ON THE COEFFICIENTS OF GAMMA-STARLIKE FUNCTIONS

Derek K. Thomas

Abstract

We give several sharp estimates for some initial coefficients problems for the so-called gamma starlike functions f, analytic and univalent in the unit disk $\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$, and normalized so that $f(0)=0=f^{\prime}(0)-1$, and satisfying $\operatorname{Re}\left[\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\gamma}\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{1-\gamma}\right]>0$.

1. Introduction and definitions

Denote by \mathcal{A} the class of functions f analytic in the unit disk $\mathbb{D}:=\{z \in \mathbb{C}$: $|z|<1\}$ with Taylor series

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} . \tag{1.1}
\end{equation*}
$$

Let \mathcal{S} be the subclass of \mathcal{A}, consisting of univalent functions. A function $f \in \mathcal{A}$ is called starlike, if $f(\mathbb{D})$ is starlike (with respect to the origin), and convex if $f(\mathbb{D})$ is convex. Let \mathcal{S}^{*} and \mathcal{C} denote the classes of starlike and convex functions in \mathcal{S} respectively. It is well-known that a function $f \in \mathcal{A}$ belongs to \mathcal{S}^{*} if, and only, if $\operatorname{Re}\left(z f^{\prime}(z) / f(z)\right)>0$ for $z \in \mathbb{D}$. Similarly, a function $f \in \mathcal{A}$ belongs to \mathcal{C} if and only if $\operatorname{Re}\left(1+\left(z f^{\prime \prime}(z) / f^{\prime}(z)\right)\right)>0$ for $z \in \mathbb{D}$. Thus it is easy to see that $f \in \mathcal{C}$ if and only if $z f^{\prime} \in \mathcal{S}^{*}$.

For $\alpha \in \mathbb{R}$, the class \mathcal{M}_{α} of α-convex functions defined by

$$
\operatorname{Re}\left[\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)+(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}\right]>0
$$

is well-known, and contains a great many interesting properties, the most basic being that for all $\alpha \in \mathbb{R}, \mathcal{M}_{\alpha} \subset \mathcal{S}^{*}$ [4,7-9]. Thus \mathcal{M}_{α} is a natural subset of \mathcal{S}, with $\mathcal{M}_{0}=\mathcal{S}^{*}$ and $\mathcal{M}_{1}=\mathcal{C}$.

[^0]In contrast, the corresponding class \mathcal{M}^{γ} of so-called gamma-starlike functions, defined for $f \in \mathcal{A}$, and $\gamma \in \mathbb{R}$ by

$$
\begin{equation*}
\operatorname{Re}\left[\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\gamma}\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{1-\gamma}\right]>0 \tag{1.2}
\end{equation*}
$$

has been less well studied. We note again that $\mathcal{M}^{0}=\mathcal{S}^{*}$ and $\mathcal{M}^{1}=\mathcal{C}$. The presence of powers in (1.2) obviously creates difficulties, and is probably the reason why relatively little appears to be known about \mathcal{M}^{γ}. However, as in the case of \mathcal{M}_{α}, functions in \mathcal{M}^{γ} are also contained in \mathcal{S}^{*} [5], again providing a natural subset of \mathcal{S}.

It is the purpose of this paper to give a series of sharp inequalities involving the initial coefficients of functions in \mathcal{M}^{γ}, which complete and extend those given in [2], resulting in most of what is now known about these problems.

2. Preliminaries

We shall need the following lemmas concerning functions with positive real part, (see e.g. $[1,6]$).

Denote by \mathcal{P}, the set of functions p analytic in \mathbb{D} with Taylor expansion $p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n}$, and satisfying $\operatorname{Re} p(z)>0$ for $z \in \mathbb{D}$.
Lemma 2.1. For some complex valued y with $|y| \leqslant 1$, and some complex valued ζ with $|\zeta| \leqslant 1$,

$$
\begin{aligned}
& 2 p_{2}=p_{1}^{2}+y\left(4-p_{1}^{2}\right) \\
& 4 p_{3}=p_{1}^{3}+2\left(4-p_{1}^{2}\right) p_{1} y-p_{1}\left(4-p_{1}^{2}\right) y^{2}+2\left(4-p_{1}^{2}\right)\left(1-|y|^{2}\right) \zeta
\end{aligned}
$$

