G^{\prime}-SEQUENCE OF A MAP

Yeon Soo Yoon*

Abstract

Pan, Shen and Woo [8] introduced the concept of the G-sequence of a map. We introduce the G^{\prime}-sequence of a map, which is a dual concept of the G-sequence of a map. We obtain some sufficient conditions for the all sets in the G^{\prime}-sequence of a map are groups ,and for the exact G^{\prime}-sequence of a map.

1. Introduction

Gottlieb $[1,2]$ defined and studied the Gottlieb groups $G_{n}(X)$ of the homotopy groups $\pi_{n}(X)$. The Gottlieb groups have many applications on fibration theory and fixed point theory. The homotopy sequence of a topological pair plays an important role in computing homotopy groups. In [11], Woo and Lee introduced the G-sequence of a CWpair and obtained some sufficient conditions for the G-sequence to be exact. In [8], Pan, Shen and Woo extended the concept of G-sequence of a pair to the concept of G-sequence of a map and obtained some results about exactness for G-sequence of a map. On the other hand, Haslam [3] introduced and studied the dual Gottlieb groups $G^{n}(X ; \pi)$ of $H^{n}(X ; \pi)$. In this paper, we introduce the G^{\prime}-sequence of a map, which is a dual concept of the G-sequence of a map. We show that there is a sequence $\rightarrow G_{R}^{n}(g) \xrightarrow{J} G^{n}(Y) \xrightarrow{g^{*}} G^{n}(X, g, Y) \xrightarrow{\delta^{*}} G_{R}^{n+1}(g) \xrightarrow{J}$ such that the following diagram is commutative

and $g^{*} J=0$ and $\delta^{*} g^{*}=0$ and $J \delta^{*}=0$. This sequence is called the $G^{\prime}-$ sequence of g. We do not know whether the all sets in the G^{\prime}-sequence of g are groups. However, we obtain some sufficient conditions for the all sets in the G^{\prime}-sequence of g are groups. We show that if $g: X \rightarrow Y$

[^0]is a cocyclic map and $g: X \rightarrow Y$ has a right homotopy inverse, then the the G^{\prime}-sequence of g is the same as the cohomology exact sequence
$$
\rightarrow H^{n}(g) \xrightarrow{J} H^{n}(Y) \xrightarrow{g^{*}} H^{n}(X) \xrightarrow{\delta^{*}} H^{n+1}(g) \rightarrow
$$
of g. In fact, we know that $G^{n}(X, g, Y) \cong G^{n}(Y) \oplus G_{R}^{n+1}(g)$ for all n under the same condition. Moreover, if $g: X \rightarrow Y$ has a left homotopy inverse, then the all sets in the G^{\prime}-sequence of g are groups.

2. Preliminaries

Let $g: X \rightarrow Y$ be a map. A based map $f: X \rightarrow B$ is called g-cocyclic [7] if there is a map $\theta: X \rightarrow Y \vee B$ such that the following diagram is homotopy commutative;

, where $j: Y \vee B \rightarrow Y \times B$ is the inclusion and $\Delta: X \rightarrow X \times X$ is the diagonal map. We call such a map θ a coassociated map of a g-cocyclic map f.

In the case $g=1_{X}: X \rightarrow X, f: X \rightarrow B$ is called cocyclic [9]. Clearly any cocyclic map is a g-cocyclic map and also $f: X \rightarrow B$ is g-cocyclic iff $g: X \rightarrow Y$ is f-cocyclic. The dual Gottlieb set $D G(X, g, Y ; B)$ of $g: X \rightarrow Y$ is the set of all homotopy classes of g-cocyclic maps from X to B. In the case $g=1_{X}: X \rightarrow X$, we called such a set $D G\left(X, 1_{X}, X ; B\right)$ the dual Gottlieb set denoted $D G(X ; B)$, that is, the dual Gottlieb set is exactly same with the dual Gottlieb set of the identity map. Haslam [3] introduced and studied the coevaluation subgroups $G^{n}(X ; \pi)=D G(X ; K(\pi, n))$ of $H^{n}(X ; \pi)$. In particular, $D G(X, g, Y ; K(\mathbb{Z}, n))$ and $D G(X ; K(\mathbb{Z}, n))$ are denoted by $G^{n}(X, g, Y)$ and $G^{n}(X)$ respectively. The next proposition is an immediate consequence from the definition.

