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INJECTIVELY DELTA CHOOSABLE GRAPHS

Seog-Jin Kim and Won-Jin Park

Abstract. An injective coloring of a graph G is an assignment of colors
to the vertices of G so that any two vertices with a common neighbor
receive distinct colors. A graph G is said to be injectively k-choosable
if any list L(v) of size at least k for every vertex v allows an injective
coloring φ(v) such that φ(v) ∈ L(v) for every v ∈ V (G). The least k for
which G is injectively k-choosable is the injective choosability number of
G, denoted by χl

i
(G). In this paper, we obtain new sufficient conditions

to be χl

i
(G) = ∆(G). Maximum average degree, mad(G), is defined by

mad(G) = max{2e(H)/n(H) : H is a subgraph of G}. We prove that if

mad(G) < 8k−3
3k

, then χl

i
(G) = ∆(G) where k = ∆(G) and ∆(G) ≥ 6. In

addition, when ∆(G) = 5 we prove that χl

i
(G) = ∆(G) if mad(G) < 17

7
,

and when ∆(G) = 4 we prove that χl

i
(G) = ∆(G) if mad(G) < 7

3
. These

results generalize some of previous results in [1, 4].

1. Introduction

All graphs considered in this paper are simple, finite, and undirected. We use
V (G), E(G) and ∆(G) to denote the vertex set, the edge set and the maximum
degree of G, respectively. Here we introduce some notation. A k-vertex is a
vertex of degree k, and a k+-vertex is a vertex of degree at least k. A thread is a
path with 2-vertices in its interior and 3+-vertices as its endpoints. A k-thread

has k interior 2-vertices, and a k+-thread is a thread that has at least k interior
2-vertices. If u and v are the endpoints of a thread, then we say that u and v

are pseudo-adjacent. For other undefined notions, we refer to [7].
An injective coloring of a graph G is an assignment of colors to the vertices

of G so that any two vertices with a common neighbor receive distinct colors.
The injective chromatic number χi(G) is the least number of colors needed
for an injective coloring of G. Note that injective coloring is not necessarily
proper, and χi(G) = χ(G(2)) where the neighboring graph G(2) is defined by
V (G(2)) = V (G) and E(G(2)) = {uv : u and v have a common neighbor in G}.
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The girth g(G) of G is the length of the shortest cycle in G. Maximum aver-

age degree, mad(G), is defined by mad(G)=max{ 2e(H)
n(H) :H is a subgraph of G}.

It follows from Euler’s formula that mad(G) < 2g
g−2 for every planar graph G

with girth at least g.
Given a list L(v) for each vertex v, an injective L-coloring of G is an injective

coloring φ(v) such that φ(v) ∈ L(v) for every v ∈ V (G). A graph G is said to
be injectively k-choosable if G has an injective L-coloring for every assignment
L with |L(v)| ≥ k for every vertex v in G. The least k for which G is injectively
k-choosable is the injective choosability number of G, denoted by χl

i(G).
Note that ∆ ≤ χi(G) ≤ χl

i(G) ≤ ∆2 − ∆ + 1 for every G where ∆ is the
maximum degree of G. A natural interesting problem is to find graphs that
have small injective chromatic numbers. Many researchers are interested in
graphs with small injective chromatic numbers such that χi(G) ≤ ∆(G)+ t for
some small constant t.

In this direction, one of the most interesting problem is to find graphs that
satisfy χi(G) = ∆(G). For planar graphs, the following sufficient conditions
in terms of ∆(G) and g(G) to be χi(G) = ∆(G) are known: ∆(G) ≥ 71 and
g(G) ≥ 7 [3], and ∆(G) ≥ 4 and g(G) ≥ 13 [4]. Recently Borodin and Ivanova
[1] studied the list version of injective coloring and proved the following results.

Theorem 1.1 ([1]). If G is a planar graph of girth g and maximum degree

∆(G), then χl
i(G) = χi(G) = ∆(G) in each of the following cases.

(1) ∆(G) ≥ 16 and g = 7.
(2) ∆(G) ≥ 10 and 8 ≤ g ≤ 9.
(3) ∆(G) ≥ 6 and 10 ≤ g ≤ 11.
(4) ∆(G) = 5 and g ≥ 12.

