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ON THE COEFFICIENTS OF GAMMA-STARLIKE
FUNCTIONS

DEREK K. THOMAS

ABSTRACT. We give several sharp estimates for some initial coefficients
problems for the so-called gamma starlike functions f, analytic and uni-
valent in the unit disk D := {z € C : |2| < 1}, and normalized so that

f(0) =0 = f'(0)— 1, and satisfying Re [(1+ sz,/ég))w (Z;ES) ) 1—7} > 0.

1. Introduction and definitions

Denote by A the class of functions f analytic in the unit disk D := {z € C:
|z| < 1} with Taylor series

(1.1) f(z) :z—i—Zanz”.

Let S be the subclass of A, consisting of univalent functions. A function f € A
is called starlike, if f(ID) is starlike (with respect to the origin), and convex if
f(D) is convex. Let S* and C denote the classes of starlike and convex functions
in S respectively. It is well-known that a function f € A belongs to S* if, and
only, if Re (z2f'(2)/f(z)) > 0 for z € D. Similarly, a function f € A belongs to
C if and only if Re (1 + (2f"(2)/f'(2))) > 0 for z € D. Thus it is easy to see
that f € C if and only if zf' € S*.
For o € R, the class M, of a-convex functions defined by

2f"(2) 2f'(2)
f'(2) f(z)
is well-known, and contains a great many interesting properties, the most basic

being that for all & € R, M, C §* [4,7-9]. Thus M, is a natural subset of S,
with Mg =8* and M; =C.

Re[a(1+ )+(1-a) >0,
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In contrast, the corresponding class M?” of so-called gamma-starlike func-
tions, defined for f € A, and v € R by

(1.2) Re Kl n Zf"(z))V(Zf'(z))l_q >0,
f'(z) f(2)

has been less well studied. We note again that M? = S* and M! = C. The
presence of powers in (1.2) obviously creates difficulties, and is probably the
reason why relatively little appears to be known about M?Y. However, as in
the case of M, functions in M7 are also contained in &* [5], again providing
a natural subset of S.

It is the purpose of this paper to give a series of sharp inequalities involving
the initial coefficients of functions in M7, which complete and extend those
given in [2], resulting in most of what is now known about these problems.

2. Preliminaries

We shall need the following lemmas concerning functions with positive real
part, (see e.g. [1,6]).

Denote by P, the set of functions p analytic in D with Taylor expansion
p(z) =1+ > 77, py2", and satisfying Rep(z) > 0 for z € D.

Lemma 2.1. For some complex valued y with |y| < 1, and some complex
valued ¢ with || < 1,

2ps = pi +y(4 - i),
dps = pi +2(4 — pi)pry — pr(4 —py® +2(4 = p) (1 — [y[*)¢.
Lemma 2.2. |p,| <2 for n>1, and

‘pz - gp?‘ < max{2, 2[u— 1|}

_J 2 O<p<y
2|lp — 1|, elsewhere.

Lemma 2.3. If0< B <1, and B(2B —1) < D < B, then
|ps — 2Bp1p2 + Dp}| < 2.
Lemma 2.4.
|p3 — (I + p)pip2 + ,up‘;” <max{2, 2|2u— 1|}
_ ) 2 0< <,
T 212p =1, elsewhere.

3. The coefficients of f(z)

Theorem 3.1. Let f € M7 for v >0, and be given by (1.1).

Then
2
lag| < ——
1+~

3
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3(1+37) 1 =
W(llg,y)a 1< 3(7T+ 57),

las| <
1 1 /
11277 vz 5(7"‘ 57),
2(1841137+29272 +7~34+2+%)
SRt tsy 0 VST S0
las| <
2
3(1+37)° ¥ 2 7o,

where vg = 6.794 . . . is the unique positive root of 15+98y+265v2 —14~3 —4~% =
0.
All the inequalities are sharp.

Proof. From (1.2), write

(14 Y (LEY

f'(z) f(2)
where p € P. Then equating coefficients gives
az = & )
1+~
4y — 2T =7 P2

A1 +7)2(1+2y)  20+2y)
(6 + 237 + 15472 — 4773 + 8y*)p}
36(14+7)3(1+2y)(1+3y)
(3 + 19y — 49*)pip2 P3
6(1+7)(1+2y)(1+3y)  3(1+3y)

The inequality for |as| is trivial.