Proposition 2.1.
(1) For any maps $g: X \rightarrow Y, h: Y \rightarrow Z, G^{n}(X, g, Y) \subset G^{n}(X, h g, Z)$.
(2) $G^{n}(X)=G^{n}\left(X, 1_{X}, X\right) \subset G^{n}(X, g, Y) \subset G^{n}(X, *, Y)=H^{n}(X)$ for any spaces X and any map $g: X \rightarrow Y$.
(3) $G^{n}(X)=\cap\left\{G^{n}(X, g, Y) \mid g: X \rightarrow Y\right.$ is a map and Y is a space $\}$.
(4) If $h: Y \rightarrow Z$ is a homotopy equivalence, then $G^{n}(X, g, Y)=G^{n}(X, h g, Z)$.
(5) For any map $k: A \rightarrow X, k^{\#}\left(G^{n}(X, g, Y)\right) \subset G^{n}(A, g k, Y)$.
(6) For any map $k: A \rightarrow X, k^{\#}\left(G^{n}(X)\right) \subset G^{n}(A, k, X)$.
(7) For any map $s: B \rightarrow C, s_{\#}(D G(X, g, Y ; B)) \subset D G(X, g, Y ; C)$.

It is well known [3] that $G^{n}(X ; \pi)$ is a subgroup of $H^{n}(X ; \pi)$. Moreover, it is also shown [5] that if B is an H-group, then $D G(X, B)$ is a subgroup of $[X, B]$.

Corollary 2.2.

(1) If $g: X \rightarrow Y$ has a left homotopy inverse, then $G^{n}(X, g, Y)=G^{n}(X)$ is a subgroup of $H^{n}(X)$.
(2) If $g: X \rightarrow Y$ is a map such that $G^{n}(X, g, Y) \subset g^{\#}\left(G^{n}(Y)\right)$, then $G^{n}(X, g, Y)=g^{\#}\left(G^{n}(Y)\right)$ is a subgroup of $H^{n}(X)$.

But we do not know whether $D G(X, g, Y ; B)$ is a group. However, we have the following theorem.

Theorem 2.3. [13] Let $g: X \rightarrow Y$ be a map and B an H-group. Then
(1) For any $[\gamma] \in g^{\#}(D G(Y ; B))$ and any $[\alpha] \in D G(X, g, Y ; B),[\gamma]+[\alpha] \in$ $D G(X, g, Y ; B)$.
(2) For any $[\alpha] \in D G(X, g, Y ; B),-[\alpha] \in D G(X, g, Y ; B)$.

Corollary 2.4. For any map $g: X \rightarrow Y$, the group $g^{\#}\left(G^{n}(Y ; \pi)\right)$ acts on $G^{n}(X, g, Y ; \pi)$.

3. G^{\prime}-sequence of a map

In [4], he introduced the category of pairs whose objects are maps from a pointed space to a pointed space and whose morphism from f to g is a pair of maps $\left(\alpha_{1}, \alpha_{2}\right)$ such that the diagram

commutes. A homotopy of $\left(\alpha_{1}, \alpha_{2}\right)$ is just a pair of homotopies $\left(\alpha_{1 t}, \alpha_{2 t}\right)$ such that $g \alpha_{1 t}=\alpha_{2 t} f$. For a map $f: A \rightarrow X$, the homotopy group of the map f is defined [4] by $\pi_{n}(f)=\left\{\left[\left(\alpha_{1}, \alpha_{2}\right)\right] \mid\left(\alpha_{1}, \alpha_{2}\right): i_{n} \rightarrow f\right\}$, where $i_{n}: S^{n-1} \rightarrow C S^{n-1}$ is the inclusion, and [] denotes the homotopy class. For an element $\left[\left(\alpha_{1}, \alpha_{2}\right)\right] \in \pi_{n}(f)$, if there exist $F_{1}: A \times S^{n-1} \rightarrow A$ and
$F_{2}: A \times C S^{n-1} \rightarrow X$ such that $F_{1} j=\nabla\left(1 \vee \alpha_{1}\right)$ and $F_{2} j^{\prime}=\nabla\left(f \vee \alpha_{2}\right)$ and the diagram

