
JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 22, No. 1, March 2009

G′-SEQUENCE OF A MAP

Yeon Soo Yoon*

Abstract. Pan, Shen and Woo [8] introduced the concept of the
G-sequence of a map. We introduce the G′-sequence of a map,
which is a dual concept of the G-sequence of a map. We obtain
some sufficient conditions for the all sets in the G′-sequence of a
map are groups ,and for the exact G′-sequence of a map.

1. Introduction

Gottlieb [1,2] defined and studied the Gottlieb groups Gn(X) of the
homotopy groups πn(X). The Gottlieb groups have many applications
on fibration theory and fixed point theory. The homotopy sequence
of a topological pair plays an important role in computing homotopy
groups. In [11], Woo and Lee introduced the G-sequence of a CW-
pair and obtained some sufficient conditions for the G-sequence to be
exact. In [8], Pan, Shen and Woo extended the concept of G-sequence
of a pair to the concept of G-sequence of a map and obtained some
results about exactness for G-sequence of a map. On the other hand,
Haslam [3] introduced and studied the dual Gottlieb groups Gn(X; π) of
Hn(X; π). In this paper, we introduce the G′-sequence of a map, which
is a dual concept of the G-sequence of a map. We show that there is a
sequence → Gn

R(g) J→ Gn(Y )
g∗→ Gn(X, g, Y ) δ∗→ Gn+1

R (g) J→ such that
the following diagram is commutative

−−−−−−→ Gn
R(g)

J−−−−−−→ Gn(Y )
g∗−−−−−−→ Gn(X, g, Y )

δ∗−−−−−−→ Gn+1
R (g)

J−−−−−−→
⋂y ⋂y ⋂y ⋂y

−−−−−−→ Hn(g)
J−−−−−−→ Hn(Y )

g∗−−−−−−→ Hn(X)
δ∗−−−−−−→ Hn+1(g)

J−−−−−−→

and g∗J = 0 and δ∗g∗ = 0 and Jδ∗ = 0. This sequence is called the G′-
sequence of g. We do not know whether the all sets in the G′-sequence
of g are groups. However, we obtain some sufficient conditions for the
all sets in the G′-sequence of g are groups. We show that if g : X → Y
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is a cocyclic map and g : X → Y has a right homotopy inverse, then the
the G′-sequence of g is the same as the cohomology exact sequence

→ Hn(g) J→ Hn(Y )
g∗→ Hn(X) δ∗→ Hn+1(g) →

of g. In fact, we know that Gn(X, g, Y ) ∼= Gn(Y ) ⊕ Gn+1
R (g) for all n

under the same condition. Moreover, if g : X → Y has a left homotopy
inverse, then the all sets in the G′-sequence of g are groups.

2. Preliminaries

Let g : X → Y be a map. A based map f : X → B is called g-cocyclic
[7] if there is a map θ : X → Y ∨ B such that the following diagram is
homotopy commutative;

X
θ−−−−→ Y ∨B

∆

y j

y

X ×X
(g×f)−−−−→ Y ×B

, where j : Y ∨B → Y ×B is the inclusion and ∆ : X → X ×X is the
diagonal map. We call such a map θ a coassociated map of a g-cocyclic
map f .

In the case g = 1X : X → X, f : X → B is called cocyclic [9]. Clearly
any cocyclic map is a g-cocyclic map and also f : X → B is g-cocyclic
iff g : X → Y is f -cocyclic. The dual Gottlieb set DG(X, g, Y ; B)
of g : X → Y is the set of all homotopy classes of g-cocyclic maps
from X to B. In the case g = 1X : X → X, we called such a
set DG(X, 1X , X; B) the dual Gottlieb set denoted DG(X; B), that is,
the dual Gottlieb set is exactly same with the dual Gottlieb set of
the identity map. Haslam [3] introduced and studied the coevalua-
tion subgroups Gn(X; π) = DG(X; K(π, n)) of Hn(X;π). In particular,
DG(X, g, Y ; K(Z, n)) and DG(X; K(Z, n)) are denoted by Gn(X, g, Y )
and Gn(X) respectively. The next proposition is an immediate conse-
quence from the definition.