Sufficient conditions in terms of maximum average degree to have that
χi(G) ≤ ∆(G) + t for some small constant t were also studied. Cranston,
Kim, and Yu [4] proved that χi(G) = ∆(G) if mad(G) ≤ 9

4 for ∆(G) ≥ 4,

and mad(G) ≤ 42
19 for ∆(G) = 3. Doyon, Hahn, and Raspaud [5] proved that

χi(G) ≤ ∆(G) + 3 if mad(G) < 14
5 , χi(G) ≤ ∆(G) + 4 if mad(G) < 3, and

χi(G) ≤ ∆(G)+8 if mad(G) < 10
3 . Recently Li and Xu [6] studied list version

of injective coloring and proved that χl
i(G) ≤ ∆(G) + 4 if mad(G) < 10

3 and

∆(G) ≥ 30, and χl
i(G) ≤ ∆(G) + 2 if mad(G) < 3 and ∆(G) ≥ 12.

In this paper, we obtain new sufficient conditions on mad(G) to be χl
i(G) =

∆(G), which generalizes some of the results in [1, 4]. Our main results are as
follows.

Theorem 1.2. Let G be a graph with ∆(G) ≥ 6. If mad(G) < 8k−3
3k , then

χl
i(G) = ∆(G) where ∆(G) = k.

In addition, when ∆(G) = 5 we prove that χl
i(G) = ∆(G) if mad(G) < 17

7 in

Theorem 4.2, and when ∆(G) = 4 we prove that χl
i(G) = ∆(G) if mad(G) < 7

3
in Theorem 4.1. Theorems 1.2, 4.1, and 4.2 imply the following corollary.
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Corollary 1.3. If G is a planar graph with maximum degree ∆(G) and girth

g(G), then χl
i(G) = χi(G) = ∆(G) in each of the cases.

(a) ∆(G) = 4 and g(G) ≥ 14.
(b) ∆(G) = 5 and g(G) ≥ 12.
(c) ∆(G) ≥ 6 and g(G) ≥ 10.

Note that (b) and (c) of Corollary 1.3 are the same result as in Theorem 1.1.
Hence Theorem 1.2 and Theorem 4.2 generalize (3) and (4) of Theorem 1.1.
Also note that Theorem 4.1 improves the result of [4] saying that χi(G) = ∆(G)
if mad(G) ≤ 9

4 and ∆(G) ≥ 4.

Remark 1.4. Let G2 be the square of G such that V (G2) = V (G) and uv ∈
E(G2) whenever dG(u, v) ≤ 2. As one can see, injective coloring is closely
related with the coloring of square of a graph (or called 2-distance coloring),
which is a proper coloring and an injective coloring. The study of χ(G2) has
been largely focused on the well-known Wenger’s Conjecture [8]. Note that
∆(G) + 1 ≤ χ(G2) for every graph G. Also, a lot of study has been done to
find sufficient conditions to be χ(G2) ≤ ∆(G) + c for some small constant c in
terms of girth g(G) and ∆(G) or in terms of maximum average degree (see [2]
for a good survey).

2. Structural lemmas

A graph G is injectively ∆-critical if it is not injectively ∆-choosable but
all its proper subgraphs are injectively ∆-choosable. It is easily checked that
injectively ∆-critical graph G has no leaf or a cycle component.

We have the following simple but important property, which appeared in [1].

Remark 2.1. When G is an injectively ∆-critical graph, for every edge uv of
G, at least one of u and v has at least ∆ vertices at distance 2. Otherwise, it
is easy to make an injective ∆-coloring of G − uv into a desired coloring of G
by recoloring u and v.

The following lemma is from [1].

Lemma 2.2. If G is an injectively ∆-critical graph, then G has the following

properties.

(C1) G has no 4+-thread.
(C2) Both end vertices of every 3-thread have degree ∆.

(C3) At least one end vertex of every 2-thread has degree ∆.

(C4) G has no cycle consisting of 3-threads. That is, G has no cycle C such

that

C : x1y1y2y3x2y4y5y6x3 · · ·xsy3s−2y3s−1y3sxs+1 · · ·xty3t−2y3t−1y3tx1,

where d(xi) ≥ 3 for all 1 ≤ i ≤ t and d(yj) = 2 for all 1 ≤ j ≤ 3t.