commutes, then $\left(F_{1}, F_{2}\right)$ is called an affiliated map of $\left(\alpha_{1}, \alpha_{2}\right)$.
The relative evaluation subgroup $G_{n}^{R}(f)$ [8] is defined by $G_{n}^{R}(f)=$ $\left\{\left[\left(\alpha_{1}, \alpha_{2}\right)\right] \in \pi_{n}(f) \mid \exists\right.$ affiliated map $\left(F_{1}, F_{2}\right)$ of $\left.\left(\alpha_{1}, \alpha_{2}\right)\right\}$. Let $\bar{f}:\left(A^{A}, 1\right)$ $\rightarrow\left(X^{A}, f\right)$ be a map given by $\bar{f}(g)=f g$. Consider the evaluation maps $\omega: A^{A} \rightarrow A$, and $\omega^{\prime}: X^{A} \rightarrow X$. Then the map $\left(\omega, \omega^{\prime}\right): \bar{f} \rightarrow f$ is called the evaluation maps in the homotopy category of pairs.

There is a commutative diagram

where the top and the bottom rows are also exact and the middle sequence forms a chain complex. This middle sequence is called the G-sequence of f.

Now we would like to consider a dual situation of the above concept. For a map $g: X \rightarrow Y$, the cohomology group of the map g [4] is defined by $H^{n}(g)=\left\{\left[\left(\alpha_{1}, \alpha_{2}\right)\right] \mid\left(\alpha_{1}, \alpha_{2}\right): g \rightarrow p_{n}\right\}$, where $p_{n}: P K(\mathbb{Z}, n) \rightarrow$ $K(\mathbb{Z}, n), p_{n}(\eta)=\eta(1)$ is projection and $P K(\mathbb{Z}, n)$ is the space of paths in $K(\mathbb{Z}, n)$ beginning at $*$. In particular, if we take $g=i n c l: X \hookrightarrow Y$, then $H^{n}(g)=H^{n}(Y, X)$. Then there is the cohomology exact sequence of g

$$
\rightarrow H^{n}(g) \xrightarrow{J} H^{n}(Y) \xrightarrow{g^{*}} H^{n}(X) \xrightarrow{\delta^{*}} H^{n+1}(g) \rightarrow .
$$

Let $\left[\left(\alpha_{1}, \alpha_{2}\right)\right] \in H^{n}(g)$. If there are maps $\mu_{1}: X \rightarrow Y \vee P K(\mathbb{Z}, n)$ and $\mu_{2}: Y \rightarrow Y \vee K(\mathbb{Z}, n)$ such that $j^{\prime} \mu_{1} \sim\left(g \times \alpha_{1}\right) \Delta$ and $j \mu_{2} \sim\left(1 \times \alpha_{2}\right) \Delta$, where $j^{\prime}: Y \vee P K(\mathbb{Z}, n) \rightarrow Y \times P K(\mathbb{Z}, n), j: Y \vee K(\mathbb{Z}, n) \rightarrow Y \times K(\mathbb{Z}, n)$ are the inclusions and the diagram

commutes, then $\left(\mu_{1}, \mu_{2}\right)$ is called a coaffiliated map of $\left(\alpha_{1}, \alpha_{2}\right)$ with respect to g.

Definition 3.1. $G_{R}^{n}(g)=\left\{\left[\left(\alpha_{1}, \alpha_{2}\right)\right] \in H^{n}(g) \mid \exists\right.$ coaffiliated map $\left(\mu_{1}, \mu_{2}\right)$ of $\left(\alpha_{1}, \alpha_{2}\right)$ with respect to $\left.g\right\}$.

