• Title/Summary/Keyword: gA

Search Result 66,804, Processing Time 0.076 seconds

ON THE FIXING NUMBER OF FUNCTIGRAPHS

  • Fazil, Muhammad;Javaid, Imran;Murtaza, Muhammad
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.171-181
    • /
    • 2021
  • The fixing number of a graph G is the smallest order of a subset S of its vertex set V (G) such that the stabilizer of S in G, ��S(G) is trivial. Let G1 and G2 be the disjoint copies of a graph G, and let g : V (G1) → V (G2) be a function. A functigraph FG consists of the vertex set V (G1) ∪ V (G2) and the edge set E(G1) ∪ E(G2) ∪ {uv : v = g(u)}. In this paper, we study the behavior of fixing number in passing from G to FG and find its sharp lower and upper bounds. We also study the fixing number of functigraphs of some well known families of graphs like complete graphs, trees and join graphs.

BINDING NUMBERS AND FRACTIONAL (g, f, n)-CRITICAL GRAPHS

  • ZHOU, SIZHONG;SUN, ZHIREN
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.5_6
    • /
    • pp.435-441
    • /
    • 2016
  • Let G be a graph, and let g, f be two nonnegative integer-valued functions defined on V (G) with g(x) ≤ f(x) for each x ∈ V (G). A graph G is called a fractional (g, f, n)-critical graph if after deleting any n vertices of G the remaining graph of G admits a fractional (g, f)-factor. In this paper, we obtain a binding number condition for a graph to be a fractional (g, f, n)-critical graph, which is an extension of Zhou and Shen's previous result (S. Zhou, Q. Shen, On fractional (f, n)-critical graphs, Inform. Process. Lett. 109(2009)811-815). Furthermore, it is shown that the lower bound on the binding number condition is sharp.

INJECTIVELY DELTA CHOOSABLE GRAPHS

  • Kim, Seog-Jin;Park, Won-Jin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1303-1314
    • /
    • 2013
  • An injective coloring of a graph G is an assignment of colors to the vertices of G so that any two vertices with a common neighbor receive distinct colors. A graph G is said to be injectively $k$-choosable if any list $L(v)$ of size at least $k$ for every vertex $v$ allows an injective coloring ${\phi}(v)$ such that ${\phi}(v){\in}L(v)$ for every $v{\in}V(G)$. The least $k$ for which G is injectively $k$-choosable is the injective choosability number of G, denoted by ${\chi}^l_i(G)$. In this paper, we obtain new sufficient conditions to be ${\chi}^l_i(G)={\Delta}(G)$. Maximum average degree, mad(G), is defined by mad(G) = max{2e(H)/n(H) : H is a subgraph of G}. We prove that if mad(G) < $\frac{8k-3}{3k}$, then ${\chi}^l_i(G)={\Delta}(G)$ where $k={\Delta}(G)$ and ${\Delta}(G){\geq}6$. In addition, when ${\Delta}(G)=5$ we prove that ${\chi}^l_i(G)={\Delta}(G)$ if mad(G) < $\frac{17}{7}$, and when ${\Delta}(G)=4$ we prove that ${\chi}^l_i(G)={\Delta}(G)$ if mad(G) < $\frac{7}{3}$. These results generalize some of previous results in [1, 4].

Fundamental Groups of a Topological Transformation Group

  • Chu, Chin-Ku;Choi, Sung Kyu
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.4 no.1
    • /
    • pp.103-113
    • /
    • 1991
  • Some properties of a path space and the fundamental group ${\sigma}(X,x_0,G)$ of a topological transformation group (X, G, ${\pi}$) are described. It is shown that ${\sigma}(X,x_0,H)$ is a normal subgroup of ${\sigma}(X,x_0,G)$ if H is a normal subgroup of G ; Let (X, G, ${\pi}$) be a transformation group with the open action property. If every identification map $p:{\Sigma}(X,x,G)\;{\longrightarrow}\;{\sigma}(X,x,G)$ is open for each $x{\in}X$, then ${\lambda}$ induces a homeomorphism between the fundamental groups ${\sigma}(X,x_0,G)$ and ${\sigma}(X,y_0,G)$ where ${\lambda}$ is a path from $x_0$ to $y_0$ in X ; The space ${\sigma}(X,x_0,G)$ is an H-space if the identification map $p:{\Sigma}(X,x_0,G)\;{\longrightarrow}\;{\sigma}(X,x_0,G)$ is open in a topological transformation group (X, G, ${\pi}$).

  • PDF

NOTE ON CONNECTED (g, f)-FACTORS OF GRAPHS

  • Zhou, Sizhong;Wu, Jiancheng;Pan, Quanru
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.909-912
    • /
    • 2010
  • In this note we present a short proof of the following result by Zhou, Liu and Xu. Let G be a graph of order n, and let a and b be two integers with 1 $\leq$ a < b and b $\geq$ 3, and let g and f be two integer-valued functions defined on V(G) such that a $\leq$ g(x) < f(x) $\leq$ b for each $x\;{\in}\;V(G)$ and f(V(G)) - V(G) even. If $n\;{\geq}\;\frac{(a+b-1)^2+1}{a}$ and $\delta(G)\;{\geq}\;\frac{(b-1)n}{a+b-1}$,then G has a connected (g, f)-factor.