Proposition 2.1.
(1) For any maps g : X → Y , h : Y → Z, Gn(X, g, Y ) ⊂ Gn(X, hg, Z).
(2) Gn(X) = Gn(X, 1X , X) ⊂ Gn(X, g, Y ) ⊂ Gn(X, ∗, Y ) = Hn(X) for
any spaces X and any map g : X → Y .

(3) Gn(X) = ∩{Gn(X, g, Y )|g : X → Y is a map and Y is a space}.
(4) If h : Y → Z is a homotopy equivalence, then Gn(X, g, Y ) = Gn(X,hg, Z).
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(5) For any map k : A → X, k#(Gn(X, g, Y )) ⊂ Gn(A, gk, Y ).
(6) For any map k : A → X, k#(Gn(X)) ⊂ Gn(A, k, X).
(7) For any map s : B → C, s#(DG(X, g, Y ; B)) ⊂ DG(X, g, Y ; C).

It is well known [3] that Gn(X; π) is a subgroup of Hn(X; π). More-
over, it is also shown [5] that if B is an H-group, then DG(X,B) is a
subgroup of [X,B].

Corollary 2.2.
(1) If g : X → Y has a left homotopy inverse, then Gn(X, g, Y ) = Gn(X)
is a subgroup of Hn(X).

(2) If g : X → Y is a map such that Gn(X, g, Y ) ⊂ g#(Gn(Y )), then
Gn(X, g, Y ) = g#(Gn(Y )) is a subgroup of Hn(X).

But we do not know whether DG(X, g, Y ;B) is a group. However,
we have the following theorem.

Theorem 2.3. [13] Let g : X → Y be a map and B an H-group.
Then

(1) For any [γ] ∈ g#(DG(Y ; B)) and any [α] ∈ DG(X, g, Y ; B), [γ]+[α] ∈
DG(X, g, Y ; B).

(2) For any [α] ∈ DG(X, g, Y ; B), −[α] ∈ DG(X, g, Y ;B).

Corollary 2.4. For any map g : X → Y , the group g#(Gn(Y ; π))
acts on Gn(X, g, Y ;π).

3. G′-sequence of a map

In [4], he introduced the category of pairs whose objects are maps
from a pointed space to a pointed space and whose morphism from f to
g is a pair of maps (α1, α2) such that the diagram

A
α1−−−−→ B

f

y g

y
X

α2−−−−→ Y

commutes. A homotopy of (α1, α2) is just a pair of homotopies (α1t, α2t)
such that gα1t = α2tf . For a map f : A → X, the homotopy group of
the map f is defined [4] by πn(f) = {[(α1, α2)]|(α1, α2) : in → f}, where
in : Sn−1 → CSn−1 is the inclusion, and [ ] denotes the homotopy class.
For an element [(α1, α2)] ∈ πn(f), if there exist F1 : A× Sn−1 → A and
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F2 : A× CSn−1 → X such that F1j = ∇(1 ∨ α1) and F2j
′ = ∇(f ∨ α2)

and the diagram
A× Sn−1 F1−−−−→ A

(1×in)

y f

y
A× CSn−1 F2−−−−→ X

commutes, then (F1, F2) is called an affiliated map of (α1, α2).
The relative evaluation subgroup GR

n (f) [8] is defined by GR
n (f) =

{[(α1, α2)] ∈ πn(f)|∃ affiliated map (F1, F2) of (α1, α2)}. Let f̄ : (AA, 1)
→ (XA, f) be a map given by f̄(g) = fg. Consider the evaluation maps
ω : AA → A, and ω′ : XA → X. Then the map (ω, ω′) : f̄ → f is called
the evaluation maps in the homotopy category of pairs.