From Remark 2.1, we have the following important lemmas. The proofs are
immediately from Remark 2.1.
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Lemma 2.3. If G is an injectively ∆-critical graph, then G has no vertex v

with d(v) ≤ ∆(G) − 1 that is an endpoint of a 2+-thread such that d(xi) = 2
for i ∈ {3, 4, . . . , d(v)} and d(x1) + d(x2) ≤ ∆(G) + 3 − d(v) where NG(v) =
{x1, x2, . . . , xd(v)}. In particular, v has at least one 3+-neighbor if v is an

endpoint of a 2+-thread and d(v) ≤ ∆(G)− 1.

Proof. Suppose that there is a vertex v with the condition. Without loss of
generality, we may assume that x3 is on a 2+-thread. Given a list assignment
L(v) with |L(v)| = ∆(G) for each v ∈ V (G), G′ = G− vx3 has an injective L-
coloring by the minimality of G. Then we can recolor x3 since d(v) ≤ ∆(G)−1.
And the number of forbidden colors to v is at most ∆(G) − 1 since d(x1) +
d(x2) + d(v) ≤ ∆(G) + 3. Hence we can recolor v and x3 so that G has an
injective L-coloring, which contradicts the fact that G is not injectively ∆-
choosable. �

Similarly we can prove the following lemma.

Lemma 2.4. If G is an injectively ∆-critical graph, then G has no 3-vertex

v that is adjacent to a vertex x and two 2-vertices y and z such that d(x) ≤
∆(G)− 2 and min{d(y′), d(z′)} ≤ ∆(G) − 2, where y′ is the other neighbor of

y and z′ is the other neighbor of z other than v.

3. Proof of Theorem 1.2

The main tool used in the proofs of Theorem 1.2 is the discharging method.
We assume, for contradiction, that there is a counterexample to the theorem,
and we choose a counterexample to Theorem 1.2 with the fewest edges. Next,
we will show that mad(G) ≥ 8k−3

3k in the discharging phase, which contradicts
the assumption. This contradiction completes the proof.

From now on, let G be a counterexample to Theorem 1.2 with the fewest
edges. Then G is an injectively ∆-critical graph. Hence G satisfies Lemmas
2.2, 2.3, and 2.4.

By (C4) in Lemma 2.2, the 3-threads in G form a forest, F . For each central
vertex of each 3-thread, we assign a sponsor as follows. Take a pendant ∆-
vertex v in F . It becomes a sponsor of the central vertex of the 3-thread Pv

where v an endpoint of Pv. And then delete Pv and repeat this assignment
until F is exhausted. Note that the number of pseudo-adjacent vertices in the
forest F is greater than the number of threads in it. Hence every central vertex
of a 3-thread can have its own sponsor.

3.1. Discharging rules

We define ∆(G) = k for convenient notation. We use a discharging argument
with initial charge µ(v) = d(v). We will distribute the charges of vertices so
that µ∗(v) ≥ 8k−3

3k for every vertex v ∈ V (G), where µ∗(v) is the new charge

of v. It implies that mad(G) ≥ 8k−3
3k , which contradicts the assumption.
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In the discharging, we will use terms ‘gives’ and ‘receives’. For example,
when µ(x) = 4 and µ(y) = 2 and charge 1

2 is transmitted from vertex x to y,

then the new charges are µ∗(x) = 7
2 and µ∗(y) = 5

2 . In this case, we say that

vertex x gives charge 1
2 to vertex y, or vertex y receives charge 1

2 from vertex

x. On the other hand, if a 3+-vertex x is an endpoint of a 1+-thread, then we
say that x is incident to a 1+-thread.

A vertex v is called weak vertex if it is incident to (d(v) − 1) 2-threads and
3 ≤ d(v) ≤ ∆(G)− 1. Let β = 2k−3

3k . We have the following discharging rules.

Discharging Rules

(R1) Each 2-vertex on a 2+-thread, except for the central vertex of a 3-
thread, receives β from its 3+-neighbor.

(R2) Each central vertex of a 3-thread receives β from its sponsor.
(R3) If v is 2-vertex on a 1-thread such that NG(v) = {x, y} and both of the

degrees of x and y are between 4 and ∆(G)− 2, then v receives β
2 from

each its 4+-neighbors.
(R4) If 2-vertex v on a 1-thread is adjacent to a 3-vertex x such that (1) x

has exactly one 2-vertex neighbor, or (2) x has two 2-vertex neighbors

and one (∆− 1)+-neighbor, then v receives β
2 from x.

