JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **22**, No. 1, March 2009

G'-SEQUENCE OF A MAP

YEON SOO YOON*

ABSTRACT. Pan, Shen and Woo [8] introduced the concept of the G-sequence of a map. We introduce the G'-sequence of a map, which is a dual concept of the G-sequence of a map. We obtain some sufficient conditions for the all sets in the G'-sequence of a map are groups ,and for the exact G'-sequence of a map.

1. Introduction

Gottlieb [1,2] defined and studied the Gottlieb groups $G_n(X)$ of the homotopy groups $\pi_n(X)$. The Gottlieb groups have many applications on fibration theory and fixed point theory. The homotopy sequence of a topological pair plays an important role in computing homotopy groups. In [11], Woo and Lee introduced the *G*-sequence of a CWpair and obtained some sufficient conditions for the *G*-sequence to be exact. In [8], Pan, Shen and Woo extended the concept of *G*-sequence of a pair to the concept of *G*-sequence of a map and obtained some results about exactness for *G*-sequence of a map. On the other hand, Haslam [3] introduced and studied the dual Gottlieb groups $G^n(X;\pi)$ of $H^n(X;\pi)$. In this paper, we introduce the *G'*-sequence of a map, which is a dual concept of the *G*-sequence of a map. We show that there is a sequence $\rightarrow G_R^n(g) \xrightarrow{J} G^n(Y) \xrightarrow{g^*} G^n(X,g,Y) \xrightarrow{\delta^*} G_R^{n+1}(g) \xrightarrow{J}$ such that the following diagram is commutative

and $g^*J = 0$ and $\delta^*g^* = 0$ and $J\delta^* = 0$. This sequence is called the G'-sequence of g. We do not know whether the all sets in the G'-sequence of g are groups. However, we obtain some sufficient conditions for the all sets in the G'-sequence of g are groups. We show that if $g: X \to Y$

Received December 15, 2008; Accepted February 13, 2009.

²⁰⁰⁰ Mathematics Subject Classification: Primary 55P45, 55P35.

Key words and phrases: G'-sequence of a map, cocyclic maps.

This work was supported by Hannam University Research Fund, 2008.

is a cocyclic map and $g: X \to Y$ has a right homotopy inverse, then the the G'-sequence of g is the same as the cohomology exact sequence

$$\to H^n(g) \xrightarrow{J} H^n(Y) \xrightarrow{g^*} H^n(X) \xrightarrow{\delta^*} H^{n+1}(g) \to$$

of g. In fact, we know that $G^n(X, g, Y) \cong G^n(Y) \oplus G_R^{n+1}(g)$ for all n under the same condition. Moreover, if $g: X \to Y$ has a left homotopy inverse, then the all sets in the G'-sequence of g are groups.

2. Preliminaries

Let $g: X \to Y$ be a map. A based map $f: X \to B$ is called *g*-cocyclic [7] if there is a map $\theta: X \to Y \lor B$ such that the following diagram is homotopy commutative;

$$\begin{array}{ccc} X & \stackrel{\theta}{\longrightarrow} & Y \lor B \\ \Delta & & j \\ X \times X \xrightarrow{(g \times f)} & Y \times B \end{array}$$

, where $j: Y \lor B \to Y \times B$ is the inclusion and $\Delta: X \to X \times X$ is the diagonal map. We call such a map θ a *coassociated map* of a *g*-cocyclic map f.

In the case $g = 1_X : X \to X$, $f : X \to B$ is called *cocyclic* [9]. Clearly any cocyclic map is a g-cocyclic map and also $f : X \to B$ is g-cocyclic iff $g : X \to Y$ is f-cocyclic. The dual Gottlieb set DG(X, g, Y; B)of $g : X \to Y$ is the set of all homotopy classes of g-cocyclic maps from X to B. In the case $g = 1_X : X \to X$, we called such a set $DG(X, 1_X, X; B)$ the dual Gottlieb set denoted DG(X; B), that is, the dual Gottlieb set is exactly same with the dual Gottlieb set of the identity map. Haslam [3] introduced and studied the *coevaluation subgroups* $G^n(X; \pi) = DG(X; K(\pi, n))$ of $H^n(X; \pi)$. In particular, $DG(X, g, Y; K(\mathbb{Z}, n))$ and $DG(X; K(\mathbb{Z}, n))$ are denoted by $G^n(X, g, Y)$ and $G^n(X)$ respectively. The next proposition is an immediate consequence from the definition.

PROPOSITION 2.1.