There is a commutative diagram

−−−−−−→ πn(AA, 1)
f̄#−−−−−−→ πn(XA, f)

J−−−−−−→ πn(f̄)
∂−−−−−−→ πn−1(A

A, 1) −−−−−−→
ω#

y ω′#
y (ω,ω′)#

y ω#

y

−−−−−−→ Gn(A)
f#−−−−−−→ Gn(A, f, X)

J−−−−−−→ GR
n (f)

∂−−−−−−→ Gn−1(A) −−−−−−→
⋂y ⋂y ⋂y ⋂y

−−−−−−→ πn(A)
f#−−−−−−→ πn(X)

J−−−−−−→ πn(f)
∂−−−−−−→ πn−1(A) −−−−−−→ ,

where the top and the bottom rows are also exact and the middle
sequence forms a chain complex. This middle sequence is called the
G-sequence of f .

Now we would like to consider a dual situation of the above concept.
For a map g : X → Y , the cohomology group of the map g [4] is defined
by Hn(g) = {[(α1, α2)]|(α1, α2) : g → pn}, where pn : PK(Z, n) →
K(Z, n), pn(η) = η(1) is projection and PK(Z, n) is the space of paths
in K(Z, n) beginning at ∗. In particular, if we take g = incl : X ↪→ Y ,
then Hn(g) = Hn(Y, X). Then there is the cohomology exact sequence
of g

→ Hn(g) J→ Hn(Y )
g∗→ Hn(X) δ∗→ Hn+1(g) → .

Let [(α1, α2)] ∈ Hn(g). If there are maps µ1 : X → Y ∨ PK(Z, n) and
µ2 : Y → Y ∨K(Z, n) such that j′µ1 ∼ (g×α1)∆ and jµ2 ∼ (1×α2)∆,
where j′ : Y ∨PK(Z, n) → Y ×PK(Z, n), j : Y ∨K(Z, n) → Y ×K(Z, n)
are the inclusions and the diagram

X
µ1−−−−→ Y ∨ PK(Z, n)

g

y (1∨pn)

y
Y

µ2−−−−→ Y ∨K(Z, n)
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commutes, then (µ1, µ2) is called a coaffiliated map of (α1, α2) with
respect to g.

Definition 3.1. Gn
R(g) = {[(α1, α2)] ∈ Hn(g)|∃ coaffiliated map

(µ1, µ2) of (α1, α2) with respect to g}.

Theorem 3.2. There is a sequence→ Gn
R(g) J→ Gn(Y )

g∗→ Gn(X, g, Y )
δ∗→ Gn+1

R (g) J→ such that the following diagram is commutative

−−−−−−→ Gn
R(g)

J−−−−−−→ Gn(Y )
g∗−−−−−−→ Gn(X, g, Y )

δ∗−−−−−−→ Gn+1
R (g)

J−−−−−−→
⋂y ⋂y ⋂y ⋂y

−−−−−−→ Hn(g)
J−−−−−−→ Hn(Y )

g∗−−−−−−→ Hn(X)
δ∗−−−−−−→ Hn+1(g)

J−−−−−−→

and g∗J = 0 and δ∗g∗ = 0 and Jδ∗ = 0.

Proof. (1)To show that J(Gn
R(g)) ⊂ Gn(Y ), let [(α1, α2)] ∈ Gn

R(g).
Then there are maps µ1 : X → Y ∨PK(Z, n) and µ2 : Y → Y ∨PK(Z, n)
such that j′µ1 ∼ (g × α1)∆ and jµ2 ∼ (1× α2)∆ and the diagram

X
µ1−−−−→ Y ∨ PK(Z, n)

g

y (1∨pn)

y
Y

µ2−−−−→ Y ∨K(Z, n)

commutes. Since α2 : Y → K(Z, n) is cocyclic, J([(α1, α2)]) = [α2] ∈
Gn(Y ).

(2) It follows from Proposition 2.1(6) that g∗(Gn(Y )) ⊂ Gn(X, g, Y )).
(3) To show that δ∗(Gn(X, g, Y )) ⊂ Gn+1

R (g), let [α1] ∈ Gn(X, g, Y ).
Then α1 can be considered as follows;

X
α1−−−−→ PK(Z, n + 1)y pn+1

y
∗ −−−−→ K(Z, n + 1).

