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ON THE FIXING NUMBER OF FUNCTIGRAPHS

Muhammad Fazil, Imran Javaid, and Muhammad Murtaza

Abstract. The fixing number of a graph G is the smallest order of a

subset S of its vertex set V (G) such that the stabilizer of S in G, ΓS(G)

is trivial. Let G1 and G2 be the disjoint copies of a graph G, and let g :
V (G1) → V (G2) be a function. A functigraph FG consists of the vertex

set V (G1) ∪ V (G2) and the edge set E(G1) ∪ E(G2) ∪ {uv : v = g(u)}.
In this paper, we study the behavior of fixing number in passing from

G to FG and find its sharp lower and upper bounds. We also study the

fixing number of functigraphs of some well known families of graphs like
complete graphs, trees and join graphs.

1. Introduction

The idea of symmetry breaking in graphs was given by Albertson and Collins
in [1], which has the applications in the problem of programming a robot to
manipulate objects [18]. A number of different methods (like orienting some
of the edges, coloring some of the vertices with one or more colors and same
for the edges, labeling vertices or edges, adding or deleting vertices or edges)
of destroying the symmetries of a graph were given by Harary in [14]. The
concept to destroy all automorphisms of a graph by using its vertices was given
by Erwin and Harary in [9] where the authors defined the fixing number of
a graph G in 2006. Boutin [2] independently, did her research on the fixing
number and name this parameter, determining number.

Unless otherwise specified, all the graphs G considered in this paper are
simple, non-trivial and connected. The degree of a vertex v in G, denoted by
degG(v), is the number of edges to which v belongs. The open neighborhood of
a vertex u of G is N(u) = {v ∈ V (G) : uv ∈ E(G)} and the closed neighborhood
of u is N [u] = N(u)∪ {u}. Two vertices u, v are adjacent twins if N [u] = N [v]
and non-adjacent twins if N(u) = N(v). If u, v are adjacent or non-adjacent
twins, then u, v are called twins. A set of vertices is called a twin-set if each
of its two vertices are twins. An automorphism α of G, α : V (G) → V (G),
is a bijective mapping such that α(u)α(v) ∈ E(G) if and only if uv ∈ E(G).
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Thus, each automorphism α of G is a permutation of the vertex set V (G) which
preserves adjacencies and non-adjacencies. The automorphism group of a graph
G, denoted by Γ(G), is the set of all automorphisms of G. The stabilizer of a
vertex v, denoted by Γv(G), is the set {α ∈ Γ(G) : v = α(v)}. The stabilizer of
a set of vertices S ⊆ V (G) is ΓS(G) = {α ∈ Γ(G) : v = α(v) ∀ v ∈ S}. Note
that ΓS(G) =

⋂
v∈S Γv(G). The orbit of a vertex v, denoted by θ(v), is the set

{u ∈ V (G) : u = α(v) for some α ∈ Γ(G)}.
A vertex v is fixed by a group element α ∈ Γ(G) if α ∈ Γv(G). A set of

vertices S ⊆ V (G) is a fixing set of G if ΓS(G) is trivial. In this case, we say
that S fixes G. The fixing number of a graph G, denoted by fix(G), is the
cardinality of a smallest fixing set of G [9]. The graphs with fix(G) = 0 are
called rigid graphs [1], which have a trivial automorphism group. Every graph
G has a fixing set. Trivially, the set of vertices of G itself is a fixing set. It is
also clear that any set containing all but one vertex is a fixing set. Thus, for a
graph G on n vertices 0 ≤ fix(G) ≤ n− 1.

The fixing number of a graph gives us the measure of non-rigidity of the
graph. Gibbons and Laison [12] investigated the fixing numbers of Petersen
graph and Cayley graph. Bradley et al. [3] found the fixing numbers of graphs
having abelian automorphism groups. In the recent past, Koorepazan-Mofta-
khar et al. [19] investigated the automorphism group and fixing number of six
families of (3, 6)-fullerene graphs. Javaid et al. [16] found the fixing number of
composition and corona product of two graphs.

