively, and (more recently) by Altintas et al. [2] (see also Aouf et al. [3]). Moreover, it is easily seen that

$$
\begin{equation*}
\mathcal{S}_{1,0}(1-\alpha)=\mathcal{S}(1-\alpha)=\mathcal{S}^{*}(\alpha) \quad(0 \leqq \alpha<1) \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{C}_{1,0}(1-\alpha)=\mathcal{C}(1-\alpha)=\mathcal{K}(\alpha) \quad(0 \leqq \alpha<1), \tag{1.9}
\end{equation*}
$$

where $\mathcal{S}^{*}(\alpha)$ and $\mathcal{K}(\alpha)$ denote, respectiveiy, the familiar classes of (normalized) starlike and convex functions of order $\alpha$ in $\mathbb{U}$, which were introduced by Robertson [10] (see also Srivastava and Owa [11]).

## 2. Majorization Problems for the Class $\mathcal{S}_{p, q}(\gamma)$

We first state and prove
Theorem 1. Let the function $f(z)$ be in the class $\mathcal{A}_{p}$ and suppose that $g \in \mathcal{S}_{p, q}(\gamma)$. If $f^{(q)}(z)$ is majorized by $g^{(q)}(z)$ in $\mathbb{U}$ for $q \in \mathbb{N}_{0}$, then

$$
\begin{equation*}
\left|f^{(q+1)}(z)\right| \leqq\left|g^{(q+1)}(z)\right| \quad\left(|z| \leqq r_{1}\right), \tag{2.1}
\end{equation*}
$$

where

$$
\begin{gather*}
r_{1}=r_{1}(p, q ; \gamma):=\frac{\kappa-\sqrt{\kappa^{2}-4(p-q)|2 \gamma-p+q|}}{2|2 \gamma-p+q|}  \tag{2.2}\\
\left(\kappa:=2+p-q+|2 \gamma-p+q| ; p \in \mathbb{N} ; q \in \mathbb{N}_{0} ; \gamma \in \mathbb{C} \backslash\{0\}\right) .
\end{gather*}
$$

Proof Since $g \in \mathcal{S}_{p, q}(\gamma)$, we find from (1.5) that, if

$$
\begin{equation*}
h(z):=1+\frac{1}{\gamma}\left(\frac{z g^{(q+1)}(z)}{g^{(q)}(z)}-p+q\right) \quad(\gamma \in \mathbb{C} \backslash\{0\}), \tag{2.3}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathfrak{R}\{h(z)\}>0 \quad(z \in \mathbb{U}) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
h(z)=\frac{1+w(z)}{1-w(z)} \quad(w \in \Omega) \tag{2.5}
\end{equation*}
$$

where $\Omega$ denotes the well-known class of bounded analytic functions in $\mathbb{U}$, which satisfy the conditions (cf., e.g., Goodman [5, p. 58]):

$$
\begin{equation*}
w(0)=0 \text { and }|w(z)| \leqq|z| \quad(z \in \mathbb{U}) \tag{2.6}
\end{equation*}
$$

Making use of (2.3) and (2.5), we readily obtain

$$
\begin{equation*}
\frac{z g^{(q+1)}(z)}{g^{(q)}(z)}=\frac{p-q+(2 \gamma-p+q) w(z)}{1-w(z)} \tag{2.7}
\end{equation*}
$$

which, in view of (2.6), immediately yields the inequality:

$$
\begin{equation*}
\left|g^{(q)}(z)\right| \leqq \frac{(1+|z|)|z|}{p-q-|2 \gamma-p+q| \cdot|z|}\left|g^{(q+1)}(z)\right| \quad(z \in \mathbb{U}) \tag{2.8}
\end{equation*}
$$

Next, since $f^{(q)}(z)$ is majorized by $g^{(q)}(z)$ in $\mathbb{U}$, from (1.2) we have

$$
\begin{equation*}
f^{(q+1)}(z)=\varphi(z) g^{(q+1)}(z)+\varphi^{\prime}(z) g^{(q)}(z) \quad(z \in \mathbb{U}) \tag{2.9}
\end{equation*}
$$

