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ON COEFFICIENT PROBLEMS FOR STARLIKE FUNCTIONS

RELATED TO VERTICAL STRIP DOMAINS

Oh Sang Kwon and Young Jae Sim

Abstract. In the present paper, we find the sharp bound for the fourth

coefficient of starlike functions f which are normalized by f(0) = 0 =
f ′(0)− 1 and satisfy the following two-sided inequality:

1 +
γ − π
2 sin γ

< R

{
zf ′(z)

f(z)

}
< 1 +

γ

2 sin γ
, z ∈ D,

where D := {z ∈ C : |z| < 1} is the unit disk and γ is a real number such

that π/2 ≤ γ < π. Moreover, the sharp bound for the fifth coefficient of
f defined above with γ in a subset of [π/2, π) also will be found.

1. Introduction

Let H be the class of analytic functions in D := {z ∈ C : |z| < 1} and let
A be its subclass of f normalized by f(0) = 0 = f ′(0)− 1. That is, f has the
form

(1) f(z) = z +

∞∑
n=2

anz
n, z ∈ D.

Let the parameters α and β be real numbers such that 0 ≤ α < 1 < β. A
function p ∈ H is said to belong to the class P(α, β) if p satisfies p(0) = 1 and
the inequality α < R{p(z)} < β for all z ∈ D. In [4], the authors introduced
the class S(α, β) of functions f ∈ A for which satisfies zf ′(z)/f(z) ∈ P(α, β)
for all z ∈ D. They obtained for functions f ∈ S(α, β) which have the form
given by (1), the following inequality holds.

(2) |an| ≤
n∏
k=2

k − 2 + 2(β−α)
π sin π(1−α)

β−α

(n− 1)!
, n ∈ N \ {1}.
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Moreover, they obtained the sharp results for the second and third coefficients
for functions in S(α, β) as follows (See [4, 5]):

(3) |a2| ≤
2(β − α)

π
sin

π(1− α)

β − α
and

(4) |a3| ≤
(β − α)

π
sin

π(1− α)

β − α

[
cos

π(1− α)

β − α
+

2(β − α)

π
sin

π(1− α)

β − α

]
.

Given γ ∈ [π/2, π), we consider a class denoted byM(γ) of functions f ∈ A
such that

1 +
γ − π
2 sin γ

< R

{
zf ′(z)

f(z)

}
< 1 +

γ

2 sin γ
, z ∈ D.

The classM(γ) was introduced and investigated by Kargar et al. [3]. And this
class can be reduced by the class S(α, β) by putting

α = 1 +
γ − π
2 sin γ

and β = 1 +
γ

2 sin γ
, γ ∈ [π/2, π).

Therefore, for functions f ∈ M(γ) with the form given by (1), we obtain the
inequalities |an| ≤ 1 for n ∈ N \ {1} by (2). Furthermore, from (3) and (4), we
get the sharp inequalities |a2| ≤ 1 and |a3| ≤ (1− cos γ)/2.

The purpose of this paper is to obtain the sharp bound for the fourth and
fifth coefficients of function inM(γ). For this, the following notions and results
on them are required.

For analytic functions f and g, we say that f is subordinate to g, denoted
by f ≺ g, if there is an analytic function w : D→ D with |w(z)| ≤ |z| such that
f(z) = g(w(z)). Further, if g is univalent, then the definition of subordination
f ≺ g simplifies to the conditions f(0) = g(0) and f(D) ⊂ g(D).

By using the notion of subordination, we can obtain the following equivalent
condition for f ∈M(γ):

(5)
zf ′(z)

f(z)
≺ Bγ(z) := 1 +

1

2i sin γ
log

(
1 + zeiγ

1 + ze−iγ

)
, z ∈ D,

where π/2 ≤ γ < π. We note that the function Bγ defined by (5) can be
represented by

Bγ(z) = 1 +

∞∑
n=1

Anz
n, z ∈ D,

where

An =
(−1)n−1 sinnγ

n sin γ
, n ∈ N.