The idea of a permutation graph was introduced by Chartrand and Harary
[4] for the first time. The authors defined a permutation graph as follows:
a permutation graph consists of two identical disjoint copies of a graph G,
say G1 and G2, along with |V (G)| additional edges joining V (G1) and V (G2)
according to a given permutation on {1, 2, . . . , |V (G)|}. Dorfler [6] defined a
mapping graph as follows: a mapping graph of a graph G on n vertices consists
of two disjoint identical copies of graph G with n additional edges between the
vertices of two copies, where the additional edges are defined by a function.
The mapping graph was rediscovered and studied by Chen et al. [5], where
it was called the functigraph. A functigraph is an extension of a permutation
graph. Formally, the functigraph is defined as follows: let G1 and G2 be disjoint
copies of a connected graph G and let g : V (G1) → V (G2) be a function. A
functigraph FG of a graph G consists of the vertex set V (G1)∪ V (G2) and the
edge set E(G1) ∪ E(G2) ∪ {uv : g(u) = v}. Linda et al. [7, 8] and Kang et al.
[20] studied the functigraphs for some graph invariants like metric dimension,
domination and zero forcing number. In [11], we have studied the distinguishing
number of functigraphs. The aim of this paper is to study the fixing number
of functigraphs.

Network science and graph theory are two interconnected research fields that
have synonymous structures, problems and their solutions. The notions net-
work and graph are identical and these can be used interchangeably subject



ON THE FIXING NUMBER OF FUNCTIGRAPHS 173

to the nature of application. The roads network, railway network, social net-
works, scholarly networks, etc. are among the examples of networks. In the
recent past, the network science has imparted to a functional understanding
and the analysis of the complex real world networks. The basic premise in these
fields is to relate metabolic networks, proteomic and genomic with disease net-
works [13] and information cascades in complex networks [15]. Real systems
of quite a different nature can have the same network representation. Even
though these real systems have different nature, appearance or scope, they can
be represented as the same network. Since a functigraph consists of two copies
of the same graph (network) with the additional edges described by a function,
a mathematical model involving two systems with the same network represen-
tation and additional links (edges) between nodes (vertices) of two systems can
be represented by a functigraph. The present study is useful in breaking the
symmetries (by fixing the minimum number of nodes) of such pair of the same
networks (systems) that can be represented by a functigraph.

Throughout the paper, we will denote the functigraph of G by FG, V (G1) =
A, V (G2) = B, g(V (G1)) = I, |g(V (G1))| = |I| = s and the minimum fixing
set of FG by S∗.

A brief plan of the article is the following. Section 2 provides the study of
fixing number of functigraphs. We give sharp lower and upper bounds for fixing
number of functigraph. This section also establishes the connections between
the fixing number of graphs and their corresponding functigraphs in the form
of realizable results. Section 3 provides the fixing number of functigraphs of
some well known families of graphs likes complete graphs, trees and join graphs.
Some useful results related to these families are also part of this section.

2. Some basic results and bounds

We recall some elementary results about the fixing number which are useful
for onward discussion.

Proposition 2.1 ([17]). Suppose that u, v are twins in a connected graph G
and S is a fixing set of G. Then either u or v is in S. Moreover, if u ∈ S and
v 6∈ S, then (S − {u}) ∪ {v} is a fixing set of G.

Proposition 2.2 ([17]). Let U be a twin-set of order m ≥ 2 in a connected
graph G. Then every fixing set S of G contains at least m− 1 vertices of U .

Proposition 2.3 ([2, 9]). If S ⊆ V (G) is a resolving set of G, then S is a
fixing set of G.

Theorem 2.4 ([8]). Let G be a connected graph of order n ≥ 3, and let g : A→
B be a function. Then 2 ≤ β(FG) ≤ 2n− 3 (β(FG) is the metric dimension of
FG). Both bounds are sharp.

The sharp lower and upper bounds on the fixing number of functigraphs are
given in the following result.
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Proposition 2.5. Let G be a connected graph of order n ≥ 3, and let g : A→ B
be a function. Then 0 ≤ fix(FG) ≤ 2n− 3. Both bounds are sharp.