Lemma 2.2. $\left|p_{n}\right| \leqslant 2$ for $n \geqslant 1$, and

$$
\begin{aligned}
\left|p_{2}-\frac{\mu}{2} p_{1}^{2}\right| & \leqslant \max \{2,2|\mu-1|\} \\
& = \begin{cases}2, & 0 \leqslant \mu \leqslant 2, \\
2|\mu-1|, & \text { elsewhere }\end{cases}
\end{aligned}
$$

Lemma 2.3. If $0 \leqslant B \leqslant 1$, and $B(2 B-1) \leqslant D \leqslant B$, then

$$
\left|p_{3}-2 B p_{1} p_{2}+D p_{1}^{3}\right| \leqslant 2
$$

Lemma 2.4.

$$
\begin{aligned}
\left|p_{3}-(1+\mu) p_{1} p_{2}+\mu p_{1}^{3}\right| & \leqslant \max \{2,2|2 \mu-1|\} \\
& = \begin{cases}2, & 0 \leqslant \mu \leqslant 1 \\
2|2 \mu-1|, & \text { elsewhere } .\end{cases}
\end{aligned}
$$

3. The coefficients of $\boldsymbol{f}(\boldsymbol{z})$

Theorem 3.1. Let $f \in \mathcal{M}^{\gamma}$ for $\gamma \geqslant 0$, and be given by (1.1).
Then

$$
\left|a_{2}\right| \leqslant \frac{2}{1+\gamma}
$$

$$
\begin{gathered}
\left|a_{3}\right| \leqslant \begin{cases}\frac{3(1+3 \gamma)}{(1+\gamma)^{2}(1+2 \gamma)}, & \gamma \leqslant \frac{1}{2}(7+\sqrt{57}) \\
\frac{1}{1+2 \gamma}, & \gamma \geqslant \frac{1}{2}(7+\sqrt{57})\end{cases} \\
\left|a_{4}\right| \leqslant \begin{cases}\frac{2\left(18+113 \gamma+292 \gamma^{2}+7 \gamma^{3}+2 \gamma^{4}\right)}{9(1+\gamma)^{3}(1+2 \gamma)(1+3 \gamma)}, & 0 \leqslant \gamma \leqslant \gamma_{0} \\
\frac{2}{3(1+3 \gamma)}, & \gamma \geqslant \gamma_{0}\end{cases}
\end{gathered}
$$

where $\gamma_{0}=6.794 \ldots$ is the unique positive root of $15+98 \gamma+265 \gamma^{2}-14 \gamma^{3}-4 \gamma^{4}=$ 0.

All the inequalities are sharp.
Proof. From (1.2), write

$$
\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\gamma}\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{1-\gamma}=p(z)
$$

where $p \in \mathcal{P}$. Then equating coefficients gives

$$
\begin{align*}
a_{2}= & \frac{p_{1}}{1+\gamma} \\
a_{3}= & \frac{\left(2+7 \gamma-\gamma^{2}\right) p_{1}^{2}}{4(1+\gamma)^{2}(1+2 \gamma)}+\frac{p_{2}}{2(1+2 \gamma)} \\
a_{4}= & \frac{\left(6+23 \gamma+154 \gamma^{2}-47 \gamma^{3}+8 \gamma^{4}\right) p_{1}^{3}}{36(1+\gamma)^{3}(1+2 \gamma)(1+3 \gamma)} \tag{3.1}\\
& +\frac{\left(3+19 \gamma-4 \gamma^{2}\right) p_{1} p_{2}}{6(1+\gamma)(1+2 \gamma)(1+3 \gamma)}+\frac{p_{3}}{3(1+3 \gamma)}
\end{align*}
$$

The inequality for $\left|a_{2}\right|$ is trivial.
The first inequality for $\left|a_{3}\right|$, is obvious on noting that the coefficient of p_{1}^{2} is positive when $\gamma \leqslant \frac{1}{2}(7+\sqrt{57})$, and applying the inequalities $\left|p_{1}\right| \leqslant 2$ and $\left|p_{2}\right| \leqslant 2$. The second inequality follows by a simple application of Lemma 2.2.