- (1) For any maps $g: X \to Y, h: Y \to Z, G^n(X, g, Y) \subset G^n(X, hg, Z).$
- (2) $G^n(X) = G^n(X, 1_X, X) \subset G^n(X, g, Y) \subset G^n(X, *, Y) = H^n(X)$ for any spaces X and any map $g: X \to Y$.
- (3) $G^n(X) = \bigcap \{G^n(X, g, Y) | g : X \to Y \text{ is a map and } Y \text{ is a space} \}.$
- (4) If $h: Y \to Z$ is a homotopy equivalence, then $G^n(X, g, Y) = G^n(X, hg, Z)$.

- (5) For any map $k : A \to X, k^{\#}(G^n(X, g, Y)) \subset G^n(A, gk, Y).$
- (6) For any map $k: A \to X, k^{\#}(G^n(X)) \subset G^n(A, k, X).$
- (7) For any map $s: B \to C$, $s_{\#}(DG(X, g, Y; B)) \subset DG(X, g, Y; C)$.

It is well known [3] that $G^n(X; \pi)$ is a subgroup of $H^n(X; \pi)$. Moreover, it is also shown [5] that if B is an H-group, then DG(X, B) is a subgroup of [X, B].

Corollary 2.2.

(1) If $g: X \to Y$ has a left homotopy inverse, then $G^n(X, g, Y) = G^n(X)$ is a subgroup of $H^n(X)$.

(2) If $g: X \to Y$ is a map such that $G^n(X, g, Y) \subset g^{\#}(G^n(Y))$, then $G^n(X, g, Y) = g^{\#}(G^n(Y))$ is a subgroup of $H^n(X)$.

But we do not know whether DG(X, g, Y; B) is a group. However, we have the following theorem.

THEOREM 2.3. [13] Let $g: X \to Y$ be a map and B an H-group. Then

(1) For any $[\gamma] \in g^{\#}(DG(Y;B))$ and any $[\alpha] \in DG(X, g, Y; B), [\gamma] + [\alpha] \in DG(X, g, Y; B).$

(2) For any $[\alpha] \in DG(X, g, Y; B), -[\alpha] \in DG(X, g, Y; B).$

COROLLARY 2.4. For any map $g: X \to Y$, the group $g^{\#}(G^n(Y; \pi))$ acts on $G^n(X, g, Y; \pi)$.

3. G'-sequence of a map

In [4], he introduced the *category of pairs* whose objects are maps from a pointed space to a pointed space and whose morphism from f to g is a pair of maps (α_1, α_2) such that the diagram

commutes. A homotopy of (α_1, α_2) is just a pair of homotopies $(\alpha_{1t}, \alpha_{2t})$ such that $g\alpha_{1t} = \alpha_{2t}f$. For a map $f : A \to X$, the homotopy group of the map f is defined [4] by $\pi_n(f) = \{[(\alpha_1, \alpha_2)] | (\alpha_1, \alpha_2) : i_n \to f\}$, where $i_n : S^{n-1} \to CS^{n-1}$ is the inclusion, and [] denotes the homotopy class. For an element $[(\alpha_1, \alpha_2)] \in \pi_n(f)$, if there exist $F_1 : A \times S^{n-1} \to A$ and

 $F_2: A \times CS^{n-1} \to X$ such that $F_1j = \nabla(1 \lor \alpha_1)$ and $F_2j' = \nabla(f \lor \alpha_2)$ and the diagram

$$\begin{array}{ccc} A \times S^{n-1} & \xrightarrow{F_1} & A \\ (1 \times i_n) & & f \\ A \times CS^{n-1} & \xrightarrow{F_2} & X \\ \vdots & \vdots & \vdots & \vdots \end{array}$$

commutes, then (F_1, F_2) is called an *affiliated map of* (α_1, α_2) .

The relative evaluation subgroup $G_n^R(f)$ [8] is defined by $G_n^R(f) = \{[(\alpha_1, \alpha_2)] \in \pi_n(f) | \exists$ affiliated map (F_1, F_2) of $(\alpha_1, \alpha_2)\}$. Let $\bar{f} : (A^A, 1) \to (X^A, f)$ be a map given by $\bar{f}(g) = fg$. Consider the evaluation maps $\omega : A^A \to A$, and $\omega' : X^A \to X$. Then the map $(\omega, \omega') : \bar{f} \to f$ is called the evaluation maps in the homotopy category of pairs.

There is a commutative diagram

where the top and the bottom rows are also exact and the middle sequence forms a chain complex. This middle sequence is called *the* G-sequence of f.