Proof. Obviously, 0 ≤ fix(FG) by definition. The upper bound follows from
Proposition 2.3 and Theorem 2.4. Hence, 0 ≤ fix(FG) ≤ 2n − 3. For the
sharpness of the lower bound, take G = P3 and g : A → B be a function such
that v1 = g(ui), i = 1, 2 and v3 = g(u3). For the sharpness of the upper bound,
take G = Kn, the complete graph of order n ≥ 3, and let g : A→ B be defined
by v1 = g(ui) for each i, where 1 ≤ i ≤ n. Hence, fix(FG) = 2n − 3 and the
proof is complete. �

A connected graphG is called symmetric if fix(G) 6= 0. By using Proposition
2.5, we have the following result.

Proposition 2.6. Let G be a symmetric connected graph. Then 1 ≤ fix(G) +
fix(FG) ≤ 3n− 4. Both bounds are sharp.
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Figure 1. The graph with fix(G) = t = fix(FG).

Lemma 2.7. For any integer t ≥ 2, there exist a connected graph G and a
function g such that fix(G) = t = fix(FG).

Proof. Construct a graph G as follows: let Pt : v1v2 · · · vt be a path. Join
two pendant vertices ui, wi with each vi, where 1 ≤ i ≤ t. This completes
construction of G. Note that, one of the vertexs from each pair of pendant
vertices belongs to a fixing set of G with the minimum cardinality, and hence
fix(G) = t. Now, we label the corresponding vertices of B as v′i, u

′
i, w
′
i for all

i, where 1 ≤ i ≤ t and construct functigraph FG as follows: if t is even, then
define g : A → B as v′i = g(vi) for all i, where 1 ≤ i ≤ t; v′i = g(ui), w

′
i =
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g(wi) for all i = 2k + 1, where 0 ≤ k ≤ t
2 − 1; and v′i = g(ui) = g(wi) for

all i = 2k, where 1 ≤ k ≤ t
2 as shown in Figure 1. Now, consider the set

S∗ = {ui, u′i; i = 2k, 1 ≤ k ≤ t
2}. Note that, ΓS∗(FG) is trivial, and hence

S∗ is a fixing set of FG. Thus, fix(FG) ≤ t. Moreover, N(ui) = N(wi) and
N(u′i) = N(w′i) for all i = 2k, where 1 ≤ k ≤ t

2 . Thus, we have twin-sets

{ui, wi}, {u′i, w′i} for all i = 2k, where 1 ≤ k ≤ t
2 . By Proposition 2.2, at least

one element from these t twin-sets must belongs to every fixing set of FG. This
implies that fix(FG) ≥ t. Hence, fix(FG) = t. If t is odd, then we define
g : A → B by v′i = g(vi) for all i, where 1 ≤ i ≤ t; v′i = g(ui), w

′
i = g(wi) for

all i = 2k + 1, 0 ≤ k ≤ b t2c − 1; v′i = g(ui) = g(wi) for all i = 2k, 1 ≤ k ≤ b t2c;
and v′t−2 = g(ut), w

′
t−2 = g(wt). Use same steps as for case when t is even and

choosing S∗ = {ui, u′i; i = 2k, where 1 ≤ k ≤ b t2c}, we note that fix(FG) = t.
Hence, fix(G) = t = fix(FG). �

Let us now discuss a functigraph of graph G as described in proof of Lemma
2.7 and function g : A → B defined as: if t is even, then v′i = g(vi) for all
1 ≤ i ≤ t; v′t−1 = g(ut−1) = g(wt−1); v′t−3 = g(ut), w

′
t−3 = g(wt); v

′
i =

g(ui), w
′
i = g(wi) for all i = 2k + 1, 0 ≤ k ≤ t

2 − 2; v′i = g(ui) = g(wi) for all

i = 2k, 1 ≤ k ≤ t
2 − 1. Now, if t is odd and g : A→ B is defined by v′i = g(vi)

for all 1 ≤ i ≤ t; v′t = g(ut) = g(wt); v
′
i = g(ui), w

′
i = g(wi) for all i = 2k + 1,

0 ≤ k ≤ b t2c − 1; v′i = g(ui) = g(wi) for all i = 2k, 1 ≤ k ≤ b t2c. From this
construction and using same arguments as in proof of Lemma 2.7, we conclude
that fix(G) = t and fix(FG) = t+ 1. Hence, we have the following result.