(R5) For ∆ ≥ 7, a 3-vertex v that is incident to exactly one 2-thread is
adjacent to a vertex x such that x is incident to at most (d(x) − 2)

2-threads and 10k+3
2k+6 ≤ d(x) ≤ min{7,∆(G) − 2}, then v receives β

2

from x.
(R6) If a vertex v is not a weak vertex and is adjacent to a vertex x with

d(x) ≥ min{8,∆(G)− 1}, then v receives β from x.
(R7) If v is a weak vertex with d(v) < 6k

k+3 and v is adjacent to vertex x

with d(x) ≥ 3, then v receives 2− d(v)k+3
3k from x.

3.2. Checking µ∗(v) ≥ 8k−3

3k
for every vertex v

We will show that µ∗(v) ≥ 8k−3
3k for each vertex v after discharging. First,

we will prove the following two claims.

Claim 3.1. If a vertex v is not a neighbor of a weak vertex and d(v) ≥ ∆(G)−1,
then µ∗(v) ≥ 8k−3

3k after discharging when ∆(G) ≥ 6.

Proof. If d(v) = ∆(G), then v gives charge at most (k + 1)β to its neighbors
and a vertex that is sponsored by v by (R1), (R2), and (R6). Thus

µ∗(v) ≥ k − (k + 1)β = k − (k + 1)
2k − 3

3k
=

k2 + k + 3

3k
.

Note that k2+k+3
3k ≥ 8k−3

3k if k ≥ 6. Hence µ∗(v) ≥ 8k−3
3k .

If d(v) = ∆(G) − 1, then v gives charge at most (k − 1)β to its neighbors.
Thus

µ∗(v) ≥ (k − 1)− (k − 1)β = (k − 1)− (k − 1)
2k − 3

3k
=

(k − 1)(k + 3)

3k
.
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Note that (k−1)(k+3)
3k ≥ 8k−3

3k if k ≥ 6. Hence µ∗(v) ≥ 8k−3
3k . This completes

the proof of Claim 3.1. �

Note that in (R7), 2 − d(v)k+3
3k ≤ β only when d(v) ≥ 4 or d(v) = 3 and

k = 6. Hence we have that 2 − d(v)k+3
3k ≥ β when d(v) = 3 and k ≥ 6. Thus

if a vertex y has a weak neighbor x, then the worst case is when all of the
weak neighbors of y are 3-vertices. The proof of Claim 3.2 is based on this
observation.

Claim 3.2. When x is a weak vertex and y is a neighbor of x with d(y) ≥ 3,
then µ∗(x) ≥ 8k−3

3k and µ∗(y) ≥ 8k−3
3k after discharging.

Proof. In this case, d(x) + d(y) ≥ k + 2 by Remark 2.1. First, we will show
that µ∗(x) ≥ 8k−3

3k . Note that x sends (d(x)− 1)β to its 2-vertex neighbors by

(R1) and receives 2− d(x)k+3
3k from y by (R7). Hence

µ∗(x) = d(x) −
(

d(x) − 1
)

β + 2− d(x)
k + 3

3k
=

8k − 3

3k
.

Next, we will show that µ∗(y) ≥ 8k−3
3k . Suppose that y is adjacent to s weak

vertices, denoted by x1, . . . , xs where 1 ≤ s ≤ d(y). Let z be the vertex with
the smallest degree in {x1, . . . , xs}. We consider two cases.

Case (a): when d(y) ≤ ∆(G) − 1
In this case y gives at most (d(y)− s)β to its d(y)− s neighbors that are 2-

vertices or non-weak vertices, and gives charge to each of weak vertex neighbors
x1, . . . , xs by (R7). Hence

µ∗(y) ≥ d(y)−

s
∑

i=1

(

2− d(xi)
k + 3

3k

)

− (d(y) − s)β

≥ d(y)
k + 3

3k
− s

(4k + 3

3k
− d(z)

k + 3

3k

)

,

where z is the vertex with the smallest degree in {x1, . . . , xs}. Here note that
d(y) + d(z) ≥ k+ 2. We consider two subcases. If d(z) = 3, then d(y) ≥ k− 1.
Hence s ≤ d(y) = k − 1. Thus,

µ∗(y) ≥ d(y)
k + 3

3k
− s

(k − 6

3k

)

≥
(k − 1)(k + 3)

3k
−

(k − 1)(k − 6)

3k
≥

8k − 3

3k
,

when k ≥ 6. Therefore µ∗(y) ≥ 8k−3
3k .