Thus, observing that $\varphi \in \Omega$ satisfies the inequality (cf. Nehari $[9, \mathrm{p}$. 168]):

$$
\begin{equation*}
\left|\varphi^{\prime}(z)\right| \leqq \frac{1-|\varphi(z)|^{2}}{1-|z|^{2}} \quad(z \in \mathbb{U}) \tag{2.10}
\end{equation*}
$$

and applying (2.8) and (2.10) in (2.9), we get

$$
\begin{align*}
\left|f^{(q+1)}(z)\right| \leqq & \left(|\varphi(z)|+\frac{1-|\varphi(z)|^{2}}{1-|z|^{2}} \cdot \frac{(1+|z|)|z|}{p-q-|2 \gamma-p+q| \cdot|z|}\right) \\
& \cdot\left|g^{(q+1)}(z)\right|(z \in \mathbb{U}) \tag{2.11}
\end{align*}
$$

which, upon setting

$$
\begin{equation*}
|z|=r \text { and }|\varphi(z)|=\rho \quad(0 \leqq \rho \leqq 1) \tag{2.12}
\end{equation*}
$$

leads us to the inequality:

$$
\begin{equation*}
\left|f^{(q+1)}(z)\right| \leqq \frac{\Theta(\rho)}{(1-r)(p-q-|2 \gamma-p+q| r)}\left|g^{(q+1)}(z)\right| \quad(z \in \mathbb{U}) \tag{2.13}
\end{equation*}
$$

where the function $\Theta(\rho)$ defined by

$$
\begin{equation*}
\Theta(\rho):=-r \rho^{2}+(1-r)(p-q-|2 \gamma-p+q| r) \rho+r \quad(0 \leqq \rho \leqq 1) \tag{2.14}
\end{equation*}
$$

takes on its maxmum value at $\rho=1$ with

$$
r=r_{1}(p, q ; \gamma)
$$

given by (2.2). Furthermore, if

$$
0 \leqq \sigma \leqq r_{1}(p, q ; \gamma)
$$

where $r_{1}(p, q ; \gamma)$ is given by (2.2), then the function $\Lambda(\rho)$ defined by

$$
\begin{equation*}
\Lambda(\rho):=-\sigma \rho^{2}+(1-\sigma)(p-q-|2 \gamma-p+q| \sigma) \rho+\sigma \tag{2.15}
\end{equation*}
$$

is seen to be an increasing function on the interval $0 \leqq \rho \leqq 1$, so that

$$
\begin{gathered}
\Lambda(\rho) \leqq \Lambda(1)=(1-\sigma)(p-q-\mid 2 \gamma-p+q] \sigma) \\
\left(0 \leqq \rho \leqq 1 ; 0 \leqq \sigma \leqq r_{1}(p, q ; \gamma)\right)
\end{gathered}
$$

Hence, by setting $\rho=1$ in (2.13), we conclude that the assertion (2.1) of 'Theorem 1 holds true for $|z| \leqq r_{1}(p, q ; \gamma)$, where $r_{1}(p, q ; \gamma)$ is given by (2.2). This evidently completes the proof of Theorem 1.

In view of the first relationship in (1.7), a special case of Theorem 1 when $p=1$ and $q=0$ yields

Corollary 1 (Altintaş et al [2, p. 211, Theorem 1]). Let the function $f(z)$ be in the class $\mathcal{A}$ and suppose that $g \in \mathcal{S}(\gamma)$. If $f(z)$ is majorized by $g(z)$ in $\mathbb{U}$, then

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leqq\left|g^{\prime}(z)\right| \quad\left(|z| \leqq R_{1}\right) \tag{2.16}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{1}=R_{1}(\gamma):=\frac{3+|2 \gamma-1|-\sqrt{9+2|2 \gamma-1|+|2 \gamma-1|^{2}}}{2|2 \gamma-1|} \tag{2.17}
\end{equation*}
$$

Several further consequences of Corollary 1, involving such familiar classes as (see, for details, Duren [4] and Goodman [5])

$$
\begin{equation*}
\mathcal{S}^{*}:=\mathcal{S}^{*}(0) \quad \text { and } \quad \mathcal{K}:=\mathcal{K}(0) \tag{2.18}
\end{equation*}
$$

were given earlier by MacGregor [6, p. 96, Theorems 1B and 1C] (see also Altintass et al. [2, p. 213, Corollaries 1 and 2]).