Lemma 2.8. For any two integers t1 ≥ 2 and t2 = t1 + 1, there exist a
connected graph G and a function g such that fix(G) = t1, fix(FG) = t2.

Remark 2.9. Let t1, t2 ≥ 2 be any two integers. Then by definition of functi-
graph, it is not necessary that there always exists a connected graph G such
that fix(G) = t1, fix(FG) = t2.

Consider an integer t ≥ 2. For t = 2, we take G = P3 and its functigraph
FG, where function g : A → B is defined as: v′i = g(vi) for all i, where
1 ≤ i ≤ 3. For t > 2, we take graph G same as in proof of Lemma 2.7
by taking path of order t − 1 and its functigraph FG, where g : A → B is
defined as: v′i = g(vi) for all 1 ≤ i ≤ t − 1; v′t−2 = g(ut−1), w′t−2 = g(wt−1);
v′i = g(ui), w

′
i = g(wi), 1 ≤ i ≤ t − 2. From this construction, we have the

following result which shows that fix(G) + fix(FG) can be arbitrary large.

Lemma 2.10. For any integer t ≥ 2, there exist a connected graph G and a
function g such that fix(G) + fix(FG) = t.

Consider an integer t ≥ 2. We take graph G by taking path of order t + 1
and its functigraph FG as constructed in Lemma 2.10, we have the following
result which shows that fix(G)− fix(FG) can be arbitrary large.

Lemma 2.11. For any integer t ≥ 2, there exist a connected graph G and a
function g such that fix(G)− fix(FG) = t.
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For any integer t ≥ 2, we take graph G same as in the proof of Lemma 2.7 by
taking path of order t and its functigraph FG, where g : A → B is defined as:
v′i = g(vi) = g(ui) = g(wi) for all 1 ≤ i ≤ t. From this type of construction, we
have the following result which shows that fix(FG)− fix(G) can be arbitrary
large.

Lemma 2.12. For any integer t ≥ 2, there exist a connected graph G and a
function g such that fix(FG)− fix(G) = t.

3. The fixing number of functigraphs of some families of graphs

In this section, we give bounds of the fixing number of functigraphs on
complete graphs, trees and join graphs. We also characterize complete graphs
for every value of s, where 2 ≤ s ≤ n− 2 such that fix(G) = fix(FG).

Following result gives the sharp upper and lower bound for fixing number of
functigraphs of complete graphs.

Theorem 3.1. Let G = Kn be the complete graph of order n ≥ 3, and let
1 < s < n. Then

2(n− s)− 1 ≤ fix(FG) ≤ 2n− s− 3.

Proof. We assume I = {v1, v2, . . . , vs} and ni = |{u ∈ A : vi = g(u)}| for all
i, where 1 ≤ i ≤ s. Also, let j = |{ni : ni = 1, 1 ≤ i ≤ s}|. There are three
possible cases for j in a functigraph FG:

(1) If j = 0, then 2 ≤ ni ≤ n−2 for all i, where 1 ≤ i ≤ s. Thus, by definitions
of Kn and ni, there are s twin-sets of vertices in A and a twin-set has ni number
of vertices for each i, where 1 ≤ i ≤ s. Hence, S∗ contains

∑s
i=1(ni−1) vertices

from A. Moreover, B contains |B \ I| twin vertices, and hence S∗ contains
n−s−1 vertices from B. Hence, |S∗| =

∑s
i=1(ni−1)+(n−s−1) = 2(n−s)−1.

(2) If j = 1, then without loss of generality, we assume that ns = 1. Thus,
there are s − 1 twin-sets of vertices in A and a twin-set has ni number of
vertices for each i, where 1 ≤ i ≤ s − 1. Thus, S∗ contains

∑s−1
i=1 (ni − 1)

vertices from A and n− s− 1 vertices from B as in the previous case. Hence,
|S∗| =

∑s−1
i=1 (ni − 1) + (n− s− 1) = 2(n− s)− 1.