Throughout this paper, for given γ ∈ [π/2, π), we will denote

τ = τ(γ) = cos γ ∈ (−1, 0],
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for the sake of our convenient notation. We note that, using the notation τ ,
several initial coefficients of Bγ can be represented by

A1 = 1, A2 = −τ, A3 =
1

3
(4τ2 − 1) and A4 = τ − 2τ3.

Let P be the class of Carathéodory functions p ∈ H of the form

(6) p(z) = 1 +

∞∑
n=1

cnz
n, z ∈ D,

having a positive real part in D. For given p ∈ P define a function w : D→ C
by w(z) = (p(z) − 1)/(p(z) + 1). Then the property w(D) ⊂ D holds and
therefore |w(z)| ≤ |z| for all z ∈ D.

Now, let us recall several results for the class P will be used in further
considerations.

Lemma 1.1 ([2, p. 41]). If p ∈ P is of the form (6), then

(7) |cn| ≤ 2, n ∈ N.

The inequality (7) is sharp and the equality holds for the function L defined by

L(z) =
1 + z

1− z
= 1 + 2

∞∑
n=1

zn, z ∈ D.

Lemma 1.2 ([8, 9, Libera and Zlotkiewicz]). If p ∈ P is of the form (6) with
c1 ≥ 0, then

(8) 2c2 = c21 + ζ(4− c21)

and

(9) 4c3 = c31 + 2c1(4− c21)ζ − c1(4− c21)ζ2 + 2(4− c21)(1− |ζ|2)η

for some ζ and η such that |ζ| ≤ 1 and |η| ≤ 1.

Lemma 1.3 ([6, Kwon, Lecko and Sim]). Let p ∈ P be of the form given by
(6) and the formula (8) with c1 ∈ [0, 2) and ζ ∈ T holds. Then p must be of
the form

p(z) =
1 + µ(1 + ζ)z + ζz2

1− µ(1− ζ)z − ζz2
, z ∈ D,

where µ ∈ [0, 1). Here, T := {z ∈ C : |z| = 1}.

We remark here that a special case Lemma 1.3 with ζ = −1 ∈ T implies the
result in [7, Lemma 2.3].

The next lemma is a special case of more general results due to Choi, Kim
and Sugawa [1] (see also [10]). Define

Y (a, b, c) = max
z∈D

(
|a+ bz + cz2|+ 1− |z|2

)
, a, b, c ∈ R,

where D := {z ∈ C : |z| ≤ 1}.
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Lemma 1.4 ([1, Choi, Kim and Sugawa]). If ac ≥ 0, then

Y (a, b, c) =

|a|+ |b|+ |c|, |b| ≥ 2(1− |c|),

1 + |a|+ b2

4(1− |c|)
, |b| < 2(1− |c|).

If ac < 0, then

Y (a, b, c) =


1− |a|+ b2

4(1− |c|)
, −4ac(c−2 − 1) ≤ b2 ∧ |b| < 2(1− |c|),

1 + |a|+ b2

4(1 + |c|)
, b2 < min

{
4(1 + |c|)2,−4ac(c−2 − 1)

}
,

R(a, b, c), otherwise,

where

R(a, b, c) =


|a|+ |b| − |c|, |c|(|b|+ 4|a|) ≤ |ab|,
−|a|+ |b|+ |c|, |ab| ≤ |c|(|b| − 4|a|),

(|c|+ |a|)
√

1− b2

4ac
, otherwise.