## 3. Majorization Problems for the Class $\mathcal{C}_{p, q}(\gamma)$

The proof of our next result (Theorem 2 below) is based essentially upon the following

Lemma. If $f \in \mathcal{C}_{p, q}(\gamma)(\gamma \in \mathbb{C} \backslash\{0\})$, then $f \in \mathcal{S}_{p, q}\left(\frac{1}{2} \gamma\right)$, that is,

$$
\begin{equation*}
\mathcal{C}_{p, q}(\gamma) \subset \mathcal{S}_{p, q}\left(\frac{1}{2} \gamma\right) \quad(\gamma \in \mathbb{C} \backslash\{0\}) \tag{3.1}
\end{equation*}
$$

Proof. Since (cf., e.g., MacGregor [7, p. 71])

$$
\begin{equation*}
f \in \mathcal{K} \Longrightarrow f \in \mathcal{S}^{*}\left(\frac{1}{2}\right) \tag{3.2}
\end{equation*}
$$

or, equivalently, since

$$
\begin{equation*}
\mathfrak{R}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>0 \Longrightarrow \mathfrak{R}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\frac{1}{2} \quad(z \in \mathbb{U}) \tag{3.3}
\end{equation*}
$$

for $f(z) \longmapsto f^{(q)}(z)\left(q \in \mathbb{N}_{0}\right)$ with $f \in \mathcal{A}_{p}$, we have

$$
\begin{align*}
& \mathfrak{R}\left\{1+\frac{z f^{(q+2)}(z)}{f^{(q+1)}(z)}-(p-q-1)\right\}>0 \\
& \quad \Longrightarrow \mathfrak{R}\left\{1+\frac{z f^{(q+1)}(z)}{f^{(q)}(z)}-(p-q)\right\}>\frac{1}{2} \quad(z \in \mathbb{U}) \tag{3.4}
\end{align*}
$$

which readily yields the assertion:

$$
\begin{align*}
& 1+\frac{z f^{(q+2)}(z)}{f^{(q+1)}(z)}-p+q+1=\frac{1-w(z)}{1+w(z)} \\
& \Longrightarrow 1+\frac{z f^{(q \dot{+} 1)}(z)}{f^{(q)}(z)}-p+q=\frac{1}{1+w(z)} \quad(w \in \Omega) \tag{3.5}
\end{align*}
$$

Now, by making use of (3.5) appropriately, it is easily seen that

$$
\begin{align*}
& 1+\frac{1}{\gamma}\left(1+\frac{z f^{(q+2)}(z)}{f^{(q)}(z)}-p+q\right)=\frac{\gamma+(\gamma-2) w(z)}{\gamma[1+w(z)]} \\
& \Longrightarrow 1+\frac{2}{\gamma}\left(\frac{z f^{(q+1)}(z)}{f^{(q)}(z)}-p+q\right)=\frac{\gamma+(\gamma-2) w(z)}{\gamma[1+w(z)]} \quad(w \in \Omega) \tag{3.6}
\end{align*}
$$

and the desired inclusion property (3.1) follows immediately from (3.6) in view of the characterizations (1.5) and (1.6) for the function classes $\mathcal{S}_{p, q}(\gamma)$ and $\mathcal{C}_{p, q}(\gamma)$, respectively.

Theorem 2. Let the function $f(z)$ be in the class $\mathcal{A}_{p}$ and suppose that $g \in \mathcal{C}_{p, q}(\gamma)$. If $f^{(q)}(z)$ is majorized by $g^{(q)}(z)$ in $\mathbb{U}$ for $q \in \mathbb{N}_{\varrho}$, then

$$
\begin{equation*}
\left|f^{(q+1)}(z)\right| \leqq\left|g^{(q+1)}(z)\right| \quad\left(|z| \leqq r_{2}\right) \tag{3.7}
\end{equation*}
$$

where

$$
\begin{gather*}
r_{2}=r_{2}(p, q ; \gamma):=\frac{\mu-\sqrt{\mu^{2}-4(p-q)|\gamma-p+q|}}{2|\gamma-p+q|}  \tag{3.8}\\
\left(\mu:=2+p-q+|\gamma-p+q| ; p \in \mathbb{N} ; q \in \mathbb{N}_{0} ; \gamma \in \mathbb{C} \backslash\{0\}\right)
\end{gather*}
$$

Proof In view of the inclusion property (3.1) asserted by the above Lemma, Theorem 2 can be deduced as a simple consequence of Theorem 1 with $\gamma \mapsto \frac{1}{2} \gamma$.