Thus there is a map µ1 : X → Y ∨ PK(Z, n + 1) such that j′µ1 ∼
(g × α1)∆. Define µ2 : Y → Y ∨ PK(Z, n + 1) by µ2(y) = (y, ∗). Then
jµ2 ∼ (1× ∗)∆ and the diagram

X
µ1−−−−→ Y ∨ PK(Z, n + 1)

g

y (1∨pn+1)

y
Y

µ2−−−−→ Y ∨K(Z, n + 1)
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commutes. Thus we know that δ∗([α1]) =

X
=−−−−→ X

α1−−−−→ PK(Z, n + 1)

g

y
y pn+1

y
Y −−−−→ ∗ −−−−→ K(Z, n + 1).

= [(α1, ∗)] ∈ Gn+1
R (g).

Finally, the fact of g∗J = 0 and δ∗g∗ = 0 and Jδ∗ = 0 follows from
the exactness of the cohomology exact sequence

→ Hn(g) J→ Hn(Y )
g∗→ Hn(X) δ∗→ Hn+1(g) → .

Therefore we have, by the above theorem, a sequence → Gn
R(g) J→

Gn(Y )
g∗→ Gn(X, g, Y ) δ∗→ Gn+1

R (g) J→ such that g∗J = 0 and δ∗g∗ = 0
and Jδ∗ = 0. This sequence is called the G′-sequence of g. We still
do not know whether the all sets in the G′-sequence of g are groups.
However, we obtain some sufficient conditions for the all sets in the
G′-sequence of g are groups.

Lemma 3.3. [12]g : X → Y is a cocyclic map if and only if
DG(X, g, Y ; B) = [X, B] for any space B.

Thus we know, from the above lemma, that if g : X → Y is a cocyclic
map, then Gn(X, g, Y ) = Hn(X) for all n.

Lemma 3.4. [5] If g : X → Y is a cocyclic map and g : X → Y has
a right homotopy inverse, then 1Y : Y → Y is a cocyclic map, that is,
DG(Y, B) = [Y,B] for any space B.

Thus we know, from the above lemma, that if g : X → Y is a cocyclic
map and g : X → Y has a right homotopy inverse, then Gn(Y ) = Hn(Y )
for all n.

Lemma 3.5. If g : X → Y is a cocyclic map and g : X → Y has a
right homotopy inverse, then Gn

R(g) = Hn(g) for all n.

Proof. We need only show that Hn(g) ⊂ Gn
R(g). Let [(α1, α2)] ∈

Hn(g). Then we have the commutative diagram

X
α1−−−−→ PK(Z, n)

g

y pn+1

y
Y

α2−−−−→ K(Z, n).
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Since g : X → Y is a cocyclic, there is a map µ : X → Y ∨X such that
jµ ∼ (g × 1)∆. Let f : Y → X be a right homotopy inverse of g. Let
µ1 = (1 ∨ α1)µ : X → Y ∨ PK(Z, n) and µ2 = (1 ∨ α2)(1 ∨ g)µf : Y →
Y ∨K(Z, n). Then we have that j′µ1 ∼ (g×α1)∆ and jµ2 ∼ (1×α2)∆,
and the commutative diagram

X
µ1−−−−→ Y ∨ PK(Z, n)

g

y (1∨pn)

y
Y

µ2−−−−→ Y ∨K(Z, n).
Thus we know that [(α1, α2)] ∈ Gn

R(g).

Thus we have the following theorem.

Theorem 3.6. If g : X → Y is a cocyclic map and g : X → Y has
a right homotopy inverse, then the the G′-sequence of g is the same as
the cohomology exact sequence

→ Hn(g) J→ Hn(Y )
g∗→ Hn(X) δ∗→ Hn+1(g) →

of g.

If g : X → Y has a right homotopy inverse f : Y → X, then f∗g∗ = 1
and g∗ is a monomorphism. Thus we have the following corollary.

Corollary 3.7. If g : X → Y is a cocyclic map and g : X → Y has
a right homotopy inverse, then Gn(X, g, Y ) ∼= Gn(Y ) ⊕ Gn+1

R (g) for all
n.

Theorem 3.8. If g : X → Y has a left homotopy inverse, then Gn
R(g)

is a subgroup of Hn(g).