Next, when d(z) ≥ 4, then 4k+3
3k − d(z)k+3

3k is negative. Therefore µ∗(y) is
minimized when s = 1 in this case. Hence,

µ∗(y) ≥ d(y)
k + 3

3k
−

4k + 3

3k
+ d(z)

k + 3

3k
=

k + 3

3k
(d(y) + d(z))−

4k + 3

3k
.

Therefore, when k ≥ 6, µ∗(y) ≥ 8k−3
3k since d(y) + d(z) ≥ k + 2.

Case (b): when d(y) = ∆(G)
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In this case y could be a sponsor of a 2-vertex on a 3-thread. Hence we
consider two subcases.

First, suppose that y is a sponsor of a 2-vertex w. Note that y is on a
3-thread which contains vertex w. Then y gives at most (k − s + 1)β to its
non-weak vertex neighbors and 2-vertex w by (R6) and (R2), and then gives
charge to each of weak vertex neighbors by (R7). Hence

µ∗(y) ≥ k −
s

∑

i=1

(

2− d(xi)
k + 3

3k

)

− (k − s+ 1)β

≥ k
k + 3

3k
− s

(4k + 3

3k
− d(z)

k + 3

3k

)

−
2k − 3

3k
.

Note that µ∗(y) is minimized when d(z) = 3 and s = k − 1 since s ≤ k − 1.
Hence

µ∗(y) ≥ k
k + 3

3k
− (k − 1)

(4k + 3

3k
− 3

k + 3

3k

)

−
2k − 3

3k
=

8k − 3

3k
.

Second, if y is not a sponsor of a 2-vertex, then y gives at most (k − s)β to
its non-weak vertex neighbors by (R6), and then gives charge to each of weak
vertex neighbors by (R7). Hence

µ∗(y) ≥ k −

s
∑

i=1

(

2− d(xi)
k + 3

3k

)

− (k − s)β.

Note that µ∗(y) is minimized when d(z) = 3 and s = k since s ≤ k. Hence

µ∗(y) ≥ k
k + 3

3k
− k

(4k + 3

3k
− 3

k + 3

3k

)

=
9k

3k
≥

8k − 3

3k
.

This completes the proof of Claim 3.2. �

By Claim 3.2, we only need to consider a set of vertices that is not a weak
vertex and not a neighbor of a weak vertex. From now on, we assume that v
is neither a weak vertex nor a neighbor of a weak vertex.

Case 1: d(v) = 2.

If v is on a 2+-thread and is adjacent to a 3+-vertex, then v receives β from
its 3+-vertex neighbor. If v is a central vertex of a 3-thread, then it receives
β from its sponsor. Now consider the case when a 2-vertex is adjacent to two
3+-vertices x and y. If d(x) ≥ ∆(G)− 1 or d(y) ≥ ∆(G)− 1, then v receives β
from x or y by (R6).

Suppose that d(x) ≤ ∆(G)−2 and d(y) ≤ ∆(G)−2. If d(x) ≥ 4, v receives β
2

from x by (R3), and if d(x) = 3 and x has at most one 2-vertex neighbor, then v

receives β
2 from x by (R4). Similarly if d(y) ≥ 4, or d(y) = 3 and x has at most

one 2-vertex neighbor, then v receives β
2 from y. Hence the only remaining case

is when x or y is 3-vertex and has at least two 2-vertex neighbors. We may
assume that d(x) = 3. Note that x has exactly two 2-vertex neighbors since if
x has three 2-vertex neighbors, then d(y) ≥ ∆(G) − 1 by Lemma 2.4. In this
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case, x has a (∆ − 1)+-neighbor by Lemma 2.4 since d(y) ≤ ∆(G) − 2. Hence

v receives β
2 from x by (R4). Similarly v receives β

2 from y by (R4) even when

d(y) = 3. Hence µ∗(v) ≥ 2 + 2 · β
2 = 2 + β = 8k−3

3k .

Case 2: d(v) = 3.

Subcase 2.1: v is not incident to a 2-thread.
If v has at most one 2-vertex neighbor, then µ∗(v) ≥ 3− β

2 = 16k+3
6k ≥ 8k−3

3k .
Next consider the case when v has exactly two 2-vertex neighbors and one
3+-vertex neighbor x. If d(x) ≤ ∆ − 2, then v does not send anything. If

d(x) ≥ ∆ − 1, then v sends β
2 to each of its 2-vertex neighbors by (R4) and

receives β from x by (R6). Hence µ∗(v) ≥ 3 − 2 · β
2 + β = 3 ≥ 8k−3

3k . Next,
if v is adjacent to three 2-vertices, then v does not send anything. Hence
µ∗(v) ≥ 8k−3

3k .