Now we would like to consider a dual situation of the above concept. For a map $g: X \to Y$, the cohomology group of the map g [4] is defined by $H^n(g) = \{[(\alpha_1, \alpha_2)] | (\alpha_1, \alpha_2) : g \to p_n\}$, where $p_n : PK(\mathbb{Z}, n) \to K(\mathbb{Z}, n), p_n(\eta) = \eta(1)$ is projection and $PK(\mathbb{Z}, n)$ is the space of paths in $K(\mathbb{Z}, n)$ beginning at *. In particular, if we take $g = incl : X \hookrightarrow Y$, then $H^n(g) = H^n(Y, X)$. Then there is the cohomology exact sequence of g

$$\to H^n(g) \xrightarrow{J} H^n(Y) \xrightarrow{g^*} H^n(X) \xrightarrow{\delta^*} H^{n+1}(g) \to .$$

Let $[(\alpha_1, \alpha_2)] \in H^n(g)$. If there are maps $\mu_1 : X \to Y \lor PK(\mathbb{Z}, n)$ and $\mu_2 : Y \to Y \lor K(\mathbb{Z}, n)$ such that $j'\mu_1 \sim (g \times \alpha_1)\Delta$ and $j\mu_2 \sim (1 \times \alpha_2)\Delta$, where $j' : Y \lor PK(\mathbb{Z}, n) \to Y \times PK(\mathbb{Z}, n), \ j : Y \lor K(\mathbb{Z}, n) \to Y \times K(\mathbb{Z}, n)$ are the inclusions and the diagram

$$\begin{array}{cccc} X & \stackrel{\mu_1}{\longrightarrow} & Y \lor PK(\mathbb{Z}, n) \\ g \downarrow & & (1 \lor p_n) \downarrow \\ Y & \stackrel{\mu_2}{\longrightarrow} & Y \lor K(\mathbb{Z}, n) \end{array}$$

commutes, then (μ_1, μ_2) is called a *coaffiliated map of* (α_1, α_2) with respect to g.

Definition 3.1. $G_R^n(g) = \{ [(\alpha_1, \alpha_2)] \in H^n(g) | \exists \text{ coaffiliated map} \}$ (μ_1, μ_2) of (α_1, α_2) with respect to g.

Theorem 3.2. There is a sequence $\to G^n_R(g) \xrightarrow{J} G^n(Y) \xrightarrow{g^*} G^n(X, g, Y)$ $\stackrel{\delta^*}{\to} G_R^{n+1}(g) \stackrel{J}{\to}$ such that the following diagram is commutative

and $g^*J = 0$ and $\delta^*g^* = 0$ and $J\delta^* = 0$.

Proof. (1)To show that $J(G_R^n(g)) \subset G^n(Y)$, let $[(\alpha_1, \alpha_2)] \in G_R^n(g)$. Then there are maps $\mu_1 : X \to Y \lor PK(\mathbb{Z}, n)$ and $\mu_2 : Y \to Y \lor PK(\mathbb{Z}, n)$ such that $j'\mu_1 \sim (g \times \alpha_1)\Delta$ and $j\mu_2 \sim (1 \times \alpha_2)\Delta$ and the diagram

$$\begin{array}{ccc} X & \stackrel{\mu_1}{\longrightarrow} & Y \lor PK(\mathbb{Z}, n) \\ g \\ \downarrow & & (1 \lor p_n) \\ Y & \stackrel{\mu_2}{\longrightarrow} & Y \lor K(\mathbb{Z}, n) \end{array}$$

commutes. Since $\alpha_2 : Y \to K(\mathbb{Z}, n)$ is cocyclic, $J([(\alpha_1, \alpha_2)]) = [\alpha_2] \in$ $G^n(Y).$

(2) It follows from Proposition 2.1(6) that $g^*(G^n(Y)) \subset G^n(X, g, Y)$).