The first inequality for |as|, is obvious on noting that the coefficient of p?
is positive when v < (7 4+ v/57), and applying the inequalities |p;| < 2 and
|p2] < 2. The second inequality follows by a simple application of Lemma 2.2.

For |a4], write

1 ( (492 =19y = 3)pip2 | (64237 + 15497 —477° + 87“)1)‘?))
301+ 37) T T2 1)1+ 29) 12(1+7)3(1 + 27) '

Then since the coefficients of p;ps and p? are positive when v < 5(19 ++/409),
the first inequality for |a4| is valid on this interval on using the inequalities
|pn| <2 for n=1,2 and 3.

We now use Lemma 2.3 (in the case B = D), with B = %.

First note that 0 < B < 1, when v > £(19 + v/409), and so writing

(3.1)

ay =

ay =

1
ay = m (PS — 2Bpips + Bpi + (D — B)P?);
with D = S0 ATy 81 e see that D — B > 0 when §(19+ v/409) <

7 < Y-
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Applying the inequality |p3 —2Bpip2 + Bp}| < 2 from Lemma 2.3, and again
using the inequalities |p,| < 2 for n = 1,2 and 3, gives the first inequality for
|as| on the interval (19 4+ 1/409) < v < 7.

Thus it remains to establish the inequality for |a4| on the interval v > ~o.
We again use Lemma 2.3.

It is easy to see that both 0 < B < 1 and B(2B — 1) < D < B hold when
¥ = 70, and so applying Lemma 2.3 gives the second inequality for |ay| at once.

To see that the above inequalities are sharp, we note that equality is attained
in the inequality for |as|, and the first inequalities for |as| and |as| when f(2)
in (3.1) is chosen so that

SUENIEIC) ST
f'(z) f(z) 1—z
The second inequality for |ag| is sharp when
2f"(2)\V r2f ()N 1+ 22
(1+ 702 ) ( ) R
and the second inequality for |a4| is sharp when
OO IR
(1+ f’(z)) (f@)) S 0

4. The coefficients of log(f(z)/z)

(1+

The logarithmic coefficients d,, of a function f € S are defined by
f(z) S
4.1 log——==2) 0,2",
(4.1) 0g = n; z

and play a central role in the theory of univalent functions. On differentiating
log i S), it is a trivial consequence of the inequality |p,| < 2, that for n > 1,
|0n] < 1/n when f € §*, and |,,| < 1/2n when f € C.

However when f € M?", the same procedure does not give a convenient
expression in terms of 1+ zf"(2)/f'(z), or z2f'(z)/f(2), unless v =0 or 1. We
show next that it is however possible to obtain sharp estimates for the modulus
of the initial coefficients of log @ when f € M.

We prove the following.

Theorem 4.1. Let f € M"Y for v > 0, and the coefficients of log @ be given
by (4.1).

Then
1

147’

1+5
ey 0SS,

[01] <

02| <
1
Tz 723
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3+11y+12192 477342+
ST P (173 VST S,

03] <
1
3(1+37)* Y = 1,
where vy, = 3.3751 ... is the unique positive root of the equation 2 — 47y + 7%+
2v3 = 0.
All the inequalities are sharp.
Proof. First note that differentiating (4.1), and equating coefficients gives
1

51 = 50“27
1 1
g = 5(03 - Qag)a

1 1
03 = 5(@4 — asas + gag).

Using Theorem 2.1, the inequality for |41| is trivial.
For |d2| substituting for as and a3 we obtain

Gy = ( - (—3+7)7p?)
4(14 27) 2(1+7)2 /)’
and applying Lemma 2.2 with pu = %, easily gives the inequalities for
|02
For ¢3, we again substitute from (3.1) to obtain
5y = J1T+237 - 107 + 44%)p} V(5 = 29)p1p2 P

36(1+7)3(1+27)(1+3v) 6(1+7)(1+27)(1+3y)  6(1+3y)

First note that since the coefficients of p}, p1p2 and ps are all positive on
1 < v < 5/2, using the inequality |p,| < 2 for n = 1,2, 3, the first inequality
for |03| in Theorem 4.1 follows when 1 < v < 5/2.