Subcase 2.2: v is incident to a 2-thread.
By Lemma 2.3, v is incident to at most two 2-threads. If v is incident to

exactly two 2-threads and is adjacent to a 3+-vertex x, then v is a weak vertex
and µ∗(v) ≥ 8k−3

3k by Claim 3.2.
Now suppose that v is incident to exactly one 2-thread. Let x and y be the

two neighbors of v that are not on the 2-thread. Then d(x) + d(y) ≥ ∆+ 1 by
Lemma 2.3.

In this case, we have two subcases; one case is when max{d(x), d(y)} ≥
∆(G)− 1, and the other case is when max{d(x), d(y)} ≤ ∆(G)− 2.

First, consider the case when max{d(x), d(y)} ≥ ∆(G)−1. We may assume
that d(x) ≥ ∆(G) − 1. In this case, v sends β the 2-vertex neighbor on the

2-thread by (R1) and sends β
2 to y when d(y) = 2 by (R4), and v receives β

from x by (R6). Hence µ∗(v) ≥ 3− 3β
2 + β = 3− β

2 ≥ 8k−3
3k .

Next, consider the case when max{d(x), d(y)} ≤ ∆(G) − 2. Then neither
x nor y is 2-vertex since d(x) + d(y) ≥ ∆+ 1 and max{d(x), d(y)} ≤ ∆(G) −
2. Also x is incident to at most (d(x) − 2) 2-threads, and y is incident to
at most (d(y) − 2) 2-threads by Lemma 2.3. When ∆ ≥ 8, we have that
10k+3
2k+6 ≤ 5 ≤ max{d(x), d(y)} ≤ ∆ − 2. Also when ∆ = 7, we have that
10k+3
2k+6 = 73

20 ≤ 4 ≤ max{d(x), d(y)} ≤ ∆ − 2. If max{d(x), d(y)} ≥ 8, then

v receives β from x or y by (R6). If max{d(x), d(y)} ≤ 7, then v receives β
2

from x or y by (R5). Hence µ∗(v) ≥ 3 − β + β
2 ≥ 8k−3

3k when ∆ ≥ 7. When
∆ = 6, v sends β its 2-vertex neighbor and does not receives anything. Hence
µ∗(v) = 3− β = 3− 1

2 = 5
2 = 8k−3

3k .

Case 3: d(v) = 4.

If v is not incident to a 2-thread, then v sends at most d(v)β2 to its neighbors

by (R3) since v is not a neighbor of a weak vertex. Then µ∗(v) ≥ d(v)−d(v)β2 =

d(v)4k+3
6k ≥ 8k−3

3k .
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Now consider the case when v is incident to a 2-thread. Note that v is
incident to at most three 2-threads. If v is incident three 2-threads, then v is
a weak vertex and µ∗(v) ≥ 8k−3

3k by Claim 3.2.
Next, consider the case when v is adjacent to exactly two 2-threads. Let

x and y be the two neighbors of v that are not on the two 2-threads. Then
d(x) + d(y) ≥ ∆ by Lemma 2.3. Without loss of generality, we may assume
that d(x) ≤ d(y). First, when d(y) ≥ d(x) ≥ 4, v sends β to each of 2-vertex
neighbors on the 2-threads. Hence µ∗(v) ≥ 4− 2 · β ≥ 8k−3

3k .
Second, when d(x) ≤ 3, we have that d(y) ≥ k − 3. Note that v may give

charge β
2 to x by (R3) or (R5). When k ≥ 11, v receives β from y by (R6)

since d(y) ≥ 8. Thus µ∗(v) ≥ 4− 2 ·β− β
2 +β ≥ 8k−3

3k . Next, when 7 ≤ k ≤ 10,
we have that d(y) ≥ 4. Hence v does not send any charge to y. Thus we have

that µ∗(v) ≥ 4 − 2 · β − β
2 = 14k+15

6k ≥ 8k−3
3k . Next, when k = 6, we have

d(y) ≥ 3. Thus v does not give any charge to y, since v does not give any

charge to 3+-vertex neighbor when k = 6. Thus µ∗(v) ≥ 4− 2 · β − β
2 ≥ 8k−3

3k .
Next, consider the case when v is incident exactly one 2-thread. Let N(v) =

{x1, x2, x3, x4} with d(x1) ≤ d(x2) ≤ d(x3) ≤ d(x4). Clearly x1 is 2-vertex
on the 2-thread. Note that d(x2) + d(x3) + d(x4) ≥ ∆(G) + 2 by Remark

2.1. Hence when k ≥ 8, d(x4) ≥ 4. Thus µ∗(v) ≥ 4 − β − 2 · β
2 ≥ 8k−3

3k .

