SOME MAJORIZATION PROBLEMS ASSOCIATED WITH *p*-VALENTLY STARLIKE AND CONVEX FUNCTIONS OF COMPLEX ORDER

OSMAN ALTINTAŞ AND H. M. SRIVASTAVA

ABSTRACT The main object of this paper is to investigate several majorization problems involving two subclasses $S_{p,q}(\gamma)$ and $C_{p,q}(\gamma)$ of *p*-valently starkke and *p*-valently convex functions of complex order $\gamma \neq 0$ in the open unit disk U. Relevant connections of the results presented here with those given by earlier workers on the subject are also indicated

1. Introduction and Definitions

Let the functions f(z) and g(z) be analytic in the open unit disk

$$\mathbb{U} := \{ z : z \in \mathbb{C} \text{ and } |z| < 1 \}.$$

Following the pioneering work of MacGregor [6], we say that f(z) is majorized by g(z) in U and write

$$f(z) \ll g(z) \quad (z \in \mathbb{U}) \tag{1.1}$$

if there exists a function $\varphi(z)$, analytic in U, such that

$$|\varphi(z)| \leq 1 \text{ and } f(z) = \varphi(z)g(z) \ (z \in \mathbb{U}).$$
 (1.2)

The majorization (1.1) is closely related to the concept of quasisubordination between analytic functions in \mathbb{U} , which was considered

Received August 29, 2001

²⁰⁰⁰ Mathematics Subject Classification Primary 30C45, Secondary 30A10, 30C55

Key words and phrases. analytic functions, p-valent functions, starlike functions, convex functions, majorization problems, quasi-subordination

recently by (for example) Altintaş and Owa [1]. Altintaş *et al.* [2], on the other hand, investigated several majorization problems involving a number of subclasses of analytic functions in U. In the present sequel to the work of Altintaş *et al.* [2], we propose to investigate the corresponding majorization problems associated with the classes $S_{p,q}(\gamma)$ and $C_{p,q}(\gamma)$ of *p*-valently starlike and *p*-valently convex functions of *complex* order $\gamma \neq 0$ in U, which are introduced below.

Let \mathcal{A}_p denote the class of functions f normalized by

$$f(z) = z^{p} + \sum_{n=p+1}^{\infty} a_{n} z^{n} \quad (p \in \mathbb{N} := \{1, 2, 3, \dots\}), \qquad (1.3)$$

which are analytic and p-valent in \mathbb{U} . Also let

$$\mathcal{A} := \mathcal{A}_1. \tag{1.4}$$

A function $f \in \mathcal{A}_p$ is said to be in the class $\mathcal{S}_{p,q}(\gamma)$ of *p*-valently starlike functions of complex order $\gamma \neq 0$ in \mathbb{U} if and only if

$$\Re\left\{1+\frac{1}{\gamma}\left(\frac{zf^{(q+1)}(z)}{f^{(q)}(z)}-p+q\right)\right\}>0$$
(1.5)

 $(z \in \mathbb{U}; p \in \mathbb{N}; q \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}; \gamma \in \mathbb{C} \setminus \{0\}; |2\gamma - p + q| \leq p - q),$

where, as usual, $f^{(q)}(z)$ denotes the derivative of f(z) with respect to z of order $q \in \mathbb{N}_0$. Furthermore, a function $f \in \mathcal{A}_p$ is said to be in the class $\mathcal{C}_{p,q}(\gamma)$ of *p*-valently convex functions of complex order $\gamma \neq 0$ in \mathbb{U} if and only if

$$\Re\left\{1+\frac{1}{\gamma}\left(\frac{zf^{(q+2)}(z)}{f^{(q+1)}(z)}-p+q\right)\right\} > 0$$
 (1.6)

 $(z \in \mathbb{U}; p \in \mathbb{N}; q \in \mathbb{N}_0; \gamma \in \mathbb{C} \setminus \{0\}; |2\gamma - p + q| \leq p - q).$