THEOREM 3.2. There is a sequence $\rightarrow G_{R}^{n}(g) \xrightarrow{J} G^{n}(Y) \xrightarrow{g^{*}} G^{n}(X, g, Y)$ $\xrightarrow{\delta^{*}} G_{R}^{n+1}(g) \xrightarrow{J}$ such that the following diagram is commutative

and $g^{*} J=0$ and $\delta^{*} g^{*}=0$ and $J \delta^{*}=0$.
Proof. (1)To show that $J\left(G_{R}^{n}(g)\right) \subset G^{n}(Y)$, let $\left[\left(\alpha_{1}, \alpha_{2}\right)\right] \in G_{R}^{n}(g)$. Then there are maps $\mu_{1}: X \rightarrow Y \bigvee P K(\mathbb{Z}, n)$ and $\mu_{2}: Y \rightarrow Y \vee P K(\mathbb{Z}, n)$ such that $j^{\prime} \mu_{1} \sim\left(g \times \alpha_{1}\right) \Delta$ and $j \mu_{2} \sim\left(1 \times \alpha_{2}\right) \Delta$ and the diagram

commutes. Since $\alpha_{2}: Y \rightarrow K(\mathbb{Z}, n)$ is cocyclic, $J\left(\left[\left(\alpha_{1}, \alpha_{2}\right)\right]\right)=\left[\alpha_{2}\right] \in$ $G^{n}(Y)$.
(2) It follows from Proposition 2.1(6) that $\left.g^{*}\left(G^{n}(Y)\right) \subset G^{n}(X, g, Y)\right)$.
(3) To show that $\delta^{*}\left(G^{n}(X, g, Y)\right) \subset G_{R}^{n+1}(g)$, let $\left[\alpha_{1}\right] \in G^{n}(X, g, Y)$. Then α_{1} can be considered as follows;

Thus there is a map $\mu_{1}: X \rightarrow Y \vee P K(\mathbb{Z}, n+1)$ such that $j^{\prime} \mu_{1} \sim$ $\left(g \times \alpha_{1}\right) \Delta$. Define $\mu_{2}: Y \rightarrow Y \vee P K(\mathbb{Z}, n+1)$ by $\mu_{2}(y)=(y, *)$. Then $j \mu_{2} \sim(1 \times *) \Delta$ and the diagram

commutes. Thus we know that $\delta^{*}\left(\left[\alpha_{1}\right]\right)=$

$=\left[\left(\alpha_{1}, *\right)\right] \in G_{R}^{n+1}(g)$.
Finally, the fact of $g^{*} J=0$ and $\delta^{*} g^{*}=0$ and $J \delta^{*}=0$ follows from the exactness of the cohomology exact sequence

$$
\rightarrow H^{n}(g) \xrightarrow{J} H^{n}(Y) \xrightarrow{g^{*}} H^{n}(X) \xrightarrow{\delta^{*}} H^{n+1}(g) \rightarrow .
$$

Therefore we have, by the above theorem, a sequence $\rightarrow G_{R}^{n}(g) \xrightarrow{J}$ $G^{n}(Y) \xrightarrow{g^{*}} G^{n}(X, g, Y) \xrightarrow{\delta^{*}} G_{R}^{n+1}(g) \xrightarrow{J}$ such that $g^{*} J=0$ and $\delta^{*} g^{*}=0$ and $J \delta^{*}=0$. This sequence is called the G^{\prime}-sequence of g. We still do not know whether the all sets in the G^{\prime}-sequence of g are groups. However, we obtain some sufficient conditions for the all sets in the G^{\prime}-sequence of g are groups.

Lemma 3.3. [12]g : $X \rightarrow Y$ is a cocyclic map if and only if $D G(X, g, Y ; B)=[X, B]$ for any space B.

Thus we know, from the above lemma, that if $g: X \rightarrow Y$ is a cocyclic map, then $G^{n}(X, g, Y)=H^{n}(X)$ for all n.