For $\left|a_{4}\right|$, write
$a_{4}=\frac{1}{3(1+3 \gamma)}\left(p_{3}-\frac{\left(4 \gamma^{2}-19 \gamma-3\right) p_{1} p_{2}}{2(1+\gamma)(1+2 \gamma)}+\frac{\left.\left(6+23 \gamma+154 \gamma^{2}-47 \gamma^{3}+8 \gamma^{4}\right) p_{1}^{3}\right)}{12(1+\gamma)^{3}(1+2 \gamma)}\right)$.
Then since the coefficients of $p_{1} p_{2}$ and p_{1}^{3} are positive when $\gamma \leqslant \frac{1}{8}(19+\sqrt{409})$, the first inequality for $\left|a_{4}\right|$ is valid on this interval on using the inequalities $\left|p_{n}\right| \leqslant 2$ for $n=1,2$ and 3 .
We now use Lemma 2.3 (in the case $B=D$), with $B=\frac{4 \gamma^{2}-19 \gamma-3}{4(1+\gamma)(1+2 \gamma)}$.
First note that $0 \leqslant B \leqslant 1$, when $\gamma \geqslant \frac{1}{8}(19+\sqrt{409})$, and so writing

$$
a_{4}=\frac{1}{3(1+3 \gamma)}\left(p_{3}-2 B p_{1} p_{2}+B p_{1}^{3}+(D-B) p_{1}^{3}\right)
$$

with $D=\frac{6+23 \gamma+154 \gamma^{2}-47 \gamma^{3}+8 \gamma^{4}}{12(1+\gamma)^{3}(1+2 \gamma)}$, we see that $D-B \geqslant 0$ when $\frac{1}{8}(19+\sqrt{409}) \leqslant$ $\gamma \leqslant \gamma_{0}$.

Applying the inequality $\left|p_{3}-2 B p_{1} p_{2}+B p_{1}^{3}\right| \leqslant 2$ from Lemma 2.3, and again using the inequalities $\left|p_{n}\right| \leqslant 2$ for $n=1,2$ and 3 , gives the first inequality for $\left|a_{4}\right|$ on the interval $\frac{1}{8}(19+\sqrt{409}) \leqslant \gamma \leqslant \gamma_{0}$.

Thus it remains to establish the inequality for $\left|a_{4}\right|$ on the interval $\gamma \geqslant \gamma_{0}$. We again use Lemma 2.3.

It is easy to see that both $0 \leqslant B \leqslant 1$ and $B(2 B-1) \leqslant D \leqslant B$ hold when $\gamma \geqslant \gamma_{0}$, and so applying Lemma 2.3 gives the second inequality for $\left|a_{4}\right|$ at once.

To see that the above inequalities are sharp, we note that equality is attained in the inequality for $\left|a_{2}\right|$, and the first inequalities for $\left|a_{3}\right|$ and $\left|a_{4}\right|$ when $f(z)$ in (3.1) is chosen so that

$$
\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\gamma}\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{1-\gamma}=\frac{1+z}{1-z} .
$$

The second inequality for $\left|a_{3}\right|$ is sharp when

$$
\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\gamma}\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{1-\gamma}=\frac{1+z^{2}}{1-z^{2}}
$$

and the second inequality for $\left|a_{4}\right|$ is sharp when

$$
\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\gamma}\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{1-\gamma}=\frac{1+z^{3}}{1-z^{3}} .
$$

4. The coefficients of $\log (f(z) / z)$

The logarithmic coefficients δ_{n} of a function $f \in \mathcal{S}$ are defined by

$$
\begin{equation*}
\log \frac{f(z)}{z}=2 \sum_{n=1}^{\infty} \delta_{n} z^{n} \tag{4.1}
\end{equation*}
$$

and play a central role in the theory of univalent functions. On differentiating $\log \frac{f(z)}{z}$, it is a trivial consequence of the inequality $\left|p_{n}\right| \leqslant 2$, that for $n \geqslant 1$, $\left|\delta_{n}\right| \leqslant 1 / n$ when $f \in \mathcal{S}^{*}$, and $\left|\delta_{n}\right| \leqslant 1 / 2 n$ when $f \in \mathcal{C}$.