(3) If 2 ≤ j ≤ s − 1. Let N = {n1, n2, . . . , ns}. We partition the set N
into N1 and N2, where N1 contains all those elements of N in which ni > 1
and N2 contains all those elements of N in which ni = 1. Let |N1| = l,
then j + l = s where j = |N2|. We re-index elements of N1 and N2 as follows:

N1 = {n(1)1 , n
(1)
2 , . . . , n

(1)
l }, N2 = {n(2)1 , n

(2)
2 , . . . , n

(2)
j } where superscripts shows

associations of an element in N1 or N2. Now, A contains l twin-sets of vertices

and each twin-set has n
(1)
k number of vertices for each k, where 1 ≤ k ≤ l.

Also, remaining j vertices of A are those having exactly j images under g, and
hence j − 1 such vertices must belong to S∗. For otherwise, let u, u′ ∈ A be
two such vertices, then there exists an automorphism (uu′)(g(u)g(u′)) in Γ(FG).

Hence, S∗ contains [
∑l

k=1(n
(1)
k −1)]+(j−1) vertices from A. Again S∗ contains
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n−s−1 vertices from B. Hence, |S∗| = [
∑l

k=1(n
(1)
k −1)]+(j−1)+(n−s−1) =

2n− 2s+ j − 2. �

Corollary 3.2. Let G = Kn≥3 be the complete graph and 2 < s < n in
a functigraph of G. If n − s vertices of A have same image under g, then
fix(FG) = 2n− (s+ 4).

Corollary 3.3. Let G = Kn≥3 be the complete graph and 2 < s < n in a
functigraph of G. If n− s+ 1 vertices of A have the same image under g, then
fix(FG) = 2n− (s+ 3).

Corollary 3.4. Let G = Kn≥3 be the complete graph and 2 < s < n in a
functigraph of G. If |g−1(v)| = n

s for all v ∈ I, then fix(FG) = 2(n− s)− 1.

Proof. Since there are exactly s twin-sets of vertices of A each of cardinality n
s

and one twin-set ofB of cardinality n−s. Hence, fix(FG) = s(n
s−1)+n−s−1 =

2(n− s)− 1. �

Proposition 3.5. For every pair of integers n and s, where 2 ≤ s ≤ n − 2,
there are exactly s−1 complete graphs G such that fix(G) = fix(FG) for some
function g.

Proof. We claim that for every s where 2 ≤ s ≤ n − 2, the required s − 1
complete graphs are {Ks+i+2 : 0 ≤ i ≤ s − 2} by Theorem 3.1. For otherwise
if G ∈ {Ks+i+2 : s − 1 ≤ i ≤ n − (s + 2)}, then fix(G = Ks+i+2) = s + i + 1
and by Theorem 3.1, 2i + 3 ≤ fix(FG=Ks+i

) ≤ s + 2i + 1. Since i > s − 2, so
fix(G) 6= fix(FG).

Next, we define those functions gi : A → B in functigraph of G, where
G ∈ {Ks+i+2, 0 ≤ i ≤ s − 2} such that fix(G) = fix(FG). We discuss the
following cases:

(1) For s = 2, we have G = K4 and there are two definitions of function g
satisfying hypothesis, one is defined as g−1(v1) = {uj : 1 ≤ j ≤ 3}, g−1(v2) =
{u4}. Other definition of g is g−1(vj) = {u2j−1, u2j} for all j, where 1 ≤ j ≤ 2.

(2) For s = 3, we have G = K5,K6. In K5, g is defined as g−1(v1) =
{uj : 1 ≤ j ≤ 3}, g−1(v2) = {u4, u5}. In K6, again there are two definitions
of g satisfying hypothesis. One definition is g−1(v1) = {uj : 1 ≤ j ≤ 3},
g−1(v2) = {u4, u5}, g(u6) = v3. Other definition of g is g−1(vj) = {u2j−1, u2j}
for all j, where 1 ≤ j ≤ 3.

(3) For s = 4, we have G = K6,K7,K8. In K6, g is defined as g−1(v1) =
{uj : 1 ≤ j ≤ 3}, g−1(vj) = {uj} for all j, where 4 ≤ j ≤ 6. In K7,
g−1(v1) = {uj : 1 ≤ j ≤ 3}, g−1(v2) = {uj : 4 ≤ j ≤ 5}, g(uj) = vj−3 for all
j, where 6 ≤ j ≤ 7. In K8, again there are two definitions of g. One definition
is g−1(v1) = {uj : 1 ≤ j ≤ 3}, g−1(v2) = {u4, u5}, g−1(v3) = {u6, u7},
g(u8) = v4. Other definition of g is g−1(vj) = {u2j−1, u2j} for all j, where
1 ≤ j ≤ 4.

