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ON THE COEFFICIENTS OF GAMMA-STARLIKE

FUNCTIONS

Derek K. Thomas

Abstract. We give several sharp estimates for some initial coefficients

problems for the so-called gamma starlike functions f , analytic and uni-
valent in the unit disk D := {z ∈ C : |z| < 1}, and normalized so that

f(0) = 0 = f ′(0)−1, and satisfying Re
[(

1+
zf ′′(z)
f ′(z)

)γ( zf ′(z)
f(z)

)1−γ]
> 0.

1. Introduction and definitions

Denote by A the class of functions f analytic in the unit disk D := {z ∈ C :
|z| < 1} with Taylor series

(1.1) f(z) = z +

∞∑
n=2

anz
n.

Let S be the subclass of A, consisting of univalent functions. A function f ∈ A
is called starlike, if f(D) is starlike (with respect to the origin), and convex if
f(D) is convex. Let S∗ and C denote the classes of starlike and convex functions
in S respectively. It is well-known that a function f ∈ A belongs to S∗ if, and
only, if Re (zf ′(z)/f(z)) > 0 for z ∈ D. Similarly, a function f ∈ A belongs to
C if and only if Re (1 + (zf ′′(z)/f ′(z))) > 0 for z ∈ D. Thus it is easy to see
that f ∈ C if and only if zf ′ ∈ S∗.

For α ∈ R, the class Mα of α-convex functions defined by

Re
[
α
(

1 +
zf ′′(z)

f ′(z)

)
+ (1− α)

zf ′(z)

f(z)

]
> 0,

is well-known, and contains a great many interesting properties, the most basic
being that for all α ∈ R, Mα ⊂ S∗ [4,7–9]. ThusMα is a natural subset of S,
with M0 = S∗ and M1 = C.
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In contrast, the corresponding class Mγ of so-called gamma-starlike func-
tions, defined for f ∈ A, and γ ∈ R by

(1.2) Re
[(

1 +
zf ′′(z)

f ′(z)

)γ(zf ′(z)
f(z)

)1−γ]
> 0,

has been less well studied. We note again that M0 = S∗ and M1 = C. The
presence of powers in (1.2) obviously creates difficulties, and is probably the
reason why relatively little appears to be known about Mγ . However, as in
the case of Mα, functions in Mγ are also contained in S∗ [5], again providing
a natural subset of S.

It is the purpose of this paper to give a series of sharp inequalities involving
the initial coefficients of functions in Mγ , which complete and extend those
given in [2], resulting in most of what is now known about these problems.

2. Preliminaries

We shall need the following lemmas concerning functions with positive real
part, (see e.g. [1, 6]).

Denote by P, the set of functions p analytic in D with Taylor expansion
p(z) = 1 +

∑∞
n=1 pnz

n, and satisfying Re p(z) > 0 for z ∈ D.

Lemma 2.1. For some complex valued y with |y| 6 1, and some complex
valued ζ with |ζ| 6 1,

2p2 = p21 + y(4− p21),

4p3 = p31 + 2(4− p21)p1y − p1(4− p21)y2 + 2(4− p21)(1− |y|2)ζ.

Lemma 2.2. |pn| 6 2 for n > 1, and∣∣∣p2 − µ

2
p21

∣∣∣ 6 max{2, 2|µ− 1|}

=

{
2, 0 6 µ 6 2,
2|µ− 1|, elsewhere.

Lemma 2.3. If 0 6 B 6 1, and B(2B − 1) 6 D 6 B, then∣∣p3 − 2Bp1p2 +Dp31
∣∣ 6 2.

Lemma 2.4.∣∣p3 − (1 + µ)p1p2 + µp31
∣∣ 6 max{2, 2|2µ− 1|}

=

{
2, 0 6 µ 6 1,
2|2µ− 1|, elsewhere.

3. The coefficients of f(z)

Theorem 3.1. Let f ∈Mγ for γ > 0, and be given by (1.1).
Then

|a2| 6
2

1 + γ
,
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|a3| 6


3(1+3γ)

(1+γ)2(1+2γ) , γ 6 1
2 (7 +

√
57),

1
1+2γ , γ > 1

2 (7 +
√

57),

|a4| 6


2(18+113γ+292γ2+7γ3+2γ4)

9(1+γ)3(1+2γ)(1+3γ) , 0 6 γ 6 γ0,

2
3(1+3γ) , γ > γ0,

where γ0 = 6.794 . . . is the unique positive root of 15+98γ+265γ2−14γ3−4γ4 =
0.
All the inequalities are sharp.