Clearly, we have the following relationships:

$$S_{1,0}(\gamma) = S(\gamma) \text{ and } C_{1,0}(\gamma) = C(\gamma) \quad (\gamma \in \mathbb{C} \setminus \{0\}),$$
 (1.7)

where $S(\gamma)$ and $C(\gamma)$ are the classes of starlike and convex functions of *complex* order $\gamma \neq 0$ in U, which were considered earlier by Nasr and Aouf [8] and Wiatrowski [12], respectively, and (more recently) by Altintas *et al.* [2] (see also Aouf *et al.* [3]). Moreover, it is easily seen that

$$\mathcal{S}_{1,0}(1-\alpha) = \mathcal{S}(1-\alpha) = \mathcal{S}^*(\alpha) \quad (0 \leq \alpha < 1) \tag{1.8}$$

and

$$\mathcal{C}_{1,0}\left(1-\alpha\right) = \mathcal{C}\left(1-\alpha\right) = \mathcal{K}\left(\alpha\right) \quad \left(0 \leq \alpha < 1\right), \tag{1.9}$$

where $S^*(\alpha)$ and $\mathcal{K}(\alpha)$ denote, respectively, the familiar classes of (normalized) starlike and convex functions of order α in \mathbb{U} , which were introduced by Robertson [10] (see also Srivastava and Owa [11]).

2. Majorization Problems for the Class $S_{p,q}(\gamma)$

We first state and prove

Theorem 1. Let the function f(z) be in the class \mathcal{A}_p and suppose that $g \in \mathcal{S}_{p,q}(\gamma)$. If $f^{(q)}(z)$ is majorized by $g^{(q)}(z)$ in \mathbb{U} for $q \in \mathbb{N}_0$, then

$$\left| f^{(q+1)}(z) \right| \leq \left| g^{(q+1)}(z) \right| \quad (|z| \leq r_1),$$
 (2.1)

where

$$r_{1} = r_{1}(p,q;\gamma) := \frac{\kappa - \sqrt{\kappa^{2} - 4(p-q)|2\gamma - p + q|}}{2|2\gamma - p + q|}$$
(2.2)
$$(\kappa := 2 + p - q + |2\gamma - p + q|; \ p \in \mathbb{N}; \ q \in \mathbb{N}_{0}; \ \gamma \in \mathbb{C} \setminus \{0\}).$$

PROOF Since $g \in S_{p,q}(\gamma)$, we find from (1.5) that, if

$$h(z) := 1 + \frac{1}{\gamma} \left(\frac{z g^{(q+1)}(z)}{g^{(q)}(z)} - p + q \right) \quad (\gamma \in \mathbb{C} \setminus \{0\}), \qquad (2.3)$$

then

$$\Re \left\{ h\left(z\right) \right\} >0\quad \left(z\in \mathbb{U} \right) \tag{2.4}$$

and

$$h(z) = \frac{1+w(z)}{1-w(z)} \quad (w \in \Omega), \qquad (2.5)$$

where Ω denotes the well-known class of *bounded* analytic functions in U, which satisfy the conditions (*cf.*, *e.g.*, Goodman [5, p. 58]):

 $w(0) = 0 \text{ and } |w(z)| \leq |z| \ (z \in \mathbb{U}).$ (2.6)

Making use of (2.3) and (2.5), we readily obtain

$$\frac{zg^{(q+1)}(z)}{g^{(q)}(z)} = \frac{p-q+(2\gamma-p+q)w(z)}{1-w(z)},$$
(2.7)

which, in view of (2.6), immediately yields the inequality:

$$\left|g^{(q)}(z)\right| \leq \frac{(1+|z|)|z|}{p-q-|2\gamma-p+q|\cdot|z|} \left|g^{(q+1)}(z)\right| \quad (z \in \mathbb{U}).$$
 (2.8)

Next, since $f^{(q)}(z)$ is majorized by $g^{(q)}(z)$ in U, from (1.2) we have

$$f^{(q+1)}(z) = \varphi(z) g^{(q+1)}(z) + \varphi'(z) g^{(q)}(z) \quad (z \in \mathbb{U}).$$
(2.9)