2. On the fourth coefficients of functions in M(γ)

Let x1 ≈ −0.468, x2 ≈ −0.454, x3 ≈ −0.141 and x4 ≈ −0.072 be the unique
zeros in [−1, 0] of the polynomials q1, q2, q3 and q4 defined by

(10) q1(x) = −11 + 83x+ 72x2 − 272x3 + 128x4,

(11)
q2(x)=1001−9658x+10533x2+29820x3−75792x4+66624x5−26624x6+4096x7,

(12) q3(x) = 71 + 420x− 560x2 + 192x3

and

q4(x) = 11 + 140x− 176x2 + 64x3,

respectively. And define the functions g, h, k : [−1, 0]→ R by

(13) g(x) =

{
32(479−1092x+784x2−192x3)

3(7−4x)3 , x ∈ [−1, x3];

16, x ∈ [x3, 0],

(14)

h(x) =


8
√
6(7−4x)2(1−9x+8x2)

3−4x

(
3−4x

29−127x+124x2−32x3

)3/2
, x ∈ [−1, x2];

16(5−4x)3/2

3
√
16−21x+8x2

, x ∈ [x2, x4];
32(479−1092x+784x2−192x3)

3(7−4x)3 , x ∈ [x4, 0]



ON COEFFICIENT PROBLEMS FOR STARLIKE FUNCTIONS 455

and
(15)

k(x) =


8
3 (1− 9x+ 8x2), x ∈ [−1, x1];
4(−7+39x+176x2−336x3+128x4)

57−48x2

√
k1(x)

√
k2(x), x ∈ [x1, x2];

8
√
6(7−4x)(−7+67x−92x2+32x3)
−29+127x−124x2+32x3

(
3−4x

29−127x+124x2−32x3

)1/2
, x ∈ [x2, 0]

with

(16) k1(x) :=
64− 39x− 224x2 + 336x3 − 128x4

95 + 171x− 232x2 − 144x3 + 128x4

and

(17) k2(x) :=
266 + 912x− 832x2 − 768x3 + 512x4

64− 39x− 224x2 + 336x3 − 128x4
,

respectively. By comparing the functions g, h and k for fixed x ∈ [−1, 0], we
can obtain the following relation which will be used for the proof of our result
(see figures below):

(18) max {g(x), h(x), k(x)} =


k(x), when x ∈ [−1, x2];

h(x), when x ∈ [x2, x3];

g(x), when x ∈ [x3, 0].

Now, we suggest the sharp bound for the fourth coefficient of f ∈M(γ) for
γ ∈ [π/2, π).

Theorem 2.1. Let γ ∈ [π/2, π). If f ∈M(γ) has the form given by (1), then
(19)

|a4| ≤


1
3 , when π/2 ≤ γ ≤ γ3,

(5−4τ)3/2

9
√
16−21τ+8τ2

, when γ3 ≤ γ ≤ γ2,
−7+39τ+176τ2−336τ3+128τ4

12(57−48τ2)

√
k1(τ)

√
k2(τ), when γ2 ≤ γ ≤ γ1,

1
18 (1− τ)(1− 8τ), when γ1 ≤ γ < π

with k1 and k2 given by (16) and (17), respectively. Here, γ1 ≈ 2.058, γ2 ≈
2.042 and γ3 ≈ 1.712 is the unique root in [π/2, π] of the equation q1(cos γ) = 0,
q2(cos γ) = 0 and q3(cos γ) = 0, where q1, q2 and q3 is defined by (10), (11)
and (12), respectively. This result is sharp.

Proof. For given γ ∈ [π/2, π), let f ∈ M(γ) be of the form (1). Then there
exists p ∈ P with the form given by (6) such that

(20)
zf ′(z)

f(z)
= Bγ

(
p(z)− 1

p(z) + 1

)
.

Putting the series (1) and (6) into (20) by equating the coefficient we get

(21) 48a4 = 9c3 − 2(4τ + 1)c1c2 +
1

3
(8τ2 + 3τ − 2)c31.
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Since the class M(γ) is invariant under the rotations, by Lemma 1.1, we may
assume that c1 := t ∈ [0, 2]. By using (8) and (9) in Lemma 1.2 we have

(22)
48|a4| =

∣∣∣1
3

(8τ2 − 9τ + 1)t3 + (3− 4τ)t(4− t2)ζ − 2t(4− t2)ζ2

+ 4(4− t2)(1− |ζ|2)η
∣∣∣,

where ζ ∈ D and η ∈ D.
Assume first that t = 2. Then

(23) |a4| =
1

18
(1− τ)(1− 8τ).