By setting $p=1$ and $q=0$, Theorem 2 yields
Corollary 2 (Altintas et al. [2, p. 214, Theorem 2]). Let the function $f(z)$ be in the class $\mathcal{A}$ and suppose that $g \in \mathcal{C}(\gamma)$. If $f(z)$ is majorized by $g(z)$ in $\mathbb{U}$, then

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leqq\left|g^{\prime}(z)\right| \quad\left(|z| \leqq R_{2}\right\rangle, \tag{3.9}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{2}=R_{2}(\gamma):=\frac{3+|\gamma-1|-\sqrt{9+2|\gamma-1|+|\gamma-1|^{2}}}{2|\gamma-1|} \tag{3.10}
\end{equation*}
$$

Finally, in its limit case when $\gamma \longrightarrow 1$, if we make use of the relationship [cf. Equations (1.9) and (2.18)]:

$$
\begin{equation*}
\mathcal{C}(1)=\mathcal{K}(0)=: \mathcal{K}, \tag{3.11}
\end{equation*}
$$

Corollary 2 further yields
Corollary 3 (cf. MacGregor [6, p. 96, Theorem 1C]). Let the function $f(z)$ be in the class $\mathcal{A}$ and suppose that $g \in \mathcal{K}$. If $f(z)$ is majorized by $g(z)$ in $\mathbb{U}$, then

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leqq\left|g^{\prime}(z)\right| \quad\left(|z| \leqq \frac{1}{3}\right) . \tag{3.12}
\end{equation*}
$$

In view of the inclusion property (3.2), Corollary 3 can also be deduced from Corollary 1 by letting $\gamma \longrightarrow \frac{1}{2}$ (see also Altintaş et al. [2, p. 213, Corollary 2]).

## Acknowledgements

The present investigation was supported, in part, by the Natural Sciences and Engineering Research Council of Canada under Grant OGP0007353.

## References

[1] O Altintaş and S Owa, Majorzzation and quasz-subordinations for certann analytic functions, Proc Japan Acad Ser A Math Scı. 68 (1992), 181-185
[2] O Altmta§, O Ozkan and H M Srvastava, Majorvzateon by starluke functions of complex order, Complex Variables Theory Appl 46 (2001), 207-218
[3] M K Aouf, H.M. Hossen and H.E El-Attar, Certain classes of analytic functions of complex order and type Beta wnth fixed second coefficient, Math. Scı Res Hot-Line 4(4) (2000), 31-45
[4] PL Duren, Unvvalent Functions, A Series of Comprehensive Studies in Mathernatics, vol 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983
[5] A W Goodman, Unvvalent-Functions, vol I, Mariner Publishing Company, Tampa, Florida, 1983
[6] T.H MacGregor, Majorzzatıon by unvvalent functzons, Duke Math J 34 (1967), 95-102
[7] T H MacGregor, The radius of convexty for starlake functions of order $\frac{1}{2}$, Proc Amer Math Soc 14 (1963), 71-76
[8] M A Nasr and M.K Aouf, Starlike function of complex order, J Natur Sci. Math 25 (1985), 1-12.
[9] Z Nehari, Conformal Mappıng, McGraw-Hıll Book Company, New York, Toronto and London, 1952
[10] M.S. Robertson, On the theory of univalent functions, Ann. of Math (2) 37 (1936), 374-408
[11] H M Srivastava and S Owa (Editors), Curtent Topics in Analytuc Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992
[12] $\mathbf{P}$ Wiatrowskı, On the coefficients of some family of holomorphic functions, Zeszyty Nauk Unw Lódz Nauk Mat-Przyrod (2) 39 (1970), 75-85.

Osman Altintas
Department of Statistics
Faculty of Science and Letters
Başkent University
Bağjica, TR-06530 Ankara, Turkey
E-mail: oaltintas@ankara.baskent.edu.tr
H.M. Srivastava

Department of Mathematics and Statistics
University of Victoria
Victoria, British Columbia V8W 3P4, Canada
E-mavl: harimsri@math.uvic.ca


[^0]:    Received August 29, 2001
    2000 Mathematics Subject Classification Prımary 30C45, Secondary 30A10, 30 C 55

    Key words and phrases. analytic functions, $p$-valent functions, starlike functions, convex functions, majorization problems, quasi-subordination