Thus, observing that $\varphi \in \Omega$ satisfies the inequality (cf. Nehari [9, p. 168]):

$$|\varphi'(z)| \leq \frac{1 - |\varphi(z)|^2}{1 - |z|^2} \quad (z \in \mathbb{U}),$$
 (2.10)

and applying (2.8) and (2.10) in (2.9), we get

$$\left| f^{(q+1)}(z) \right| \leq \left(\left| \varphi(z) \right| + \frac{1 - \left| \varphi(z) \right|^2}{1 - \left| z \right|^2} \cdot \frac{(1 + |z|) |z|}{p - q - |2\gamma - p + q| \cdot |z|} \right) \\ \cdot \left| g^{(q+1)}(z) \right| \quad (z \in \mathbb{U}),$$
(2.11)

which, upon setting

$$|z| = r \text{ and } |\varphi(z)| = \rho \quad (0 \le \rho \le 1),$$
 (2.12)

178

leads us to the inequality:

$$\left|f^{(q+1)}(z)\right| \leq \frac{\Theta\left(\rho\right)}{\left(1-r\right)\left(p-q-\left|2\gamma-p+q\right|r\right)} \left|g^{(q+1)}(z)\right| \quad (z \in \mathbb{U}),$$
(2.13)

where the function $\Theta(\rho)$ defined by

$$\Theta\left(
ho
ight) := -r
ho^{2} + (1-r)\left(p-q-\left|2\gamma-p+q
ight|r
ight)
ho + r \quad (0 \leq
ho \leq 1) \ (2.14)$$

takes on its maximum value at $\rho = 1$ with

$$r=r_{1}\left(p,q;\gamma
ight)$$

given by (2.2). Furthermore, if

$$0 \leq \sigma \leq r_1 (p,q;\gamma)$$
,

where $r_1(p,q;\gamma)$ is given by (2.2), then the function $\Lambda(\rho)$ defined by

$$\Lambda(\rho) := -\sigma\rho^2 + (1-\sigma)\left(p - q - |2\gamma - p + q|\sigma\right)\rho + \sigma \qquad (2.15)$$

is seen to be an *increasing* function on the interval $0 \leq \rho \leq 1$, so that

$$egin{aligned} &\Lambda\left(
ight) \leq\Lambda\left(1
ight) =\left(1-\sigma
ight) \left(p-q-\left| 2\gamma-p+q
ight| \sigma
ight) \ &\left(0\leq
ho\leq1;\ 0\leq\sigma\leq r_{1}\left(p,q;\gamma
ight)
ight). \end{aligned}$$

Hence, by setting $\rho = 1$ in (2.13), we conclude that the assertion (2.1) of Theorem 1 holds true for $|z| \leq r_1(p,q;\gamma)$, where $r_1(p,q;\gamma)$ is given by (2.2). This evidently completes the proof of Theorem 1.

In view of the first relationship in (1.7), a special case of Theorem 1 when p = 1 and q = 0 yields

Corollary 1 (Altintaş *et al* [2, p. 211, Theorem 1]). Let the function f(z) be in the class \mathcal{A} and suppose that $g \in \mathcal{S}(\gamma)$. If f(z) is majorized by g(z) in \mathbb{U} , then

$$|f'(z)| \le |g'(z)| \quad (|z| \le R_1),$$
 (2.16)

where

$$R_{1} = R_{1}(\gamma) := \frac{3 + |2\gamma - 1| - \sqrt{9 + 2|2\gamma - 1| + |2\gamma - 1|^{2}}}{2|2\gamma - 1|}.$$
 (2.17)

Several further consequences of Corollary 1, involving such familiar classes as (see, for details, Duren [4] and Goodman [5])

$$\mathcal{S}^{*} := \mathcal{S}^{*}(0) \quad \text{and} \quad \mathcal{K} := \mathcal{K}(0)$$
 (2.18)

were given earlier by MacGregor [6, p. 96, Theorems 1B and 1C] (see also Altintaş *et al.* [2, p. 213, Corollaries 1 and 2]).