On the other hand, for t = 0, we have

(24) |a4| =
1

3
(1− |ζ|2)|η| ≤ 1

3
, (ζ, η) ∈ D× D.

Now let t ∈ (0, 2). Applying the triangle inequality to (22) we have

(25) 48|a4| ≤ 4(4− t2)Γ(A,B,C),

where Γ is defined by

Γ(A,B,C) = |A+Bζ + Cζ2|+ 1− |ζ|2, ζ ∈ D

with

(26) A =
(8τ2 − 9τ + 1)t3

12(4− t2)
, B =

1

4
(3− 4τ)t, and C = −1

2
t.

We will find maxζ∈D Γ(A,B,C) by using Lemma 1.4. For this, we note that

AC < 0 since τ ∈ (−1, 0] and t ∈ (0, 2). We also note that

−4AC(C−2 − 1) ≤ B2, t ∈ (0, 2),

since

4AC(C−2 − 1) +B2 =
1

48
c2(19− 16τ2) ≥ 0, t ∈ (0, 2).

Moreover, we note that

(27) |C|(|B|+ 4|A|) ≥ |AB|
for all t ∈ (0, 2) and τ ∈ (−1, 0]. Indeed the inequality (27) is equivalent to
t2 ≤ λτ , where

λτ =
24(3− 4τ)

−32τ3 − 4τ2 + 17τ + 13
and we can easily check that λτ > 4 for given τ ∈ (−1, 0].

Now, let

τ∗ =

√
24(3− 4τ)

29− 127τ + 124τ2 − 32τ3
.

We note that 0 < 8/(7− 4τ) < τ∗ < 2 for given τ ∈ (−1, 0]. And we consider
subintervals I1, I2 and I3 of (0, 2) defined by I1 = (0, 8/(7− 4τ)], I2 = [8/(7−
4τ), τ∗] and I3 = [τ∗, 2), respectively.
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Let us consider the case t ∈ I1. Then we have |B| < 2(1 − |C|), and by
Lemma 1.4 we get

4(4− t2)Γ(A,B,C) ≤ 4(4− t2)

[
1 + |A|+ B2

4(1− |C|)

]
= Ψ(t),

where Ψ : I1 ∪ {0} → R is defined by

Ψ(x) =
1

24
(19− 16τ2)x3 − 1

4
(7− 4τ)(1 + 4τ)x2 + 16.

When τ ∈ (−1,−1/4], since

Ψ′′(x) =
1

4
(19− 16τ2)x− 1

2
(7− 4τ)(1 + 4τ) ≥ −1

2
(1 + 4τ)(7− 4τ) ≥ 0

for x ∈ (0, 2), Ψ is convex on the interval I1. Therefore, we have

(28) Ψ(x) ≤ max

{
Ψ(0),Ψ

(
8

7− 4τ

)}
, x ∈ I1.

When τ ∈ (−1/4, 0], we have Ψ′(x) = 0 occurs at x = 0 or x = τ̊ , where

τ̊ :=
4(7− 4τ)(1 + 4τ)

19− 16τ2
> 0.

Since the leading coefficient of Ψ is positive for given τ ∈ (−1/4, 0], Ψ(̊τ) is a
local minimum on I1 and therefore we have the inequality (28) again for the
case τ ∈ (−1/4, 0]. Furthermore, we can obtain Ψ(8/(7 − 4τ)) ≥ 16 when
τ ∈ [−1, x3] and Ψ(8/(7−4τ)) ≤ 16 when τ ∈ [x3, 0]. Therefore, we can obtain

(29) Ψ(x) ≤

{
Ψ
(

8
7−4τ

)
, when τ ∈ (−1, x3],

16, when τ ∈ [x3, 0],
x ∈ I1.