Next write the above expression for d3 as

1
63=——(ps— 2B Dp?
3= 501 37) (p3 p1p2 + Dpy),
where
_ _ _ 2 3
B v(2v —5) and D — (=17 4+ 23y — 10v* + 4~7)
(1+9)(1+29) 6(1+7)3(1+27)

We now use Lemma 2.3, so that 0 < B < 1, when vy > 5/2, and B(2B—1) <
D < B, when v > 71, and so Lemma 2.3 gives the second bound for |d3] in
Theorem 4.1 when v > ;.
Next write
1
6(1 4 3v)
and note that D — B > 0 when 0.428... < v < 1.

(ps — 2Bpip2 + BpS + (D — B)p?),

5y =
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We now use Lemma 2.3 with B = D, and recalling that since 0 < B < 1, we
also require that v > 5/2, to obtain the first inequality for |d3| on the interval
5/2<y<m.

Thus we are left to prove the first inequality for |d3] on the interval 0 < v < 1.

We now use Lemma 2.1 to express the coefficients ps and ps in terms of p; to
obtain, after simplification, normalizing the coefficient p; so that p; = p where
0 < p < 2, and finally using the triangle inequality,

6] < (34 11y + 12192 + 79 + 29*)p? (14 8v)p(4 — p?)|yl
SN TR+ 4)3 (1 + 29) (1 + 39) 12(1+7)(1 4 27)(1 + 37)
pA—p)yl>  @-p)A-1|y?)
24(1 1 37) 120+3y) (. lyl).

We now use elementary calculus to find the maximum of the above expres-
sion.
It is easily verified that differentiating ¢(p, |y|) with respect to p and then

ly| and equating to zero shows that the only admissible turning points when

2 3 4
0 <7 < larewhenp=[y| =0, and whenp =2 and |y| = (Hﬂffy)z@:ws%h L,

which correspond to a maximum point and a saddle point respectively.
Thus when p = |y| = 0 we are led to the second required inequality for |ds],
_ _ (14741037277 —29%)
and when p = 2 and |y| = pTgE Er g e

Finally we consider the end points of [0, 2] x [0, 1].
1-y|? 1
3(1+3) S 3(1+37)°
(34 117y + 12142 + 793 + 29%)

9L +7)?(1+27)(1+37)

to the first inequality.

First note that for any value of ~, ¢(0, |y|) = and

P2, lyl) =

Next
(34 11y + 12142 + 793 + 294)p3 (4 —p?)
72(1+7)3(1 4+ 27)(1 + 3v) 12(1+3y)’
whose derivative increases with p when 0 < v < 1, again giving the first
inequality for |d3].
Finally

#(p,0) =

(B4 11y + 12192 + 7Ty3 + 29M)p®  p(4 — p?)
72(1+7)3(1 +27)(1 + 37) 24(1 + 37)
(1+8v)p4 —p?)
121 +9) (1 +27)(1+37)

The only critical point of this expression when 0 < v < 1 is when p = 0, and
so checking the values at the end points gives the first inequality for |d5| once
more.

The first inequality is sharp when p; = ps = p3 = 2, and the second is sharp
when p; = 0 and p3 = 2. (|

d(p,1) =
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5. The coefficients of the inverse function

Since M C S, inverse functions f~! exist defined in some disk |w| < ro(f).
Let
FHw) = w+ Apw? + Azw® + Ay + -+ -
Then since f(f~!(w)) = w, equating coefficients gives

A2 = —ag,
(5.1) Az = 2a3 — as,
Ay = —5a§’ + basas — ay.

Incomplete estimates were given for these coefficients in [2]. We give the
complete solution.

Theorem 5.1. Let f € MY for v >0, and f~! be the inverse function of f.
Then

2
|[Ag| < ——,
1+~
547 L
arrEarzy 0<7 < 35+ V4D,
|As] <
= v > 45+ VD),
2(63+77v+3v2++3)
a4y 0 0S5,
|A4| <
2
3(1+37) ¥ = 5.

All the inequalities are sharp.