However when $f \in \mathcal{M}^{\gamma}$, the same procedure does not give a convenient expression in terms of $1+z f^{\prime \prime}(z) / f^{\prime}(z)$, or $z f^{\prime}(z) / f(z)$, unless $\gamma=0$ or 1 . We show next that it is however possible to obtain sharp estimates for the modulus of the initial coefficients of $\log \frac{f(z)}{z}$ when $f \in \mathcal{M}^{\gamma}$.

We prove the following.
Theorem 4.1. Let $f \in \mathcal{M}^{\gamma}$ for $\gamma \geqslant 0$, and the coefficients of $\log \frac{f(z)}{z}$ be given by (4.1).
Then

$$
\begin{gathered}
\left|\delta_{1}\right| \leqslant \frac{1}{1+\gamma}, \\
\left|\delta_{2}\right| \leqslant \begin{cases}\frac{1+5 \gamma}{2(1+\gamma)^{2}(1+2 \gamma)}, & 0 \leqslant \gamma \leqslant 3, \\
\frac{1}{2(1+2 \gamma)}, & \gamma \geqslant 3,\end{cases}
\end{gathered}
$$

$$
\left|\delta_{3}\right| \leqslant \begin{cases}\frac{3+11 \gamma+121 \gamma^{2}+7 \gamma^{3}+2 \gamma^{4}}{9(1+\gamma)^{3}(1+2 \gamma)(1+3 \gamma)}, & 0 \leqslant \gamma \leqslant \gamma_{1} \\ \frac{1}{3(1+3 \gamma)}, & \gamma \geqslant \gamma_{1}\end{cases}
$$

where $\gamma_{1}=3.3751 \ldots$ is the unique positive root of the equation $2-47 \gamma+7 \gamma^{2}+$ $2 \gamma^{3}=0$.
All the inequalities are sharp.
Proof. First note that differentiating (4.1), and equating coefficients gives

$$
\begin{aligned}
\delta_{1} & =\frac{1}{2} a_{2}, \\
\delta_{2} & =\frac{1}{2}\left(a_{3}-\frac{1}{2} a_{2}^{2}\right), \\
\delta_{3} & =\frac{1}{2}\left(a_{4}-a_{2} a_{3}+\frac{1}{3} a_{2}^{3}\right) .
\end{aligned}
$$

Using Theorem 2.1, the inequality for $\left|\delta_{1}\right|$ is trivial.
For $\left|\delta_{2}\right|$ substituting for a_{2} and a_{3} we obtain

$$
\delta_{2}=\frac{1}{4(1+2 \gamma)}\left(p_{2}-\frac{(-3+\gamma) \gamma p_{1}^{2}}{2(1+\gamma)^{2}}\right),
$$

and applying Lemma 2.2 with $\mu=\frac{(-3+\gamma) \gamma}{(1+\gamma)^{2}}$, easily gives the inequalities for $\left|\delta_{2}\right|$.

For δ_{3}, we again substitute from (3.1) to obtain

$$
\delta_{3}=\frac{\gamma\left(-17+23 \gamma-10 \gamma^{2}+4 \gamma^{3}\right) p_{1}^{3}}{36(1+\gamma)^{3}(1+2 \gamma)(1+3 \gamma)}+\frac{\gamma(5-2 \gamma) p_{1} p_{2}}{6(1+\gamma)(1+2 \gamma)(1+3 \gamma)}+\frac{p_{3}}{6(1+3 \gamma)}
$$

First note that since the coefficients of $p_{1}^{3}, p_{1} p_{2}$ and p_{3} are all positive on $1 \leqslant \gamma \leqslant 5 / 2$, using the inequality $\left|p_{n}\right| \leqslant 2$ for $n=1,2,3$, the first inequality for $\left|\delta_{3}\right|$ in Theorem 4.1 follows when $1 \leqslant \gamma \leqslant 5 / 2$.

Next write the above expression for δ_{3} as

$$
\delta_{3}=\frac{1}{6(1+3 \gamma)}\left(p_{3}-2 B p_{1} p_{2}+D p_{1}^{3}\right)
$$

where

$$
B=\frac{\gamma(2 \gamma-5)}{(1+\gamma)(1+2 \gamma)} \quad \text { and } \quad D=\frac{\gamma\left(-17+23 \gamma-10 \gamma^{2}+4 \gamma^{3}\right)}{6(1+\gamma)^{3}(1+2 \gamma)} .
$$

We now use Lemma 2.3, so that $0 \leqslant B \leqslant 1$, when $\gamma \geqslant 5 / 2$, and $B(2 B-1) \leqslant$ $D \leqslant B$, when $\gamma \geqslant \gamma_{1}$, and so Lemma 2.3 gives the second bound for $\left|\delta_{3}\right|$ in Theorem 4.1 when $\gamma \geqslant \gamma_{1}$.