Proof. From (1.2), write(
1 +

zf ′′(z)

f ′(z)

)γ(zf ′(z)
f(z)

)1−γ
= p(z),

where p ∈ P. Then equating coefficients gives

a2 =
p1

1 + γ
,

a3 =
(2 + 7γ − γ2)p21

4(1 + γ)2(1 + 2γ)
+

p2
2(1 + 2γ)

,

a4 =
(6 + 23γ + 154γ2 − 47γ3 + 8γ4)p31

36(1 + γ)3(1 + 2γ)(1 + 3γ)
,

+
(3 + 19γ − 4γ2)p1p2

6(1 + γ)(1 + 2γ)(1 + 3γ)
+

p3
3(1 + 3γ)

.

(3.1)

The inequality for |a2| is trivial.
The first inequality for |a3|, is obvious on noting that the coefficient of p21

is positive when γ 6 1
2 (7 +

√
57), and applying the inequalities |p1| 6 2 and

|p2| 6 2. The second inequality follows by a simple application of Lemma 2.2.
For |a4|, write

a4 =
1

3(1 + 3γ)

(
p3 −

(4γ2 − 19γ − 3)p1p2
2(1 + γ)(1 + 2γ)

+
(6 + 23γ + 154γ2 − 47γ3 + 8γ4)p31)

12(1 + γ)3(1 + 2γ)

)
.

Then since the coefficients of p1p2 and p31 are positive when γ 6 1
8 (19 +

√
409),

the first inequality for |a4| is valid on this interval on using the inequalities
|pn| 6 2 for n = 1, 2 and 3.

We now use Lemma 2.3 (in the case B = D), with B = 4γ2−19γ−3
4(1+γ)(1+2γ) .

First note that 0 6 B 6 1, when γ > 1
8 (19 +

√
409), and so writing

a4 =
1

3(1 + 3γ)

(
p3 − 2Bp1p2 +Bp31 + (D −B)p31

)
,

with D = 6+23γ+154γ2−47γ3+8γ4

12(1+γ)3(1+2γ) , we see that D−B > 0 when 1
8 (19 +

√
409) 6

γ 6 γ0.
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Applying the inequality |p3−2Bp1p2+Bp31| 6 2 from Lemma 2.3, and again
using the inequalities |pn| 6 2 for n = 1, 2 and 3, gives the first inequality for

|a4| on the interval 1
8 (19 +

√
409) 6 γ 6 γ0.

Thus it remains to establish the inequality for |a4| on the interval γ > γ0.
We again use Lemma 2.3.

It is easy to see that both 0 6 B 6 1 and B(2B − 1) 6 D 6 B hold when
γ > γ0, and so applying Lemma 2.3 gives the second inequality for |a4| at once.

To see that the above inequalities are sharp, we note that equality is attained
in the inequality for |a2|, and the first inequalities for |a3| and |a4| when f(z)
in (3.1) is chosen so that(

1 +
zf ′′(z)

f ′(z)

)γ(zf ′(z)
f(z)

)1−γ
=

1 + z

1− z
.

The second inequality for |a3| is sharp when(
1 +

zf ′′(z)

f ′(z)

)γ(zf ′(z)
f(z)

)1−γ
=

1 + z2

1− z2
,

and the second inequality for |a4| is sharp when(
1 +

zf ′′(z)

f ′(z)

)γ(zf ′(z)
f(z)

)1−γ
=

1 + z3

1− z3
.

�

4. The coefficients of log(f(z)/z)

The logarithmic coefficients δn of a function f ∈ S are defined by

(4.1) log
f(z)

z
= 2

∞∑
n=1

δnz
n,

and play a central role in the theory of univalent functions. On differentiating

log f(z)
z , it is a trivial consequence of the inequality |pn| 6 2, that for n > 1,

|δn| 6 1/n when f ∈ S∗, and |δn| 6 1/2n when f ∈ C.
However when f ∈ Mγ , the same procedure does not give a convenient

expression in terms of 1 + zf ′′(z)/f ′(z), or zf ′(z)/f(z), unless γ = 0 or 1. We
show next that it is however possible to obtain sharp estimates for the modulus

of the initial coefficients of log f(z)
z when f ∈Mγ .