And, it follows from (24), (25) and (29) that

48|a4| ≤ g(τ), when t ∈ I1 ∪ {0} = [0, 8/(7− 4τ)],

where g is defined by (13).
Next, we consider the case t ∈ I2. In this case we have |AB| ≤ |C|(|B|−4|A|).

Therefore, by Lemma 1.4,

(30) 4(4− t2)Γ(A,B,C) ≤ 4(4− t2)(−|A|+ |B|+ |C|) = Λ(t),

where Λ : I2 → R is defined by

Λ(x) = −1

3
(8τ2 − 21τ + 16)x3 + (20− 16τ)x.

Moreover, Λ′(x) = 0 at x = τ̃ , where

(31) τ̃ :=

√
20− 16τ

16− 21τ + 8τ2
.
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Comparing the values 8/(7− 4τ), τ∗ and τ̃ , we have
8

7−4τ ≤ τ
∗ ≤ τ̃ , when τ ∈ (−1, x2];

8
7−4τ ≤ τ̃ ≤ τ

∗, when τ ∈ [x2, x4];

τ̃ ≤ 8
7−4τ ≤ τ

∗, when τ ∈ [x4, 0].

Furthermore, Λ is increasing on I2 when τ ∈ (−1, x2], and Λ is decreasing on
I2 when τ ∈ [x4, 0]. On the other hand, when τ ∈ [x2, x4], Λ has its local
maximum at τ̃ . Using these facts, we can obtain the maximum for Λ on I2 as
follows:

(32) Λ(x) ≤


Λ(τ∗), when τ ∈ (−1, x2];

Λ(τ̃), when τ ∈ [x2, x4];

Λ
(

8
7−4τ

)
, when τ ∈ [x4, 0],

x ∈ I2.

Combining (25), (30) and (32), we have

48|a4| ≤ h(τ), when t ∈ I2,

where h is defined by (14).
Next, let us consider the case t ∈ I3. In this case, from Lemma 1.4, we have

(33) 4(4− t2)Γ(A,B,C) ≤ 4(4− t2)(|C|+ |A|)
√

1− B2

4AC
= Φ(t),

where Φ : I3 ∪ {2} → R is defined by

Φ(x) =
1

3
(24x+ (8τ2 − 9τ − 5)x3)

√
φ(x)

with

φ(x) = 1 +
3(3− 4τ)2(4− x2)

8(8τ2 − 9τ + 1)x2
.

Differentiating Φ, we have

(34) Φ′(x) =
κ1 + κ2x

2

2(1− 9τ + 8τ2)
√
φ(x)

,

where

κ1 = 8(−64 + 39τ + 224τ2 − 336τ3 + 128τ4)

and

κ2 = (5 + 9τ − 8τ2)(19− 16τ2).

We note that κ2 ≥ 0 for τ ∈ [ 9−
√
241

16 , 0] and κ2 ≤ 0 for τ ∈ (−1, 9−
√
241

16 ].

When τ ∈ [ 9−
√
241

16 , 0], we have

κ1 + κ2x
2 ≤ κ1 + 4κ2 = 12(−11 + 83τ + 72τ2 − 272τ2 + 128τ4) < 0, x ∈ I3.
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Therefore, by (34), Φ is decreasing on I3. Also, Φ is decreasing on I3 for the

case τ ∈ [x2,
9−
√
241

16 ], since

κ1 + κ2x
2 ≤ κ1 + κ2(τ∗)2 =

−8q2(τ)

29− 127τ + 124τ2 − 32τ3
≤ 0, x ∈ I3.

For the case τ ∈ (−1, x2], we note that κ1κ2 < 0 and Φ′(x) = 0 occurs at
x = τ̂ , where

(35) τ̂ :=

√
κ1
−κ2

=

√
8(−64 + 39τ + 224τ2 − 336τ3 + 128τ4)

−(5 + 9τ − 8τ2)(19− 16τ2)
.