(3) To show that $\delta^*(G^n(X,g,Y)) \subset G^{n+1}_R(g)$, let $[\alpha_1] \in G^n(X,g,Y)$. Then α_1 can be considered as follows;

$$\begin{array}{cccc} X & \stackrel{\alpha_1}{\longrightarrow} & PK(\mathbb{Z}, n+1) \\ \downarrow & & & p_{n+1} \\ \ast & \longrightarrow & K(\mathbb{Z}, n+1). \end{array}$$

Thus there is a map μ_1 : $X \to Y \lor PK(\mathbb{Z}, n+1)$ such that $j'\mu_1 \sim$ $(g \times \alpha_1)\Delta$. Define $\mu_2: Y \to Y \vee PK(\mathbb{Z}, n+1)$ by $\mu_2(y) = (y, *)$. Then $j\mu_2 \sim (1 \times *)\Delta$ and the diagram

$$\begin{array}{ccc} X & \stackrel{\mu_1}{\longrightarrow} & Y \lor PK(\mathbb{Z}, n+1) \\ g \\ \downarrow & & (1 \lor p_{n+1}) \\ Y & \stackrel{\mu_2}{\longrightarrow} & Y \lor K(\mathbb{Z}, n+1) \end{array}$$

commutes. Thus we know that $\delta^*([\alpha_1]) =$

 $= [(\alpha_1, *)] \in G_R^{n+1}(g).$ Finally, the fact of $g^*J = 0$ and $\delta^*g^* = 0$ and $J\delta^* = 0$ follows from the exactness of the cohomology exact sequence

$$\to H^n(g) \xrightarrow{J} H^n(Y) \xrightarrow{g^*} H^n(X) \xrightarrow{\delta^*} H^{n+1}(g) \to .$$

Therefore we have, by the above theorem, a sequence $\rightarrow G_R^n(g) \xrightarrow{J}$ $G^n(Y) \xrightarrow{g^*} G^n(X, g, Y) \xrightarrow{\delta^*} G^{n+1}_R(g) \xrightarrow{J}$ such that $g^*J = 0$ and $\delta^*g^* = 0$ and $J\delta^* = 0$. This sequence is called the G'-sequence of g. We still do not know whether the all sets in the G'-sequence of g are groups. However, we obtain some sufficient conditions for the all sets in the G'-sequence of g are groups.

LEMMA 3.3. $[12]g : X \to Y$ is a cocyclic map if and only if DG(X, g, Y; B) = [X, B] for any space B.

Thus we know, from the above lemma, that if $g: X \to Y$ is a cocyclic map, then $G^n(X, g, Y) = H^n(X)$ for all n.

LEMMA 3.4. [5] If $g: X \to Y$ is a cocyclic map and $g: X \to Y$ has a right homotopy inverse, then $1_Y: Y \to Y$ is a cocyclic map, that is, DG(Y, B) = [Y, B] for any space B.

Thus we know, from the above lemma, that if $q: X \to Y$ is a cocyclic map and $g: X \to Y$ has a right homotopy inverse, then $G^n(Y) = H^n(Y)$ for all n.

LEMMA 3.5. If $g: X \to Y$ is a cocyclic map and $g: X \to Y$ has a right homotopy inverse, then $G_R^n(g) = H^n(g)$ for all n.

Proof. We need only show that $H^n(g) \subset G^n_R(g)$. Let $[(\alpha_1, \alpha_2)] \in$ $H^{n}(g)$. Then we have the commutative diagram

$$\begin{array}{cccc} X & \stackrel{\alpha_1}{\longrightarrow} & PK(\mathbb{Z}, n) \\ g & & & \\ g & & & \\ Y & \stackrel{\alpha_2}{\longrightarrow} & K(\mathbb{Z}, n). \end{array}$$

Since $g: X \to Y$ is a cocyclic, there is a map $\mu: X \to Y \lor X$ such that $j\mu \sim (g \times 1)\Delta$. Let $f: Y \to X$ be a right homotopy inverse of g. Let $\mu_1 = (1 \lor \alpha_1)\mu: X \to Y \lor PK(\mathbb{Z}, n)$ and $\mu_2 = (1 \lor \alpha_2)(1 \lor g)\mu f: Y \to Y \lor K(\mathbb{Z}, n)$. Then we have that $j'\mu_1 \sim (g \times \alpha_1)\Delta$ and $j\mu_2 \sim (1 \times \alpha_2)\Delta$, and the commutative diagram

$$\begin{array}{ccc} X & \stackrel{\mu_1}{\longrightarrow} & Y \lor PK(\mathbb{Z}, n) \\ g \\ \downarrow & & (1 \lor p_n) \\ Y & \stackrel{\mu_2}{\longrightarrow} & Y \lor K(\mathbb{Z}, n). \end{array}$$

Thus we know that $[(\alpha_1, \alpha_2)] \in G_R^n(g)$.

Thus we have the following theorem.

THEOREM 3.6. If $g: X \to Y$ is a cocyclic map and $g: X \to Y$ has a right homotopy inverse, then the the G'-sequence of g is the same as the cohomology exact sequence

$$\to H^n(g) \xrightarrow{J} H^n(Y) \xrightarrow{g^*} H^n(X) \xrightarrow{\delta^*} H^{n+1}(g) \to$$

of g.