3. Majorization Problems for the Class $C_{p,q}(\gamma)$

The proof of our next result (Theorem 2 below) is based essentially upon the following

Lemma. If $f \in C_{p,q}(\gamma)$ $(\gamma \in \mathbb{C} \setminus \{0\})$, then $f \in S_{p,q}(\frac{1}{2}\gamma)$, that is,

$$C_{p,q}(\gamma) \subset S_{p,q}\left(\frac{1}{2}\gamma\right) \ (\gamma \in \mathbb{C} \setminus \{0\}).$$
 (3.1)

PROOF. Since (cf., e.g., MacGregor [7, p. 71])

$$f \in \mathcal{K} \Longrightarrow f \in \mathcal{S}^*\left(\frac{1}{2}\right),$$
 (3.2)

or, equivalently, since

$$\Re\left\{1+\frac{zf''(z)}{f'(z)}\right\} > 0 \Longrightarrow \Re\left\{\frac{zf'(z)}{f(z)}\right\} > \frac{1}{2} \quad (z \in \mathbb{U}), \qquad (3.3)$$

for $f(z) \mapsto f^{(q)}(z)$ $(q \in \mathbb{N}_0)$ with $f \in \mathcal{A}_p$, we have

$$\Re \left\{ 1 + \frac{zf^{(q+2)}(z)}{f^{(q+1)}(z)} - (p-q-1) \right\} > 0$$

$$\implies \Re \left\{ 1 + \frac{zf^{(q+1)}(z)}{f^{(q)}(z)} - (p-q) \right\} > \frac{1}{2} \quad (z \in \mathbb{U}), \qquad (3.4)$$

180

which readily yields the assertion:

$$1 + \frac{zf^{(q+2)}(z)}{f^{(q+1)}(z)} - p + q + 1 = \frac{1 - w(z)}{1 + w(z)}$$
$$\implies 1 + \frac{zf^{(q+1)}(z)}{f^{(q)}(z)} - p + q = \frac{1}{1 + w(z)} \quad (w \in \Omega).$$
(3.5)

Now, by making use of (3.5) appropriately, it is easily seen that

$$1 + \frac{1}{\gamma} \left(1 + \frac{z f^{(q+2)}(z)}{f^{(q)}(z)} - p + q \right) = \frac{\gamma + (\gamma - 2) w(z)}{\gamma [1 + w(z)]}$$

$$\implies 1 + \frac{2}{\gamma} \left(\frac{z f^{(q+1)}(z)}{f^{(q)}(z)} - p + q \right) = \frac{\gamma + (\gamma - 2) w(z)}{\gamma [1 + w(z)]} \quad (w \in \Omega),$$
(3.6)

and the desired inclusion property (3.1) follows immediately from (3.6) in view of the characterizations (1.5) and (1.6) for the function classes $S_{p,q}(\gamma)$ and $C_{p,q}(\gamma)$, respectively.

Theorem 2. Let the function f(z) be in the class \mathcal{A}_p and suppose that $g \in \mathcal{C}_{p,q}(\gamma)$. If $f^{(q)}(z)$ is majorized by $g^{(q)}(z)$ in \mathbb{U} for $q \in \mathbb{N}_0$, then

$$\left| f^{(q+1)}(z) \right| \leq \left| g^{(q+1)}(z) \right| \quad (|z| \leq r_2),$$
 (3.7)

where

$$r_{2} = r_{2}(p,q;\gamma) := \frac{\mu - \sqrt{\mu^{2} - 4(p-q)|\gamma - p+q|}}{2|\gamma - p+q|}$$
(3.8)

$$(\mu:=2+p-q+|\gamma-p+q|\,;\,\,p\in\mathbb{N};\,\,q\in\mathbb{N}_0;\,\,\gamma\in\mathbb{C}ackslash\{0\})$$
 .