Next write

$$
\delta_{3}=\frac{1}{6(1+3 \gamma)}\left(p_{3}-2 B p_{1} p_{2}+B p_{1}^{3}+(D-B) p_{1}^{3}\right),
$$

and note that $D-B \geqslant 0$ when $0.428 \ldots \leqslant \gamma \leqslant \gamma_{1}$.

We now use Lemma 2.3 with $B=D$, and recalling that since $0 \leqslant B \leqslant 1$, we also require that $\gamma \geqslant 5 / 2$, to obtain the first inequality for $\left|\delta_{3}\right|$ on the interval $5 / 2 \leqslant \gamma \leqslant \gamma_{1}$.

Thus we are left to prove the first inequality for $\left|\delta_{3}\right|$ on the interval $0 \leqslant \gamma \leqslant 1$.
We now use Lemma 2.1 to express the coefficients p_{2} and p_{3} in terms of p_{1} to obtain, after simplification, normalizing the coefficient p_{1} so that $p_{1}=p$ where $0 \leqslant p \leqslant 2$, and finally using the triangle inequality,

$$
\begin{aligned}
\left|\delta_{3}\right| \leqslant & \frac{\left(3+11 \gamma+121 \gamma^{2}+7 \gamma^{3}+2 \gamma^{4}\right) p^{3}}{72(1+\gamma)^{3}(1+2 \gamma)(1+3 \gamma)}+\frac{(1+8 \gamma) p\left(4-p^{2}\right)|y|}{12(1+\gamma)(1+2 \gamma)(1+3 \gamma)} \\
& +\frac{p\left(4-p^{2}\right)|y|^{2}}{24(1+3 \gamma)}+\frac{\left(4-p^{2}\right)\left(1-|y|^{2}\right)}{12(1+3 \gamma)}:=\phi(p,|y|)
\end{aligned}
$$

We now use elementary calculus to find the maximum of the above expression.

It is easily verified that differentiating $\phi(p,|y|)$ with respect to p and then $|y|$ and equating to zero shows that the only admissible turning points when $0 \leqslant \gamma \leqslant 1$ are when $p=|y|=0$, and when $p=2$ and $|y|=\frac{\left(1+\gamma+103 \gamma^{2}-7 \gamma^{3}-2 \gamma^{4}\right)}{4(1+\gamma)^{2}(1+8 \gamma)}$, which correspond to a maximum point and a saddle point respectively.

Thus when $p=|y|=0$ we are led to the second required inequality for $\left|\delta_{3}\right|$, and when $p=2$ and $|y|=\frac{\left(1+\gamma+103 \gamma^{2}-7 \gamma^{3}-2 \gamma^{4}\right)}{4(1+\gamma)^{2}(1+8 \gamma)}$ to the first inequality.

Finally we consider the end points of $[0,2] \times[0,1]$.
First note that for any value of $\gamma, \phi(0,|y|)=\frac{1-|y|^{2}}{3(1+3 \gamma)} \leqslant \frac{1}{3(1+3 \gamma)}$, and

$$
\phi(2,|y|)=\frac{\left(3+11 \gamma+121 \gamma^{2}+7 \gamma^{3}+2 \gamma^{4}\right)}{9(1+\gamma)^{3}(1+2 \gamma)(1+3 \gamma)}
$$

Next

$$
\phi(p, 0)=\frac{\left(3+11 \gamma+121 \gamma^{2}+7 \gamma^{3}+2 \gamma^{4}\right) p^{3}}{72(1+\gamma)^{3}(1+2 \gamma)(1+3 \gamma)}+\frac{\left(4-p^{2}\right)}{12(1+3 \gamma)},
$$

whose derivative increases with p when $0 \leqslant \gamma \leqslant 1$, again giving the first inequality for $\left|\delta_{3}\right|$.