Comparing the values 2, τ∗ and τ̂ , we have{
τ∗ ≤ 2 ≤ τ̂ , when τ ∈ (−1, x1];

τ∗ ≤ τ̂ ≤ 2, when τ ∈ [x1, x2].

Furthermore, Φ is increasing on [τ∗, 2] when τ ∈ (−1, x1], and Φ has the local
maximum at x = τ̂ when τ ∈ [x1, x2]. Using these facts, we can obtain the
following maximum for Φ on I3 for each cases:

(36) Φ(x) ≤


Φ(2), when τ ∈ (−1, x1];

Φ(τ̂), when τ ∈ [x1, x2];

Φ(τ∗), when τ ∈ [x2, 0],

x ∈ I3.

Combining (23), (25), (33) and (36), we have

48|a4| ≤ k(τ), when t ∈ I3 ∪ {2} = [τ∗, 2],

where k is defined by (15).
Consequently, we obtain

(37) 48|a4| ≤


g(τ), when t ∈ [0, 8/(7− 4τ)];

h(τ), when t ∈ [8/(7− 4τ), τ∗];

k(τ), when t ∈ [τ∗, 2].

We note that each conditions γ ∈ [π/2, γ3], γ ∈ [γ3, γ2], γ ∈ [γ2, γ1] and γ ∈
[γ1, π) are equivalent to τ ∈ [x3, 0], τ ∈ [x2, x3], τ ∈ [x1, x2] and τ ∈ (−1, x1],
respectively. Thus, it follows from (37) and (18) that the inequality (19) holds.

From now, we will show that this result is sharp. The equality for the first
case (i.e., γ ∈ [π/2, γ3]) in (19) holds for the function f1 ∈M(γ) defined by

f1(z) = z exp

[∫ z

0

1

ξ

(
Bγ(ξ3)− 1

)
dξ

]
= z +

1

3
z4 + · · · , z ∈ D.
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And the equality for the fourth case (i.e., γ ∈ [γ1, π)) in (19) holds for the
function f2 ∈M(γ) defined by

f2(z) = z exp

[∫ z

0

1

ξ
(Bγ(ξ)− 1) dξ

]
= z + z2 +

1

2
(1− τ)z3 +

1

18
(1− 9τ + 8τ2)z4

+
1

72
(−5 + 41τ2 − 36τ3)z5 + · · · , z ∈ D.

(38)

To consider the sharpness for the second case in (19), let us fix γ ∈ [γ3, γ2]. We
note that the equality in (19) holds for ζ which satisfies

4(4− t2)(|A+Bζ + Cζ2|+ 1− |ζ|2) = 4(4− t2)(−|A|+ |B|+ |C|) = Λ(τ̃),

where τ̃ is given by (31) and A, B, C are given by (26) with t = τ̃ . And we can
easily check that this relation is satisfied for ζ = −1 and t = c1 = τ̃ . Therefore,
by Lemma 1.2, we have

c2 = τ̃2 − 2 and c3 = τ̃3 − 3τ̃ .

We consider the function f3 : D→ C defined by

(39) f3(z) = z exp

[∫ z

0

1

ξ

(
Bγ

(
p(ξ)− 1

p(ξ) + 1

)
− 1

)
dξ

]
, z ∈ D,

where p ∈ P has the form given by

(40) p(z) = 1 + τ̃ z + (τ̃2 − 2)z2 + (τ̃3 − 3τ̃)z3 + · · · .
From (21), we can easily check that equality in (19) holds for this function
f3. Therefore, it is enough to construct a function p ∈ P with the form given
by (40). Since c2 = c21 − 2, it follows from Lemma 1.3 with ζ = −1 that the
function p should be defined by

p(z) =
1− z2

1− τ̃ z + z2
, z ∈ D

and this guarantees the sharpness of the inequality (19) for the second case.
Finally, it is remained to show the sharpness of (19) for the third case. Fix