Lemma 3.4. [5] If $g: X \rightarrow Y$ is a cocyclic map and $g: X \rightarrow Y$ has a right homotopy inverse, then $1_{Y}: Y \rightarrow Y$ is a cocyclic map, that is, $D G(Y, B)=[Y, B]$ for any space B.

Thus we know, from the above lemma, that if $g: X \rightarrow Y$ is a cocyclic map and $g: X \rightarrow Y$ has a right homotopy inverse, then $G^{n}(Y)=H^{n}(Y)$ for all n.

Lemma 3.5. If $g: X \rightarrow Y$ is a cocyclic map and $g: X \rightarrow Y$ has a right homotopy inverse, then $G_{R}^{n}(g)=H^{n}(g)$ for all n.

Proof. We need only show that $H^{n}(g) \subset G_{R}^{n}(g)$. Let $\left[\left(\alpha_{1}, \alpha_{2}\right)\right] \in$ $H^{n}(g)$. Then we have the commutative diagram

Since $g: X \rightarrow Y$ is a cocyclic, there is a map $\mu: X \rightarrow Y \vee X$ such that $j \mu \sim(g \times 1) \Delta$. Let $f: Y \rightarrow X$ be a right homotopy inverse of g. Let $\mu_{1}=\left(1 \vee \alpha_{1}\right) \mu: X \rightarrow Y \vee P K(\mathbb{Z}, n)$ and $\mu_{2}=\left(1 \vee \alpha_{2}\right)(1 \vee g) \mu f: Y \rightarrow$ $Y \vee K(\mathbb{Z}, n)$. Then we have that $j^{\prime} \mu_{1} \sim\left(g \times \alpha_{1}\right) \Delta$ and $j \mu_{2} \sim\left(1 \times \alpha_{2}\right) \Delta$, and the commutative diagram

Thus we know that $\left[\left(\alpha_{1}, \alpha_{2}\right)\right] \in G_{R}^{n}(g)$.
Thus we have the following theorem.
THEOREM 3.6. If $g: X \rightarrow Y$ is a cocyclic map and $g: X \rightarrow Y$ has a right homotopy inverse, then the the G^{\prime}-sequence of g is the same as the cohomology exact sequence

$$
\rightarrow H^{n}(g) \xrightarrow{J} H^{n}(Y) \xrightarrow{g^{*}} H^{n}(X) \xrightarrow{\delta^{*}} H^{n+1}(g) \rightarrow
$$

of g.
If $g: X \rightarrow Y$ has a right homotopy inverse $f: Y \rightarrow X$, then $f^{*} g^{*}=1$ and g^{*} is a monomorphism. Thus we have the following corollary.

Corollary 3.7. If $g: X \rightarrow Y$ is a cocyclic map and $g: X \rightarrow Y$ has a right homotopy inverse, then $G^{n}(X, g, Y) \cong G^{n}(Y) \oplus G_{R}^{n+1}(g)$ for all n.

THEOREM 3.8. If $g: X \rightarrow Y$ has a left homotopy inverse, then $G_{R}^{n}(g)$ is a subgroup of $H^{n}(g)$.

Proof. Let $m^{\prime}: P K(\mathbb{Z}, n) \times P K(\mathbb{Z}, n) \rightarrow P K(\mathbb{Z}, n)$ and $m: K(\mathbb{Z}, n) \times$ $K(\mathbb{Z}, n) \rightarrow K(\mathbb{Z}, n)$ be the H-structures on $P K(\mathbb{Z}, n)$ and $K(\mathbb{Z}, n)$ respectively. Let $\nu^{\prime}: P K(\mathbb{Z}, n) \rightarrow P K(\mathbb{Z}, n)$ and $\nu: K(\mathbb{Z}, n) \rightarrow K(\mathbb{Z}, n)$ be the inverses on $P K(\mathbb{Z}, n)$ and $K(\mathbb{Z}, n)$ respectively. Let $\left[\left(\alpha_{1}, \alpha_{2}\right)\right]$, $\left[\left(\beta_{1}, \beta_{2}\right)\right] \in G_{R}^{n}(g)$. Then there are maps $\mu_{1}: X \rightarrow Y \vee P K(\mathbb{Z}, n)$ and $\mu_{2}: Y \rightarrow Y \vee K(\mathbb{Z}, n)$ such that $j^{\prime} \mu_{1} \sim\left(g \times \alpha_{1}\right) \Delta$ and $j \mu_{2} \sim\left(1 \times \alpha_{2}\right) \Delta$, where $j^{\prime}: Y \vee P K(\mathbb{Z}, n) \rightarrow Y \times P K(\mathbb{Z}, n), j: Y \vee K(\mathbb{Z}, n) \rightarrow Y \times K(\mathbb{Z}, n)$ are the inclusions, and the commutative diagram