Proof. The inequality for |As| is trivial.
Using (3.1) and (5.1) we obtain
YR B o ke )
2(1+2y) 41 +7)2(1+2y)
1 ( B (6+9v+72)p§)
20+ 2\ A )
A simple application of Lemma 2.2 with p = 6?'1?:,?;;’2 ,
for |As].
Again from (3.1) and (5.1) we can write the expression for A4 as

gives the inequalities

1
A :7< —92B D 3),
4 3(1+3) p3 p1p2 + DUpi
where ) .
4 21 2
B 87 g p_ AT 4242
2(147) 6(1+7)3

First note that 0 < B < 1, when v > 4, and B(2B — 1) < D < B, when
~v = 5, and so applying Lemma 2.3 gives the second inequality for |A4].
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Next write

Ay = p3 — 2Bpipa + BpS + (D — B)p‘i’)-

el
Then since D — B > 0, when 0 < v < 5, and since |p3 — 2Bp1p2 + Bp3| < 2,
(Lemma 2.3 with D = B), we obtain the first inequality for |A4| on the interval
4 <y <o

For the remaining interval 0 < v < 4, we use Lemma 2.4.
Write

Ay =

(18 + 13y — 992 + 29?) 3)

1
—(14+up)B +u 3 +
) <p3 ( ,LL) P1p2 P1 6(1 )3 P1

3(1+ 3y

with p=5/(1+7).

Since p lies outside [0, 1], when 0 < vy < 4, and noting that 18 + 13y — 992 +
293 > 0, when 7 > 0, applying Lemma 2.4 gives the first inequality for |A4| on
this interval, which completes the proof of the theorem.

We note as before that equality is attained in the inequality for |As|, and
the first inequalities for |A3| and |A4| when p; = 2, the second inequality for
|As| is sharp when p; = ps = 2, and the second inequality for |A4| is sharp
when p; = py = p3 = 2. O

6. The second Hankel determinant

The problem of finding sharp bounds for the second Hankel determinant
Hy(2) = |asasq — a3| for subclasses of univalent functions has received much
attention in recent years. Most authors have employed the technique developed
in [3], which was used to find the sharp bounds for functions in §* and C.

We now use the same method to give the sharp bounds for H3(2) when
f € M7 when 0 < v < 1, noting that v =0 and v = 1 correspond to S* and C
respectively [3].

Theorem 6.1. Let f € M7 for 0 < v <1, and be given by (1.1). Then

(1—7) (941427425772 48073 +16~%) 41
9(L+)* (1+27)2 (1+37) 77
Hy(2) <

% v=1.
The inequalities are sharp.

Proof. First note that since f € M° = §* and f € M! = C, the first inequality
when v = 0, and second inequality are proved in [3].
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From (3.1) we have
(=12 — 220y — 36172 — 4573 + 25¢* +374°%) ,

Hy(2) =
2(2) T44(1 + )% (1 + 27)2(1 + 37) P
V(11 +8y —79°) Dpa 3
12(1 4+ 79)2(1 4+ 29)2(1 + 3y)* 4(1 + 27)2

+ DP1p3
3(L4+7)(1+3y)

We now use Lemma 2.1 to express ps and p3 in term of pp, simplify the
resulting expression, and normalizing the coefficient p; = p so that 0 < p < 2,
to obtain, using the triangle inequality

(1 —)(9 + 1427 + 25792 + 807> + 164*)

1441 + )41 + 27)2(1 + 37)
(1+167 +199°)p*U =)yl | (4 —p*)ly?
24(1+7)2(1 +27)2(1 +3y)  12(1+7)(1 + 37)
A= Plyl® | AP A=) g
16(1+27)2 '~ 6(1++)(1+39) ’

Thus we need to maximize ®(p, |y|) over the rectangle [0, 2] x [0, 1].

Differentiating ®(p, |y|) with respect to p and then |y| and equating to zero,
shows that the only admissible critical point is when

_, (34 91y + 4% — 3279% — 1607* — 40+°)
b==v 3(1+7)2(1 + 167 + 1992) ’

which gives the required inequality for Hs(2), provided ~ # 1.
It remains therefore to check the values of ®(p, |y|) at the end points of [0, 2] x
[0,1], and simple calculus shows that at each of these point, the maximum
value taken by ®(p, |y|) gives the correct bound for Hy(2).

Finally note that the inequalities are sharp when p; = py = p3 = 2. ([

Hy(2) <

+
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