ON THE DOMINATION NUMBER OF A GRAPH AND ITS SQUARE GRAPH

  • Murugan, E.;Joseph, J. Paulraj
    • Korean Journal of Mathematics
    • /
    • v.30 no.2
    • /
    • pp.391-402
    • /
    • 2022
  • For a given graph G = (V, E), a dominating set is a subset V' of the vertex set V so that each vertex in V \ V' is adjacent to a vertex in V'. The minimum cardinality of a dominating set of G is called the domination number of G and is denoted by γ(G). For an integer k ≥ 1, the k-th power Gk of a graph G with V (Gk) = V (G) for which uv ∈ E(Gk) if and only if 1 ≤ dG(u, v) ≤ k. Note that G2 is the square graph of a graph G. In this paper, we obtain some tight bounds for the sum of the domination numbers of a graph and its square graph in terms of the order, order and size, and maximum degree of the graph G. Also, we characterize such extremal graphs.

G'p-SPACES FOR MAPS AND HOMOLOGY DECOMPOSITIONS

  • Yoon, Yeon Soo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.603-614
    • /
    • 2015
  • For a map $p:X{\rightarrow}A$, we define and study a concept of $G^{\prime}_p$-space for a map, which is a generalized one of a G'-space. Any G'-space is a $G^{\prime}_p$-space, but the converse does not hold. In fact, $CP^2$ is a $G^{\prime}_{\delta}$-space, but not a G'-space. It is shown that X is a $G^{\prime}_p$-space if and only if $G^n(X,p,A)=H^n(X)$ for all n. We also obtain some results about $G^{\prime}_p$-spaces and homology decompositions for spaces. As a corollary, we can obtain a dual result of Haslam's result about G-spaces and Postnikov systems.

A Study on Generalized Fibonacci Sequence (피보나치 수열의 일반화에 관한 고찰)

  • Yang, Young-Oh;Kim, Tae-Ho
    • Journal for History of Mathematics
    • /
    • v.21 no.4
    • /
    • pp.87-104
    • /
    • 2008
  • In this paper we investigate several properties and characteristics of the generalized Fibonacci sequence $\{g_n\}$={a, b, a+b, a+2b, 2a+3b, 3a+5b,...}. This concept is a generalization of the famous Fibonacci sequence. In particular we find the identities of sums and the nth term $g_n$ in detail. Also we find the generalizations of the Catalan's identity and A. Tagiuri's identity about the Fibonacci sequence, and investigate the relation between $g_n$ and Pascal's triangle, and how fast $g_n$ increases. Furthermore, we show that $g_n$ and $g_{n+1}$ are relatively prime if a b are relatively prime, and that the sequence $\{\frac{g_{n+1}}{g_n}\}$ of the ratios of consecutive terms converges to the golden ratio $\frac{1+\sqrt5}2$.

  • PDF

CHARACTERIZATIONS OF PARTITION LATTICES

  • Yoon, Young-Jin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.237-242
    • /
    • 1994
  • One of the most well-known geometric lattices is a partition lattice. Every upper interval of a partition lattice is a partition lattice. The whitney numbers of a partition lattices are the Stirling numbers, and the characteristic polynomial is a falling factorial. The set of partitions with a single non-trivial block containing a fixed element is a Boolean sublattice of modular elements, so the partition lattice is supersolvable in the sense of Stanley [6]. In this paper, we rephrase four results due to Heller[1] and Murty [4] in terms of matroids and give several characterizations of partition lattices. Our notation and terminology follow those in [8,9]. To clarify our terminology, let G, be a finte geometric lattice. If S is the set of points (or rank-one flats) in G, the lattice structure of G induces the structure of a (combinatorial) geometry, also denoted by G, on S. The size vertical bar G vertical bar of the geometry G is the number of points in G. Let T be subset of S. The deletion of T from G is the geometry on the point set S/T obtained by restricting G to the subset S/T. The contraction G/T of G by T is the geometry induced by the geometric lattice [cl(T), over ^1] on the set S' of all flats in G covering cl(T). (Here, cl(T) is the closure of T, and over ^ 1 is the maximum of the lattice G.) Thus, by definition, the contraction of a geometry is always a geometry. A geometry which can be obtained from G by deletions and contractions is called a minor of G.

  • PDF

G'-SEQUENCE OF A MAP

  • Yoon, Yeon Soo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.39-47
    • /
    • 2009
  • Pan, Shen and Woo [8] introduced the concept of the G-sequence of a map. We introduce the G'-sequence of a map, which is a dual concept of the G-sequence of a map. We obtain some sufficient conditions for the all sets in the G'-sequence of a map are groups, and for the exact G'-sequence of a map.

  • PDF