We prove the following.

Theorem 4.1. Let f ∈Mγ for γ > 0, and the coefficients of log f(z)
z be given

by (4.1).
Then

|δ1| 6
1

1 + γ
,

|δ2| 6


1+5γ

2(1+γ)2(1+2γ) , 0 6 γ 6 3,

1
2(1+2γ) , γ > 3,
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|δ3| 6


3+11γ+121γ2+7γ3+2γ4

9(1+γ)3(1+2γ)(1+3γ) , 0 6 γ 6 γ1,

1
3(1+3γ) , γ > γ1,

where γ1 = 3.3751 . . . is the unique positive root of the equation 2−47γ+7γ2 +
2γ3 = 0.
All the inequalities are sharp.

Proof. First note that differentiating (4.1), and equating coefficients gives

δ1 =
1

2
a2,

δ2 =
1

2
(a3 −

1

2
a22),

δ3 =
1

2
(a4 − a2a3 +

1

3
a32).

Using Theorem 2.1, the inequality for |δ1| is trivial.
For |δ2| substituting for a2 and a3 we obtain

δ2 =
1

4(1 + 2γ)

(
p2 −

(−3 + γ)γp21
2(1 + γ)2

)
,

and applying Lemma 2.2 with µ = (−3+γ)γ
(1+γ)2 , easily gives the inequalities for

|δ2|.
For δ3, we again substitute from (3.1) to obtain

δ3 =
γ(−17 + 23γ − 10γ2 + 4γ3)p31

36(1 + γ)3(1 + 2γ)(1 + 3γ)
+

γ(5− 2γ)p1p2
6(1 + γ)(1 + 2γ)(1 + 3γ)

+
p3

6(1 + 3γ)
.

First note that since the coefficients of p31, p1p2 and p3 are all positive on
1 6 γ 6 5/2, using the inequality |pn| 6 2 for n = 1, 2, 3, the first inequality
for |δ3| in Theorem 4.1 follows when 1 6 γ 6 5/2.

Next write the above expression for δ3 as

δ3 =
1

6(1 + 3γ)
(p3 − 2Bp1p2 +Dp31),

where

B =
γ(2γ − 5)

(1 + γ)(1 + 2γ)
and D =

γ(−17 + 23γ − 10γ2 + 4γ3)

6(1 + γ)3(1 + 2γ)
.

We now use Lemma 2.3, so that 0 6 B 6 1, when γ > 5/2, and B(2B−1) 6
D 6 B, when γ > γ1, and so Lemma 2.3 gives the second bound for |δ3| in
Theorem 4.1 when γ > γ1.

Next write

δ3 =
1

6(1 + 3γ)
(p3 − 2Bp1p2 +Bp31 + (D −B)p31),

and note that D −B > 0 when 0.428 . . . 6 γ 6 γ1.
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We now use Lemma 2.3 with B = D, and recalling that since 0 6 B 6 1, we
also require that γ > 5/2, to obtain the first inequality for |δ3| on the interval
5/2 6 γ 6 γ1.

Thus we are left to prove the first inequality for |δ3| on the interval 0 6 γ 6 1.
We now use Lemma 2.1 to express the coefficients p2 and p3 in terms of p1 to

obtain, after simplification, normalizing the coefficient p1 so that p1 = p where
0 6 p 6 2, and finally using the triangle inequality,

|δ3| 6
(3 + 11γ + 121γ2 + 7γ3 + 2γ4)p3

72(1 + γ)3(1 + 2γ)(1 + 3γ)
+

(1 + 8γ)p(4− p2)|y|
12(1 + γ)(1 + 2γ)(1 + 3γ)

+
p(4− p2)|y|2

24(1 + 3γ)
+

(4− p2)(1− |y|2)

12(1 + 3γ)
:= φ(p, |y|).