Finally

$$
\begin{aligned}
\phi(p, 1)= & \frac{\left(3+11 \gamma+121 \gamma^{2}+7 \gamma^{3}+2 \gamma^{4}\right) p^{3}}{72(1+\gamma)^{3}(1+2 \gamma)(1+3 \gamma)}+\frac{p\left(4-p^{2}\right)}{24(1+3 \gamma)} \\
& +\frac{(1+8 \gamma) p\left(4-p^{2}\right)}{12(1+\gamma)(1+2 \gamma)(1+3 \gamma)} .
\end{aligned}
$$

The only critical point of this expression when $0 \leqslant \gamma \leqslant 1$ is when $p=0$, and so checking the values at the end points gives the first inequality for $\left|\delta_{3}\right|$ once more.

The first inequality is sharp when $p_{1}=p_{2}=p_{3}=2$, and the second is sharp when $p_{1}=0$ and $p_{3}=2$.

5. The coefficients of the inverse function

Since $\mathcal{M}^{\gamma} \subset \mathcal{S}$, inverse functions f^{-1} exist defined in some disk $|\omega|<r_{0}(f)$. Let

$$
f^{-1}(\omega)=\omega+A_{2} \omega^{2}+A_{3} \omega^{3}+A_{4} \omega^{4}+\cdots .
$$

Then since $f\left(f^{-1}(\omega)\right)=\omega$, equating coefficients gives

$$
\begin{align*}
& A_{2}=-a_{2} \\
& A_{3}=2 a_{2}^{2}-a_{3} \tag{5.1}\\
& A_{4}=-5 a_{2}^{3}+5 a_{2} a_{3}-a_{4} .
\end{align*}
$$

Incomplete estimates were given for these coefficients in [2]. We give the complete solution.

Theorem 5.1. Let $f \in \mathcal{M}^{\gamma}$ for $\gamma \geqslant 0$, and f^{-1} be the inverse function of f. Then

$$
\begin{gathered}
\left|A_{2}\right| \leqslant \frac{2}{1+\gamma}, \\
\left|A_{3}\right| \leqslant \begin{cases}\frac{5+7 \gamma}{(1+\gamma)^{2}(1+2 \gamma)}, & 0 \leqslant \gamma \leqslant \frac{1}{2}(5+\sqrt{41}), \\
\frac{1}{1+2 \gamma}, & \gamma \geqslant \frac{1}{2}(5+\sqrt{41}),\end{cases} \\
\left|A_{4}\right| \leqslant \begin{cases}\frac{2\left(63+77 \gamma+3 \gamma^{2}+\gamma^{3}\right)}{9(1+\gamma)^{3}(1+3 \gamma)}, & 0 \leqslant \gamma \leqslant 5 \\
\frac{2}{3(1+3 \gamma)}, & \gamma \geqslant 5\end{cases}
\end{gathered}
$$

All the inequalities are sharp.
Proof. The inequality for $\left|A_{2}\right|$ is trivial.
Using (3.1) and (5.1) we obtain

$$
\begin{aligned}
A_{3} & =\frac{p_{2}}{2(1+2 \gamma)}-\frac{\left(6+9 \gamma+\gamma^{2}\right) p_{1}^{2}}{4(1+\gamma)^{2}(1+2 \gamma)} \\
& =\frac{1}{2(1+2 \gamma)}\left(p_{2}-\frac{\left(6+9 \gamma+\gamma^{2}\right) p_{1}^{2}}{2(1+\gamma)^{2}}\right) .
\end{aligned}
$$

A simple application of Lemma 2.2 with $\mu=\frac{6+9 \gamma+\gamma^{2}}{(1+\gamma)^{2}}$, gives the inequalities for $\left|A_{3}\right|$.

Again from (3.1) and (5.1) we can write the expression for A_{4} as

$$
A_{4}=\frac{1}{3(1+3 \gamma)}\left(p_{3}-2 B p_{1} p_{2}+D p_{1}^{3}\right)
$$

where

$$
B=\frac{6+\gamma}{2(1+\gamma)}, \quad \text { and } \quad D=\frac{48+73 \gamma+21 \gamma^{2}+2 \gamma^{3}}{6(1+\gamma)^{3}}
$$

First note that $0 \leqslant B \leqslant 1$, when $\gamma \geqslant 4$, and $B(2 B-1) \leqslant D \leqslant B$, when $\gamma \geqslant 5$, and so applying Lemma 2.3 gives the second inequality for $\left|A_{4}\right|$.