If $g: X \to Y$ has a right homotopy inverse $f: Y \to X$, then $f^*g^* = 1$ and g^* is a monomorphism. Thus we have the following corollary.

COROLLARY 3.7. If $g: X \to Y$ is a cocyclic map and $g: X \to Y$ has a right homotopy inverse, then $G^n(X, g, Y) \cong G^n(Y) \oplus G^{n+1}_R(g)$ for all n.

THEOREM 3.8. If $g: X \to Y$ has a left homotopy inverse, then $G_R^n(g)$ is a subgroup of $H^n(g)$.

Proof. Let $m': PK(\mathbb{Z}, n) \times PK(\mathbb{Z}, n) \to PK(\mathbb{Z}, n)$ and $m: K(\mathbb{Z}, n) \times K(\mathbb{Z}, n) \to K(\mathbb{Z}, n)$ be the *H*-structures on $PK(\mathbb{Z}, n)$ and $K(\mathbb{Z}, n)$ respectively. Let $\nu': PK(\mathbb{Z}, n) \to PK(\mathbb{Z}, n)$ and $\nu: K(\mathbb{Z}, n) \to K(\mathbb{Z}, n)$ be the inverses on $PK(\mathbb{Z}, n)$ and $K(\mathbb{Z}, n)$ respectively. Let $[(\alpha_1, \alpha_2)], [(\beta_1, \beta_2)] \in G^n_R(g)$. Then there are maps $\mu_1: X \to Y \vee PK(\mathbb{Z}, n)$ and $\mu_2: Y \to Y \vee K(\mathbb{Z}, n)$ such that $j'\mu_1 \sim (g \times \alpha_1)\Delta$ and $j\mu_2 \sim (1 \times \alpha_2)\Delta$, where $j': Y \vee PK(\mathbb{Z}, n) \to Y \times PK(\mathbb{Z}, n), j: Y \vee K(\mathbb{Z}, n) \to Y \times K(\mathbb{Z}, n)$ are the inclusions, and the commutative diagram

$$\begin{array}{cccc} X & \stackrel{\mu_1}{\longrightarrow} & Y \lor PK(\mathbb{Z}, n) \\ g & & & (1 \lor p_n) \\ Y & \stackrel{\mu_2}{\longrightarrow} & Y \lor K(\mathbb{Z}, n), \end{array}$$

and maps $\theta_1 : X \to Y \lor PK(\mathbb{Z}, n)$ and $\theta_2 : Y \to Y \lor K(\mathbb{Z}, n)$ such that $j'\theta_1 \sim (g \times \beta_1)\Delta$ and $j\theta_2 \sim (1 \times \beta_2)\Delta$, where $j' : Y \lor PK(\mathbb{Z}, n) \to Y \times PK(\mathbb{Z}, n), j : Y \lor K(\mathbb{Z}, n) \to Y \times K(\mathbb{Z}, n)$ are the inclusions, and the commutative diagram

$$\begin{array}{ccc} X & \stackrel{\theta_1}{\longrightarrow} & Y \lor PK(\mathbb{Z}, n) \\ g \\ \downarrow & & (1 \lor p_n) \\ Y & \stackrel{\theta_2}{\longrightarrow} & Y \lor K(\mathbb{Z}, n). \end{array}$$

Consider the maps $\mu'_1 = (1 \vee \nu')\mu_1 : X \to Y \vee PK(\mathbb{Z}, n)$ and $\mu'_2 = (1 \vee \nu)\mu_2 : Y \to Y \vee K(\mathbb{Z}, n)$. Then we can easily know that the diagram

$$\begin{array}{ccc} X & \stackrel{\mu_1'}{\longrightarrow} & Y \lor PK(\mathbb{Z}, n) \\ g \\ \downarrow & & (1 \lor p_n) \\ Y & \stackrel{\mu_2'}{\longrightarrow} & Y \lor K(\mathbb{Z}, n) \end{array}$$