We now use elementary calculus to find the maximum of the above expres-
sion.

It is easily verified that differentiating φ(p, |y|) with respect to p and then
|y| and equating to zero shows that the only admissible turning points when

0 6 γ 6 1 are when p = |y| = 0, and when p = 2 and |y| = (1+γ+103γ2−7γ3−2γ4)
4(1+γ)2(1+8γ) ,

which correspond to a maximum point and a saddle point respectively.
Thus when p = |y| = 0 we are led to the second required inequality for |δ3|,

and when p = 2 and |y| = (1+γ+103γ2−7γ3−2γ4)
4(1+γ)2(1+8γ) to the first inequality.

Finally we consider the end points of [0, 2]× [0, 1].

First note that for any value of γ, φ(0, |y|) = 1−|y|2
3(1+3γ) 6

1
3(1+3γ) , and

φ(2, |y|) =
(3 + 11γ + 121γ2 + 7γ3 + 2γ4)

9(1 + γ)3(1 + 2γ)(1 + 3γ)
.

Next

φ(p, 0) =
(3 + 11γ + 121γ2 + 7γ3 + 2γ4)p3

72(1 + γ)3(1 + 2γ)(1 + 3γ)
+

(4− p2)

12(1 + 3γ)
,

whose derivative increases with p when 0 6 γ 6 1, again giving the first
inequality for |δ3|.

Finally

φ(p, 1) =
(3 + 11γ + 121γ2 + 7γ3 + 2γ4)p3

72(1 + γ)3(1 + 2γ)(1 + 3γ)
+

p(4− p2)

24(1 + 3γ)

+
(1 + 8γ)p(4− p2)

12(1 + γ)(1 + 2γ)(1 + 3γ)
.

The only critical point of this expression when 0 6 γ 6 1 is when p = 0, and
so checking the values at the end points gives the first inequality for |δ3| once
more.

The first inequality is sharp when p1 = p2 = p3 = 2, and the second is sharp
when p1 = 0 and p3 = 2. �
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5. The coefficients of the inverse function

SinceMγ ⊂ S, inverse functions f−1 exist defined in some disk |ω| < r0(f).
Let

f−1(ω) = ω +A2ω
2 +A3ω

3 +A4ω
4 + · · · .

Then since f(f−1(ω)) = ω, equating coefficients gives

A2 = −a2,
A3 = 2a22 − a3,
A4 = −5a32 + 5a2a3 − a4.

(5.1)

Incomplete estimates were given for these coefficients in [2]. We give the
complete solution.

Theorem 5.1. Let f ∈Mγ for γ > 0, and f−1 be the inverse function of f .
Then

|A2| 6
2

1 + γ
,

|A3| 6


5+7γ

(1+γ)2(1+2γ) , 0 6 γ 6 1
2 (5 +

√
41),

1
1+2γ , γ > 1

2 (5 +
√

41),

|A4| 6


2(63+77γ+3γ2+γ3)

9(1+γ)3(1+3γ) , 0 6 γ 6 5,

2
3(1+3γ) , γ > 5.

All the inequalities are sharp.

Proof. The inequality for |A2| is trivial.
Using (3.1) and (5.1) we obtain

A3 =
p2

2(1 + 2γ)
− (6 + 9γ + γ2)p21

4(1 + γ)2(1 + 2γ)

=
1

2(1 + 2γ)

(
p2 −

(6 + 9γ + γ2)p21
2(1 + γ)2

)
.

A simple application of Lemma 2.2 with µ = 6+9γ+γ2

(1+γ)2 , gives the inequalities

for |A3|.
Again from (3.1) and (5.1) we can write the expression for A4 as

A4 =
1

3(1 + 3γ)

(
p3 − 2Bp1p2 +Dp31

)
,

where

B =
6 + γ

2(1 + γ)
, and D =

48 + 73γ + 21γ2 + 2γ3

6(1 + γ)3
.

First note that 0 6 B 6 1, when γ > 4, and B(2B − 1) 6 D 6 B, when
γ > 5, and so applying Lemma 2.3 gives the second inequality for |A4|.



182 D. K. THOMAS

Next write

A4 =
1

3(1 + 3γ)

(
p3 − 2Bp1p2 +Bp31 + (D −B)p31

)
.