and maps $\theta_{1}: X \rightarrow Y \vee P K(\mathbb{Z}, n)$ and $\theta_{2}: Y \rightarrow Y \vee K(\mathbb{Z}, n)$ such that $j^{\prime} \theta_{1} \sim\left(g \times \beta_{1}\right) \Delta$ and $j \theta_{2} \sim\left(1 \times \beta_{2}\right) \Delta$, where $j^{\prime}: Y \vee P K(\mathbb{Z}, n) \rightarrow$ $Y \times P K(\mathbb{Z}, n), j: Y \vee K(\mathbb{Z}, n) \rightarrow Y \times K(\mathbb{Z}, n)$ are the inclusions, and the commutative diagram

$$
\begin{array}{cc}
X \xrightarrow{\theta_{1}} Y \vee P K(\mathbb{Z}, n) \\
g \downarrow & \left(1 \vee p_{n}\right) \downarrow \\
Y \xrightarrow{\theta_{2}} & Y \vee K(\mathbb{Z}, n) .
\end{array}
$$

Consider the maps $\mu_{1}^{\prime}=\left(1 \vee \nu^{\prime}\right) \mu_{1}: X \rightarrow Y \vee P K(\mathbb{Z}, n)$ and $\mu_{2}^{\prime}=$ $(1 \vee \nu) \mu_{2}: Y \rightarrow Y \vee K(\mathbb{Z}, n)$. Then we can easily know that the diagram

commutes. Thus we know that $-\left[\left(\alpha_{1}, \alpha_{2}\right)\right]=\left[\left(\alpha_{1} \nu^{\prime}, \alpha_{2} \nu\right)\right] \in G_{R}^{n}(g)$. Now we show that $\left[\left(\alpha_{1}, \alpha_{2}\right)\right]+\left[\left(\beta_{1}, \beta_{2}\right)\right]=\left[\left(m^{\prime}\left(\alpha_{1} \times \beta_{1}\right) \Delta, m\left(\alpha_{2} \times\right.\right.\right.$ $\left.\left.\left.\beta_{2}\right) \Delta\right)\right] \in G_{R}^{n}(g)$. Let $f: Y \rightarrow X$ be the left homotopy inverse of $g: X \rightarrow Y$. Let $\lambda_{1}=\left(1 \vee m^{\prime}\right) i^{\prime}\left(\mu_{1} \vee 1\right)(f \vee 1) \theta_{1}: X \rightarrow Y \vee P K(\mathbb{Z}, n), \lambda_{2}=$ $(1 \vee m) i\left(\mu_{2} \vee 1\right) \theta_{2}: Y \rightarrow Y \vee K(\mathbb{Z}, n)$, where $i^{\prime}: Y \vee P K(\mathbb{Z}, n) \vee$ $P K(\mathbb{Z}, n) \rightarrow Y \vee P K(\mathbb{Z}, n) \times P K(\mathbb{Z}, n), i: Y \vee K(\mathbb{Z}, n) \vee K(\mathbb{Z}, n) \rightarrow$ $Y \vee K(\mathbb{Z}, n) \times K(\mathbb{Z}, n)$ are the inclusions. Then we know that $j^{\prime} \lambda_{1}=$ $\left(1 \times m^{\prime}\right)\left(\left(g \times \alpha_{1}\right) \Delta \times 1\right)(f \times 1)\left(g \times \beta_{1}\right) \Delta \sim\left(g \times m^{\prime}\left(\alpha_{1} \times \beta_{1}\right) \Delta\right) \Delta \sim$ $\left(g \times\left(\alpha_{1}+\beta_{1}\right)\right) \Delta$ and $j \lambda_{2}=(1 \times m)\left(\left(1 \times \alpha_{2}\right) \Delta \times 1\right)\left(1 \times \beta_{2}\right) \Delta=$ $\left(1 \times m\left(\alpha_{2} \times \beta_{2}\right) \Delta\right) \Delta=\left(1 \times\left(\alpha_{2}+\beta_{2}\right)\right) \Delta$, where $j^{\prime}: Y \vee P K(\mathbb{Z}, n) \rightarrow$ $Y \times P K(\mathbb{Z}, n), j: Y \vee K(\mathbb{Z}, n) \rightarrow Y \times K(\mathbb{Z}, n)$ are the inclusions. Also, we can easily know that the diagram