Next write

$$
A_{4}=\frac{1}{3(1+3 \gamma)}\left(p_{3}-2 B p_{1} p_{2}+B p_{1}^{3}+(D-B) p_{1}^{3}\right) .
$$

Then since $D-B \geqslant 0$, when $0 \leqslant \gamma \leqslant 5$, and since $\left|p_{3}-2 B p_{1} p_{2}+B p_{1}^{3}\right| \leqslant 2$, (Lemma 2.3 with $D=B$), we obtain the first inequality for $\left|A_{4}\right|$ on the interval $4 \leqslant \gamma \leqslant 5$.

For the remaining interval $0 \leqslant \gamma \leqslant 4$, we use Lemma 2.4.
Write

$$
A_{4}=\frac{1}{3(1+3 \gamma)}\left(p_{3}-(1+\mu) B p_{1} p_{2}+\mu p_{1}^{3}+\frac{\left(18+13 \gamma-9 \gamma^{2}+2 \gamma^{3}\right)}{6(1+\gamma)^{3}} p_{1}^{3}\right)
$$

with $\mu=5 /(1+\gamma)$.
Since μ lies outside $[0,1]$, when $0 \leqslant \gamma \leqslant 4$, and noting that $18+13 \gamma-9 \gamma^{2}+$ $2 \gamma^{3} \geqslant 0$, when $\gamma \geqslant 0$, applying Lemma 2.4 gives the first inequality for $\left|A_{4}\right|$ on this interval, which completes the proof of the theorem.

We note as before that equality is attained in the inequality for $\left|A_{2}\right|$, and the first inequalities for $\left|A_{3}\right|$ and $\left|A_{4}\right|$ when $p_{1}=2$, the second inequality for $\left|A_{3}\right|$ is sharp when $p_{1}=p_{2}=2$, and the second inequality for $\left|A_{4}\right|$ is sharp when $p_{1}=p_{2}=p_{3}=2$.

6. The second Hankel determinant

The problem of finding sharp bounds for the second Hankel determinant $H_{2}(2)=\left|a_{2} a_{4}-a_{3}^{2}\right|$ for subclasses of univalent functions has received much attention in recent years. Most authors have employed the technique developed in [3], which was used to find the sharp bounds for functions in \mathcal{S}^{*} and \mathcal{C}.

We now use the same method to give the sharp bounds for $H_{2}(2)$ when $f \in \mathcal{M}^{\gamma}$ when $0 \leqslant \gamma \leqslant 1$, noting that $\gamma=0$ and $\gamma=1$ correspond to \mathcal{S}^{*} and \mathcal{C} respectively [3].

Theorem 6.1. Let $f \in \mathcal{M}^{\gamma}$ for $0 \leqslant \gamma \leqslant 1$, and be given by (1.1). Then

$$
H_{2}(2) \leqslant \begin{cases}\frac{(1-\gamma)\left(9+142 \gamma+257 \gamma^{2}+80 \gamma^{3}+16 \gamma^{4}\right)}{9(1+\gamma)^{4}(1+2 \gamma)^{2}(1+3 \gamma)} & \gamma \neq 1, \\ \frac{1}{8} & \gamma=1 .\end{cases}
$$

The inequalities are sharp.
Proof. First note that since $f \in \mathcal{M}^{0}=\mathcal{S}^{*}$ and $f \in \mathcal{M}^{1}=\mathcal{C}$, the first inequality when $\gamma=0$, and second inequality are proved in [3].