Continuing the same way we have:



178 M. FAZIL, I. JAVAID, AND M. MURTAZA

(4) For s = n − 2, we have G = Kn,Kn+1, . . . ,K2n−5,K2n−4. In Kn, g
is defined as g−1(v1) = {uj : 1 ≤ j ≤ 3}, g−1(vj) = {uj} for all j, where
4 ≤ j ≤ n. In Kn+1, g−1(v1) = {uj : 1 ≤ j ≤ 3}, g−1(v2) = {uj : 4 ≤ j ≤ 5},
g(uj) = vj−3 for all j, where 6 ≤ j ≤ n+ 1. In Kn+2, g−1(v1) = {uj : 1 ≤ j ≤
3}, g−1(v2) = {uj : 4 ≤ j ≤ 5}, g−1(v3) = {uj : 6 ≤ j ≤ 7}, g(uj) = vj−3 for all
j, where 8 ≤ j ≤ n+ 2. Continuing in the similar way till G = K2n−5, we can
find g by the similar definitions. In K2n−4, again there are two definitions of
g. One definition is g−1(v1) = {uj : 1 ≤ j ≤ 3}, g−1(vj) = {u2j , u2j+1}, where
2 ≤ j ≤ n−3, g(u2n−4) = vn−2. Other definition of g is g−1(vj) = {u2j−1, u2j}
for all j, where 1 ≤ j ≤ n− 2. �

Remark 3.6. For each 2 ≤ s ≤ n−2, there are exactly s mappings g : V (Kn)→
V (Kn) such that fix(G) = fix(FG).

Remark 3.7. K4 is the only complete graph such that fix(G) = fix(FG) for
all functions g.

Let e∗ be an edge of a connected graph G. Let G− e∗ is the graph obtained
by deleting edge e∗ from graph G. A vertex v of a graph G is called saturated
if it is adjacent to all other vertices of G.

Theorem 3.8. Let G be a complete graph of order n ≥ 3 and Gi = G − ie∗
for all i where 1 ≤ i ≤ bn2 c and e∗ joins two saturated vertices of the graph G.
If g is constant function, then

fix(FGi
) =

 2n− 2i− 3, if 1 ≤ i ≤ bn2 c − 1,
n− 1, if i = n

2 and n is even,
2bn2 c − 1, 2bn2 c if i = bn2 c and n is odd.

Proof. We consider the following three cases for i:
(1) For 1 ≤ i ≤ bn2 c−1. On deleting edge e∗ between two saturated vertices,

the two vertices will no longer remain saturated, however these will remain twin.
Hence, for each i, where 1 ≤ i ≤ bn2 c − 1, Gi contains n− 2i saturated vertices
and i twin-sets of vertices each of cardinality two. Hence, fix(Gi) = n− i− 1.
Now if g is constant, then |S∗| = (n− i− 1) + (n− i− 2) = 2n− 2i− 3.

(2) If i = n
2 and n is even, then Gi contains no saturated vertex and n

2
twin-sets of vertices each of cardinality two. Hence, fix(Gi) = n

2 . Now, if g is
constant, then |S∗| = n

2 + (n
2 − 1) = n− 1.

(3) If i = bn2 c and n is odd, then Gi contains one saturated vertex and bn2 c
twin-sets of vertices each of cardinality two. Hence, fix(Gi) = bn2 c. Suppose
that, u′ = g(ui) for all ui ∈ V (Gi) where 1 ≤ i ≤ n. Now if u′ is a twin vertex,
then |S∗| = bn2 c + (bn2 c − 1) = 2bn2 c − 1. However, if u′ ia saturated vertex,
then |S∗| = bn2 c+ bn2 c = 2bn2 c. �

From Theorem 3.8, we can establish the sharp bounds for the fixing number
of a functigraph of Gi = G− ie∗ in the following corollary.
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Corollary 3.9. Let G be a complete graph of order n ≥ 3 and Gi = G − ie∗
for all i where 1 ≤ i ≤ bn2 c and e∗ joins two saturated vertices of the graph G.
If g is a constant function, then fix(G) ≤ fix(FGi) ≤ fix(FG). Both bounds
are sharp.