$$
\begin{aligned}
X \xrightarrow{\lambda_{1}} & Y \vee P K(\mathbb{Z}, n) \\
g \downarrow & \left(1 \vee p_{n}\right) \downarrow \\
Y \xrightarrow{\lambda_{2}} & Y \vee K(\mathbb{Z}, n)
\end{aligned}
$$

commutes. Thus we know that $\left[\left(\alpha_{1}, \alpha_{2}\right)\right]+\left[\left(\beta_{1}, \beta_{2}\right)\right]=\left[\left(m^{\prime}\left(\alpha_{1} \times \beta_{1}\right) \Delta\right.\right.$, $\left.\left.m\left(\alpha_{2} \times \beta_{2}\right) \Delta\right)\right] \in G_{R}^{n}(g)$.

Thus we know, from Corollary 2.2(1) and the above theorem, the following corollary.

Corollary 3.9. If $g: X \rightarrow Y$ has a left homotopy inverse, then the all sets in the G^{\prime}-sequence of g are groups.

References

[1] D. H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math. 87 (1965), 840-856.
[2] D. H. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729-756.
[3] H. B. Haslam, G-spaces and H-spaces, Ph. D. Thesis, Univ. of California, Irvine, 1969.
[4] P. Hilton, Homotopy Theory and Duality, 1965.
[5] K. L. Lim, Cocyclic maps and coevaluation subgroups, Canad. Math. Bull. 30 (1987), 63-71.
[6] R. E. Mosher and M. C. Tangora, Cohomology operations and applications in homotopy theory, Harper \& Row, New York, 1968.
[7] N. Oda, The homotopy of the axes of pairings, Canad. J. Math. 17 (1990), 856-868.
[8] J. Z. Pan and X. Shen and M. H. Woo, The G-sequence of a map and its exactness, J. Korean Math. Soc. 35 (1998), no. 2, 281-294.
[9] K. Varadarajan, Genralized Gottlieb groups, J. Indian Math. Soc. 33 (1969), 141-164.
[10] M. H. Woo and K. Y. Lee, On the relative evaluation subgroups, J. Korean Math. Soc. 25 (1988), no. 1, 149-160.
[11] M. H. Woo and Y. S. Yoon, T-spaces by the Gottlieb groups and duality, J. Austral. Math. Soc., (Series A) 59 (1995), 193-203.
[12] Y. S. Yoon, The generalized dual Gottlieb sets, Top. Appl. 109 (2001), 173-181.
[13] Y. S. Yoon, H^{f}-spaces for maps and their duals, J. Korea Soc. Math. Educ. Ser. B Vol. 14(4) (2007), 289-306.
[14] A. Zabrodsky, Hopf spaces, North-Holland Publishing com., 1976.

Department of Mathematics Education Hannam University
Daejeon 306-791, Republic of Korea
E-mail: yoon@hannam.ac.kr

[^0]: Received December 15, 2008; Accepted February 13, 2009.
 2000 Mathematics Subject Classification: Primary 55P45, 55P35.
 Key words and phrases: G^{\prime}-sequence of a map, cocyclic maps.
 This work was supported by Hannam University Research Fund, 2008.