commutes. Thus we know that $-[(\alpha_1, \alpha_2)] = [(\alpha_1\nu', \alpha_2\nu)] \in G_R^n(g)$. Now we show that $[(\alpha_1, \alpha_2)] + [(\beta_1, \beta_2)] = [(m'(\alpha_1 \times \beta_1)\Delta, m(\alpha_2 \times \beta_2)\Delta)] \in G_R^n(g)$. Let $f: Y \to X$ be the left homotopy inverse of $g: X \to Y$. Let $\lambda_1 = (1 \lor m')i'(\mu_1 \lor 1)(f \lor 1)\theta_1 : X \to Y \lor PK(\mathbb{Z}, n), \lambda_2 = (1 \lor m)i(\mu_2 \lor 1)\theta_2 : Y \to Y \lor K(\mathbb{Z}, n), \text{ where } i' : Y \lor PK(\mathbb{Z}, n) \lor PK(\mathbb{Z}, n) \to Y \lor PK(\mathbb{Z}, n) \times PK(\mathbb{Z}, n), i : Y \lor K(\mathbb{Z}, n) \lor K(\mathbb{Z}, n) \to Y \lor K(\mathbb{Z}, n) \times K(\mathbb{Z}, n) = (1 \times m')((g \times \alpha_1)\Delta \times 1)(f \times 1)(g \times \beta_1)\Delta \sim (g \times m'(\alpha_1 \times \beta_1)\Delta)\Delta \sim (g \times (\alpha_1 + \beta_1))\Delta \text{ and } j\lambda_2 = (1 \times m)((1 \times \alpha_2)\Delta \times 1)(1 \times \beta_2)\Delta = (1 \times m(\alpha_2 \times \beta_2)\Delta)\Delta = (1 \times (\alpha_2 + \beta_2))\Delta, \text{ where } j' : Y \lor PK(\mathbb{Z}, n) \to Y \ltimes R(\mathbb{Z}, n) \to Y \ltimes K(\mathbb{Z}, n) \to Y \times K(\mathbb{Z}, n), j : Y \lor K(\mathbb{Z}, n) \to Y \times K(\mathbb{Z}, n)$ are the inclusions. Also, we can easily know that the diagram

$$\begin{array}{cccc} X & \stackrel{\lambda_1}{\longrightarrow} & Y \lor PK(\mathbb{Z}, n) \\ g \\ \downarrow & & (1 \lor p_n) \\ Y & \stackrel{\lambda_2}{\longrightarrow} & Y \lor K(\mathbb{Z}, n) \end{array}$$

commutes. Thus we know that $[(\alpha_1, \alpha_2)] + [(\beta_1, \beta_2)] = [(m'(\alpha_1 \times \beta_1)\Delta, m(\alpha_2 \times \beta_2)\Delta)] \in G_R^n(g).$

Thus we know, from Corollary 2.2(1) and the above theorem, the following corollary.

COROLLARY 3.9. If $g: X \to Y$ has a left homotopy inverse, then the all sets in the G'-sequence of g are groups.

References

- D. H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math. 87 (1965), 840-856.
- [2] D. H. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729-756.
- [3] H. B. Haslam, *G-spaces and H-spaces*, Ph. D. Thesis, Univ. of California, Irvine, 1969.
- [4] P. Hilton, Homotopy Theory and Duality, 1965.
- [5] K. L. Lim, Cocyclic maps and coevaluation subgroups, Canad. Math. Bull. 30 (1987), 63-71.
- [6] R. E. Mosher and M. C. Tangora, Cohomology operations and applications in homotopy theory, Harper & Row, New York, 1968.
- [7] N. Oda, The homotopy of the axes of pairings , Canad. J. Math. 17 (1990), 856-868.
- [8] J. Z. Pan and X. Shen and M. H. Woo, The G-sequence of a map and its exactness, J. Korean Math. Soc. 35 (1998), no. 2, 281-294.
- [9] K. Varadarajan, Genralized Gottlieb groups, J. Indian Math. Soc. 33 (1969), 141-164.
- [10] M. H. Woo and K. Y. Lee, On the relative evaluation subgroups, J. Korean Math. Soc. 25 (1988), no. 1, 149-160.
- [11] M. H. Woo and Y. S. Yoon, *T-spaces by the Gottlieb groups and duality*, J. Austral. Math. Soc., (Series A) 59 (1995), 193-203.
- [12] Y. S. Yoon, The generalized dual Gottlieb sets, Top. Appl. 109 (2001), 173-181.
- [13] Y. S. Yoon, H^f-spaces for maps and their duals, J. Korea Soc. Math. Educ. Ser. B Vol. 14(4) (2007), 289-306.
- [14] A. Zabrodsky, Hopf spaces, North-Holland Publishing com., 1976.

*

Department of Mathematics Education Hannam University Daejeon 306-791, Republic of Korea *E-mail*: yoon@hannam.ac.kr