γ ∈ [γ2, γ1]. We note that the equality in (19) holds for ζ which satisfies

4(4− t2)(|A+Bζ +Cζ2|+ 1− |ζ|2) = 4(4− t2)(|C|+ |A|)
√

1− B2

4AC
= Φ(τ̂),

where τ̂ is given by (35) and A, B, C are given by (26) with t = τ̂ . Moreover,
this relation holds for ζ = eiθ, where θ ∈ [0, 2π) is defined so that

cos θ = −B(A+ C)

4AC
=

(3− 4τ)(−163− 105τ + 368τ2 − 336τ3 + 128τ4)

8(−64 + 39τ + 224τ2 − 336τ3 + 128τ4)
.

Therefore, by Lemma 1.2, we have

c2 =
1

2
[τ̂2 + ζ(4− τ̂2)] and c3 =

1

4
τ̂ [τ̂2 + ζ(2− ζ)(4− τ̂2)].
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Since the equality in (19) holds for the function f3 defined by (39) with p ∈ P,
where

p(z) = 1 + τ̂ z +
1

2
[τ̂2 + ζ(4− τ̂2)]z2 +

1

4
τ̂ [τ̂2 + ζ(2− ζ)(4− τ̂2)]z3 + · · · ,

it is enough to construct a function p ∈ P with this representation. Similar
methods with the second case and Lemma 1.3 lead us to get the desired function
p ∈ P defined by

p(z) =
2 + τ̂(1 + ζ)z + 2ζz2

2− τ̂(1− ζ)z − 2ζz2

and this completes the proof of Theorem 2.1. �

We give here 5 figures which present the graphs of g, h and k defined by
(13), (14) and (15), respectively, to justify the equality (18).

Figure 1. Graphs of g, h, k on the interval [−1, x1]

Figure 2. Graphs of g, h, k on the interval [x1, x2]
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Figure 3. Graphs of g, h, k on the interval [x2, x3]

Figure 4. Graphs of g, h, k on the interval [x3, x4]

Figure 5. Graphs of g, h, k on the interval [x4, 0]

3. On the fifth coefficients of functions in M(γ)

In this section, we obtain the sharp bound for the fifth coefficient of f ∈
M(γ) for γ in a subset of [π/2, π). For this, let x5 ≈ −0.882 be the zero in the
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interval (−1,−1/2) of the polynomial r1 defined by

(41) r1(x) = 10 + 12x− 31x2 − 36x3.

Theorem 3.1. Let γ5 ≈ 2.651 be a root of the equation r1(cos γ) = 0 and let
γ ∈ [γ5, π). If f ∈M(γ) has the form given by (1), then

(42) |a5| ≤
1

72
(−5 + 41τ2 − 36τ3).

This result is sharp.

Proof. By the same methods in the proof of Theorem 2.1, we have

(43) 64a5 =
1

18
r1(τ)c41 +

2

3
r2(τ)c21c2 + r3(τ)c22 +

8

3
r4(τ)c1c3 + 8c4,

where r1 is defined by (41),

r2(x) = −2 + 7x+ 12x2,

r3(x) = −4x− 2

and
r4(x) = −3x− 1.

And we can easily check that

ri(x) ≥ 0, i = 1, 2, 3, 4

for x ∈ [−1, x5]. Or, equivalently, ri(τ) ≥ 0 (i = 1, 2, 3, 4) hold when γ ∈ [γ5, π).
Therefore, by applying Lemma 1.1 to the inequality which obtained by applying
the triangle inequality to (43), we obtain

64|a5| ≤
8

9
r1(τ) +

16

3
r2(τ) + 4r3(τ) +

32

3
r4(τ) + 16 = −8

9
(5− 41τ2 + 36τ3),

which implies the inequality (42). The equality in (42) holds for f2 defined by
(38) and this completes the proof of our result. �
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