When k = 7, v may send β
2 to each of x2, x3, and x4 when d(x4) = 3. But,

µ∗(v) ≥ 4 − β − 3β
2 = 14k+15

6k ≥ 8k−3
3k . When k = 6, note that d(x4) ≥ 3, so v

does not send charge to x4. Hence µ∗(v) ≥ 4− β − 2 · β
2 = 4− 2β ≥ 8k−3

3k .

Therefore µ∗(v) ≥ 8k−3
3k for each vertex d(v) = 4.

Case 4: 5 ≤ d(v) ≤ 7 and d(v) ≤ ∆− 2.

If v is not incident to a 2-thread, then µ∗(v) ≥ d(v) − d(v)β2 = d(v)4k+3
6k ≥

8k−3
3k since (R6) does not apply to.
Consider the case when v is incident to a 2-thread. Note that v is incident

to at most (d(v)− 1) 2-threads. If v is incident to (d(v)− 1) 2-threads, then v

is a weak vertex and µ∗(v) ≥ 8k−3
3k by Claim 3.2.

Now suppose that v is incident to m 2-threads where m ≤ d(v)− 2. Hence v

sends mβ to the neighbors on incident 2-threads and sends at most β
2 to each

of the other neighbors, since v is not a weak vertex and not a neighbor of a
weak vertex. Thus

µ∗(v) ≥ d(v) − (d(v)− 2)β − 2 ·
β

2
= d(v)

k + 3

3k
+

2k − 3

3k

Note that d(v)k+3
3k + 2k−3

3k ≥ 8k−3
3k if d(v) ≥ 6k

k+3 . Thus µ∗(v) ≥ 8k−3
3k when

d(v) ≥ 6. When d(v) = 5, v sends 4β to its neighbors only when v is incident
to exactly three 2-threads and is adjacent to two 3-vertices. This case happens
only when k ≤ 7 by Lemma 2.3. Thus k = 7 since d(v) ≤ ∆− 2. In this case,
d(v) ≥ 42

10 = 6k
k+3 . Hence µ∗(v) ≥ 8k−3

3k for all v with 5 ≤ d(v) ≤ 7.

Case 5: d(v) ≥ min{8,∆− 1}.
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First, if d(v) ≥ ∆− 1, then µ∗(v) ≥ 8k−3
3k by Claim 3.1. If 8 ≤ d(v) ≤ ∆− 2,

then v sends at most d(v)β to its neighbors since it is not a neighbor of a weak
vertex. Hence

µ∗(v) ≥ d(v)− d(v)β = d(v)
k + 3

3k
≥

8k − 3

3k
,

since d(v) ≥ 8. Hence µ∗(v) ≥ 8k−3
3k .

Therefore we show that µ∗(v) ≥ 8k−3
3k for every vertex v inG. This completes

the proof of Theorem 1.2.

4. Maximum average degree condition when ∆(G) = 4 or 5

Theorem 4.1. Let G be a graph with ∆(G) = 4. If mad(G) < 7
3 , then χi(G) =

4.

Proof. Let G be a minimal counterexample. The reducible configurations in
Lemma 2.2, Lemma 2.3, and Lemma 2.4 also can apply toG. We use a discharg-
ing argument with initial charge µ(v) = d(v). We will show that µ∗(v) ≥ 7

3
for every vertex v ∈ V (G), which contradicts the assumption. We have the
following discharging rules.

(R1) Each 2-vertex on a 2+-thread, except for the central vertex of a 3-
thread, receives 1

3 from its 3+-neighbor.

(R2) Each central vertex of a 3-thread receives 1
3 from its sponsor.

(R3) If v is 2-vertex on a 1-thread, then v receives 1
6 from each of its 3+-

neighbors.

Now we will show that µ∗(v) ≥ 7
3 for all v ∈ V (G).