Proof. Let m′ : PK(Z, n)×PK(Z, n) → PK(Z, n) and m : K(Z, n)×
K(Z, n) → K(Z, n) be the H-structures on PK(Z, n) and K(Z, n) re-
spectively. Let ν ′ : PK(Z, n) → PK(Z, n) and ν : K(Z, n) → K(Z, n)
be the inverses on PK(Z, n) and K(Z, n) respectively. Let [(α1, α2)],
[(β1, β2)] ∈ Gn

R(g). Then there are maps µ1 : X → Y ∨ PK(Z, n) and
µ2 : Y → Y ∨K(Z, n) such that j′µ1 ∼ (g×α1)∆ and jµ2 ∼ (1×α2)∆,
where j′ : Y ∨PK(Z, n) → Y ×PK(Z, n), j : Y ∨K(Z, n) → Y ×K(Z, n)
are the inclusions, and the commutative diagram

X
µ1−−−−→ Y ∨ PK(Z, n)

g

y (1∨pn)

y
Y

µ2−−−−→ Y ∨K(Z, n),
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and maps θ1 : X → Y ∨ PK(Z, n) and θ2 : Y → Y ∨K(Z, n) such that
j′θ1 ∼ (g × β1)∆ and jθ2 ∼ (1 × β2)∆, where j′ : Y ∨ PK(Z, n) →
Y × PK(Z, n), j : Y ∨K(Z, n) → Y ×K(Z, n) are the inclusions, and
the commutative diagram

X
θ1−−−−→ Y ∨ PK(Z, n)

g

y (1∨pn)

y
Y

θ2−−−−→ Y ∨K(Z, n).

Consider the maps µ′1 = (1 ∨ ν ′)µ1 : X → Y ∨ PK(Z, n) and µ′2 =
(1∨ν)µ2 : Y → Y ∨K(Z, n). Then we can easily know that the diagram

X
µ′1−−−−→ Y ∨ PK(Z, n)

g

y (1∨pn)

y

Y
µ′2−−−−→ Y ∨K(Z, n)

commutes. Thus we know that −[(α1, α2)] = [(α1ν
′, α2ν)] ∈ Gn

R(g).
Now we show that [(α1, α2)] + [(β1, β2)] = [(m′(α1 × β1)∆,m(α2 ×
β2)∆)] ∈ Gn

R(g). Let f : Y → X be the left homotopy inverse of
g : X → Y . Let λ1 = (1∨m′)i′(µ1∨1)(f∨1)θ1 : X → Y ∨PK(Z, n), λ2 =
(1 ∨ m)i(µ2 ∨ 1)θ2 : Y → Y ∨ K(Z, n), where i′ : Y ∨ PK(Z, n) ∨
PK(Z, n) → Y ∨ PK(Z, n) × PK(Z, n), i : Y ∨ K(Z, n) ∨ K(Z, n) →
Y ∨ K(Z, n) × K(Z, n) are the inclusions. Then we know that j′λ1 =
(1 × m′)((g × α1)∆ × 1)(f × 1)(g × β1)∆ ∼ (g × m′(α1 × β1)∆)∆ ∼
(g × (α1 + β1))∆ and jλ2 = (1 × m)((1 × α2)∆ × 1)(1 × β2)∆ =
(1 ×m(α2 × β2)∆)∆ = (1 × (α2 + β2))∆, where j′ : Y ∨ PK(Z, n) →
Y ×PK(Z, n), j : Y ∨K(Z, n) → Y ×K(Z, n) are the inclusions. Also,
we can easily know that the diagram

X
λ1−−−−→ Y ∨ PK(Z, n)

g

y (1∨pn)

y
Y

λ2−−−−→ Y ∨K(Z, n)

commutes. Thus we know that [(α1, α2)] + [(β1, β2)] = [(m′(α1 × β1)∆,
m(α2 × β2)∆)] ∈ Gn

R(g).

Thus we know, from Corollary 2.2(1) and the above theorem, the
following corollary.
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Corollary 3.9. If g : X → Y has a left homotopy inverse, then the
all sets in the G′-sequence of g are groups.
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