PROOF In view of the inclusion property (3.1) asserted by the above Lemma, Theorem 2 can be deduced as a simple consequence of Theorem 1 with $\gamma \mapsto \frac{1}{2}\gamma$.

By setting p = 1 and q = 0, Theorem 2 yields

Corollary 2 (Altintaş *et al.* [2, p. 214, Theorem 2]). Let the function f(z) be in the class \mathcal{A} and suppose that $g \in \mathcal{C}(\gamma)$. If f(z) is majorized by g(z) in \mathbb{U} , then

$$|f'(z)| \leq |g'(z)| \quad (|z| \leq R_2),$$
 (3.9)

where

$$R_{2} = R_{2}(\gamma) := \frac{3 + |\gamma - 1| - \sqrt{9 + 2|\gamma - 1| + |\gamma - 1|^{2}}}{2|\gamma - 1|}.$$
 (3.10)

Finally, in its limit case when $\gamma \rightarrow 1$, if we make use of the relationship [cf. Equations (1.9) and (2.18)]:

$$\mathcal{C}(1) = \mathcal{K}(0) =: \mathcal{K}, \tag{3.11}$$

Corollary 2 further yields

Corollary 3 (cf. MacGregor [6, p. 96, Theorem 1C]). Let the function f(z) be in the class \mathcal{A} and suppose that $g \in \mathcal{K}$. If f(z) is majorized by g(z) in \mathbb{U} , then

$$|f'(z)| \leq |g'(z)| \quad \left(|z| \leq \frac{1}{3}\right).$$
 (3.12)

In view of the inclusion property (3.2), Corollary 3 can also be deduced from Corollary 1 by letting $\gamma \longrightarrow \frac{1}{2}$ (see also Altintaş *et al.* [2, p. 213, Corollary 2]).

Acknowledgements

The present investigation was supported, in part, by the Natural Sciences and Engineering Research Council of Canada under Grant OGP0007353.

References

- O Altintaş and S Owa, Majorization and quasi-subordinations for certain analytic functions, Proc Japan Acad Ser A Math Sci. 68 (1992), 181–185
- [2] O Altintaş, O Ozkan and H M Srivastava, Majorization by starlike functions of complex order, Complex Variables Theory Appl 46 (2001), 207-218
- [3] M K Aouf, H.M. Hossen and H.E El-Attar, Certain classes of analytic functions of complex order and type Beta with fixed second coefficient, Math. Sci Res Hot-Line 4(4) (2000), 31-45
- [4] P L Duren, Univalent Functions, A Series of Comprehensive Studies in Mathematics, vol 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983
- [5] A W Goodman, Univalent Functions, vol I, Marmer Publishing Company, Tampa, Florida, 1983
- [6] T.H MacGregor, Majorization by univalent functions, Duke Math J 34 (1967), 95-102
- [7] T H MacGregor, The radius of convexity for starlike functions of order $\frac{1}{2}$, Proc Amer Math Soc 14 (1963), 71-76
- [8] M A Nasr and M.K Aouf, Starlike function of complex order, J Natur Sci. Math 25 (1985), 1-12.
- [9] Z Nehari, Conformal Mapping, McGraw-Hill Book Company, New York, Toronto and London, 1952
- [10] M.S. Robertson, On the theory of univalent functions, Ann. of Math (2) 37 (1936), 374-408
- [11] H M Srivastava and S Owa (Editors), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992
- [12] P Wiatrowski, On the coefficients of some family of holomorphic functions, Zeszyty Nauk Uniw Łódz Nauk Mat -Przyrod (2) 39 (1970), 75-85.

Osman Altintaş Department of Statistics Faculty of Science and Letters Başkent University Bağlica, TR-06530 Ankara, Turkey *E-mail*: oaltintas@ankara.baskent.edu.tr

H.M. Srivastava Department of Mathematics and Statistics University of Victoria Victoria, British Columbia V8W 3P4, Canada *E-mail*: harimsri@math.uvic.ca