Then since D − B > 0, when 0 6 γ 6 5, and since |p3 − 2Bp1p2 + Bp31| 6 2,
(Lemma 2.3 with D = B), we obtain the first inequality for |A4| on the interval
4 6 γ 6 5.

For the remaining interval 0 6 γ 6 4, we use Lemma 2.4.
Write

A4 =
1

3(1 + 3γ)

(
p3 − (1 + µ)Bp1p2 + µp31 +

(18 + 13γ − 9γ2 + 2γ3)

6(1 + γ)3
p31

)
,

with µ = 5/(1 + γ).
Since µ lies outside [0, 1], when 0 6 γ 6 4, and noting that 18 + 13γ− 9γ2 +

2γ3 > 0, when γ > 0, applying Lemma 2.4 gives the first inequality for |A4| on
this interval, which completes the proof of the theorem.

We note as before that equality is attained in the inequality for |A2|, and
the first inequalities for |A3| and |A4| when p1 = 2, the second inequality for
|A3| is sharp when p1 = p2 = 2, and the second inequality for |A4| is sharp
when p1 = p2 = p3 = 2. �

6. The second Hankel determinant

The problem of finding sharp bounds for the second Hankel determinant
H2(2) = |a2a4 − a23| for subclasses of univalent functions has received much
attention in recent years. Most authors have employed the technique developed
in [3], which was used to find the sharp bounds for functions in S∗ and C.

We now use the same method to give the sharp bounds for H2(2) when
f ∈Mγ when 0 6 γ 6 1, noting that γ = 0 and γ = 1 correspond to S∗ and C
respectively [3].

Theorem 6.1. Let f ∈Mγ for 0 6 γ 6 1, and be given by (1.1). Then

H2(2) 6


(1−γ)(9+142γ+257γ2+80γ3+16γ4)

9(1+γ)4(1+2γ)2(1+3γ) γ 6= 1,

1
8 γ = 1.

The inequalities are sharp.

Proof. First note that since f ∈M0 = S∗ and f ∈M1 = C, the first inequality
when γ = 0, and second inequality are proved in [3].
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From (3.1) we have

H2(2) =
(−12− 220γ − 361γ2 − 45γ3 + 25γ4 + 37γ5)

144(1 + γ)4(1 + 2γ)2(1 + 3γ)
p41

+
γ(11 + 8γ − 7γ2)

12(1 + γ)2(1 + 2γ)2(1 + 3γ)
p21p2 −

p22
4(1 + 2γ)2

+
p1p3

3(1 + γ)(1 + 3γ)
.

We now use Lemma 2.1 to express p2 and p3 in term of p1, simplify the
resulting expression, and normalizing the coefficient p1 = p so that 0 6 p 6 2,
to obtain, using the triangle inequality

H2(2) 6
(1− γ)(9 + 142γ + 257γ2 + 80γ3 + 16γ4)

144(1 + γ)4(1 + 2γ)2(1 + 3γ)
p4+

+
(1 + 16γ + 19γ2)p2(4− p2)|y|
24(1 + γ)2(1 + 2γ)2(1 + 3γ)

+
p2(4− p2)|y|2

12(1 + γ)(1 + 3γ)

+
(4− p2)2|y|2

16(1 + 2γ)2
+
p(4− p2)(1− |y|2)

6(1 + γ)(1 + 3γ)
:= Φ(p, |y|).

Thus we need to maximize Φ(p, |y|) over the rectangle [0, 2]× [0, 1].
Differentiating Φ(p, |y|) with respect to p and then |y| and equating to zero,

shows that the only admissible critical point is when

p = 2, y =
(3 + 91γ + γ2 − 327γ3 − 160γ4 − 40γ5)

3(1 + γ)2(1 + 16γ + 19γ2)
,

which gives the required inequality for H2(2), provided γ 6= 1.
It remains therefore to check the values of Φ(p, |y|) at the end points of [0, 2]×
[0, 1], and simple calculus shows that at each of these point, the maximum
value taken by Φ(p, |y|) gives the correct bound for H2(2).

Finally note that the inequalities are sharp when p1 = p2 = p3 = 2. �
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