From (3.1) we have

$$
\begin{aligned}
H_{2}(2)= & \frac{\left(-12-220 \gamma-361 \gamma^{2}-45 \gamma^{3}+25 \gamma^{4}+37 \gamma^{5}\right)}{144(1+\gamma)^{4}(1+2 \gamma)^{2}(1+3 \gamma)} p_{1}^{4} \\
& +\frac{\gamma\left(11+8 \gamma-7 \gamma^{2}\right)}{12(1+\gamma)^{2}(1+2 \gamma)^{2}(1+3 \gamma)} p_{1}^{2} p_{2}-\frac{p_{2}^{2}}{4(1+2 \gamma)^{2}} \\
& +\frac{p_{1} p_{3}}{3(1+\gamma)(1+3 \gamma)} .
\end{aligned}
$$

We now use Lemma 2.1 to express p_{2} and p_{3} in term of p_{1}, simplify the resulting expression, and normalizing the coefficient $p_{1}=p$ so that $0 \leqslant p \leqslant 2$, to obtain, using the triangle inequality

$$
\begin{aligned}
H_{2}(2) \leqslant & \frac{(1-\gamma)\left(9+142 \gamma+257 \gamma^{2}+80 \gamma^{3}+16 \gamma^{4}\right)}{144(1+\gamma)^{4}(1+2 \gamma)^{2}(1+3 \gamma)} p^{4}+ \\
& +\frac{\left(1+16 \gamma+19 \gamma^{2}\right) p^{2}\left(4-p^{2}\right)|y|}{24(1+\gamma)^{2}(1+2 \gamma)^{2}(1+3 \gamma)}+\frac{p^{2}\left(4-p^{2}\right)|y|^{2}}{12(1+\gamma)(1+3 \gamma)} \\
& +\frac{\left(4-p^{2}\right)^{2}|y|^{2}}{16(1+2 \gamma)^{2}}+\frac{p\left(4-p^{2}\right)\left(1-|y|^{2}\right)}{6(1+\gamma)(1+3 \gamma)}:=\Phi(p,|y|) .
\end{aligned}
$$

Thus we need to maximize $\Phi(p,|y|)$ over the rectangle $[0,2] \times[0,1]$.
Differentiating $\Phi(p,|y|)$ with respect to p and then $|y|$ and equating to zero, shows that the only admissible critical point is when

$$
p=2, \quad y=\frac{\left(3+91 \gamma+\gamma^{2}-327 \gamma^{3}-160 \gamma^{4}-40 \gamma^{5}\right)}{3(1+\gamma)^{2}\left(1+16 \gamma+19 \gamma^{2}\right)}
$$

which gives the required inequality for $H_{2}(2)$, provided $\gamma \neq 1$.
It remains therefore to check the values of $\Phi(p,|y|)$ at the end points of $[0,2] \times$ $[0,1]$, and simple calculus shows that at each of these point, the maximum value taken by $\Phi(p,|y|)$ gives the correct bound for $H_{2}(2)$.

Finally note that the inequalities are sharp when $p_{1}=p_{2}=p_{3}=2$.

References

[1] R. M. Ali, Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math. Sci. Soc. (2) 26 (2003), no. 1, 63-71.
[2] M. Darus and D. K. Thomas, α-logarithmically convex functions, Indian J. Pure Appl. Math. 29 (1998), no. 10, 1049-1059.
[3] A. Janteng, S. A. Halim, and M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal. (Ruse) 1 (2007), no. 13-16, 619-625.
[4] P. K. Kulshrestha, Coefficients for alpha-convex univalent functions, Bull. Amer. Math. Soc. 80 (1974), 341-342.
[5] Z. Lewandowski, S. Miller, and E. J. Złotkiewicz, Gamma-starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 28 (1974), 53-58 (1976).
[6] R. J. Libera and E. J. Złotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85 (1982), no. 2, 225-230.
[7] S. S. Miller, P. T. Mocanu, and M. O. Reade, All α-convex functions are starlike, Rev. Roumaine Math. Pures Appl. 17 (1972), 1395-1397.
[8] , All α-convex functions are univalent and starlike, Proc. Amer. Math. Soc. 37 (1973), 553-554.
[9] P. G. Todorov, Explicit formulas for the coefficients of α-convex functions, $\alpha \geqslant 0$, Canad. J. Math. 39 (1987), no. 4, 769-783.

Derek K. Thomas
Department of Mathematics
Swansea University
Singleton Park, Swansea, SA2 8PP, United Kingdom
E-mail address: d.k.thomas@swansea.ac.uk

[^0]: Received February 8, 2017; Revised July 24, 2017; Accepted October 31, 2017.
 2010 Mathematics Subject Classification. Primary 30C45, 30C50.
 Key words and phrases. univalent, starlike, convex, gamma-starlike, coefficients.