If d(v) = 2, then it receives 1
3 from its 3+-neighbor or its sponsor. Hence

µ∗(v) = 2 + 1
3 = 7

3 . Now suppose that d(v) = 3. If v is not incident to a 2-

thread, then v sends at most 1
6 to each of its neighbors. Hence µ∗(v) ≥ 3−3· 16 ≥

7
3 . If v is incident to a 2-thread, then v has at least one 3+-vertex neighbor.

Hence v sends charge to at most two neighbors. Hence µ∗(v) ≥ 3 − 2 · 1
3 = 7

3 .

If d(v) = 4, then v may send total 5 · 1
3 to its neighbors and its sponsor. Hence

µ∗(v) ≥ 4− 5 · 1
3 = 7

3 . Therefore µ∗(v) ≥ 7
3 for all v ∈ V (G). �

Theorem 4.2. Let G be a graph with ∆(G) = 5. If mad(G) < 17
7 , then

χi(G) = 5.

Proof. Let G be a minimal counterexample. The reducible configurations in
Lemma 2.2, Lemma 2.3, and Lemma 2.4 also can apply toG. We use a discharg-
ing argument with initial charge µ(v) = d(v). We will show that µ∗(v) ≥ 17

7
for every vertex v ∈ V (G), which contradicts the assumption. We have the
following discharging rules.

(R1) Each 2-vertex on a 2+-thread, except for the central vertex of a 3-
thread, receives 3

7 from its 3+-neighbor.
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(R2) Each central vertex of a 3-thread receives 3
7 from its sponsor.

(R3) If v is 2-vertex on a 1-thread, then v receives 3
14 from each of its 3+-

neighbors.
(R4) If 3-vertex v is incident to two 2-threads and has a 4+-vertex neighbor

x, then v receives 2
7 from x.

(R5) If 3-vertex v is incident to three 1-threads and is pseudo-adjacent to a
4+-vertex x, then v receives 1

14 from x.

Now we will show that µ∗(v) ≥ 17
7 for all v ∈ V (G).

Case 1: d(v) = 2.
If v is on a 2+-thread, then v receives 3

7 from its 3+-neighbor or its sponsor.

If v is on a 1-thread, then v receives 3
14 from each its 3+-neighbors. Hence

µ∗(v) = 17
7 .

Case 2: d(v) = 3.
If v is not incident to a 2-thread, then v sends at most 3

14 to each of its
neighbors. On the other hand, each vertex x that is pseudo-adjacent to v

has degree at least 4. Thus v receives 1
14 from x by (R5). Hence µ∗(v) ≥

3 − 3 · 3
14 + 1

14 = 17
7 . Now suppose that v is incident to a 2-thread. Then v is

incident to at most two 2-threads. If v is incident to a 2-thread and has two
3+-vertex neighbors, then v sends 3

7 to the 2-vertex neighbor on the 2-thread.

Then µ∗(v) ≥ 3 − 3
7 ≥ 17

7 . If v is incident to a 2-thread and has exactly one

3+-vertex neighbor x, then d(x) ≥ 4 by Lemma 2.4. Then v receives 2
7 from x

by (R4). Hence µ∗(v) ≥ 3− 2 · 37 +
2
7 = 17

7 . Note that v is not incident to three
2-threads.

Case 3: d(v) = 4.
Note that v is not incident to four 2-threads. Hence the charge that v sends

to its neighbors is maximized when v is incident three 2-threads and is adjacent
to a 3-vertex that is incident to a 2-thread. In this case, µ∗(v) ≥ 4−3 · 37 −

2
7 =

17
7 .

Case 4: d(v) = 5.
The worst case is when v sends charge 6 · 3

7 to its neighbors and its sponsor.

Then µ∗(v) ≥ 5− 6 3
7 = 17

7 .

Therefore µ∗(v) ≥ 17
7 for all v ∈ V (G). �

Remark 4.3. Let G be a planar graph consisting of two k-vertices x and y and
2k 2-vertices such that x and y are connected by vertex-disjoint k 2-threads.
Then χi(G) = k + 1 = ∆(G) + 1 and mad(G) = 3k

k+1 . It is an interesting
problem to find the sharp bound for maximum average degree to guarantee
that χi(G) = ∆(G). We have the following question.

Question 4.4. Is it true that χi(G) = ∆(G) whenever mad(G) < 3∆(G)
∆(G)+1?
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