Let T be a tree graph and v ∈ V (T ). If degT (v) = 1, then v is called a
pendant vertex. A vertex v ∈ T that adjacent to a pendant vertex is called a
support vertex. We denote the total number of pendant vertices in a tree T by
p(T ). We denote the total number of support vertices in a tree T by s(T ).

Proposition 3.10. If T is a symmetric tree of order n ≥ 2, then fix(FT ) ≤
2fix(T ). This bound is sharp.

Corollary 3.11. If Pn is a path of order n ≥ 2, then fix(FPn
) ≤ 2. This

bound is sharp.

Theorem 3.12. Let T be a symmetric tree and FT be its symmetric functi-
graph. Then fix(FT ) = 2|T | − t, 2 ≤ t ≤ 3 if and only if T = P2.

Proof. If T = P2, then FT is either C4 or K3 with a pendant vertex. Hence,
fix(FT ) = 2|T | − t, 2 ≤ t ≤ 3. Conversely, suppose that, fix(FT ) = 2|T | −
t, 2 ≤ t ≤ 3. We discuss the following cases for s(T ).

(1) If s(T ) ≥ 3, we partition V (T ) into the sets X1, X2 and X3 where
X1 = {u ∈ V (T ) : u is a pendant vertex of T}, X2 = {u ∈ V (T ) : u is a
support vertex of T} and X3 = V (T ) \ {X1 ∪ X2}. Let X4 = X2 ∪ X3, then
fix(T ) ≤ |T |− |X4|− 1 and from Proposition 3.10, fix(FT ) ≤ 2[|T |− |X4|− 1]
which leads to a contradiction as |X4| ≥ 3.

(2) If s(T ) = 2, then we have the following two subcases:

(a) If s(T ) = p(T ), then T = Pn≥2(n 6= 3), and hence fix(FPn
) ≤ 2. Thus,

by hypothesis, T = P2.
(b) If s(T ) 6= p(T ), then either p(T ) = 1 or p(T ) > 2. However, p(T ) = 1

and s(T ) = 2 is impossible in a tree, so p(T ) > 2. This also leads to a
contradiction as in Case (1).

(3) If s(T ) = 1, then T = K1,n, n ≥ 2, and hence fix(FT ) ≤ 2[|T |−2] which
is again a contradiction. �

The following corollary can be proved by using similar arguments as in the
proof of Theorem 3.12.

Corollary 3.13. Let T be a symmetric tree and FT be its symmetric functi-
graph.

(1) If fix(FT ) = 2|T | − t, 4 ≤ t ≤ 5, then T = K1,n, n ≥ 2.
(2) If fix(FT ) = 2|T | − 6, then T = K1,n, n ≥ 3.
(3) If fix(FT ) = 2|T | − 7, then T ∈ {P4,K1,n, n ≥ 3}.
(4) If fix(FT ) = 2|T | − 8, then T ∈ {P5, K1,n, n ≥ 4, (K1,n1

,K1,n2
) +

e, n1, n2 ≥ 2,K1,n, n ≥ 2 and a vertex adjacent with one pendant vertex
of K1,n}.
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Suppose that G1 = (V1, E1) and G2 = (V2, E2) be two graphs with disjoint
vertex sets V1 and V2 and disjoint edge sets E1 and E2. The union of G1 and
G2 is the graph G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2). The join of G1 and G2 is the
graph G1 +G2 that consists of G1 ∪G2 and all edges joining all vertices of V1
with all vertices of V2.

Theorem 3.14 ([10]). Let G1 and G2 be two connected graphs. Then fix(G1+
G2) ≥ fix(G1) + fix(G2). This bound is sharp.

Proposition 3.15. Let G1 and G2 be two connected graphs and g : V (G1 +
G2)→ V (G1 +G2) be a constant function. Then

fix(FG1+G2) = 2fix(G1 +G2)− i, 0 ≤ i ≤ 1.

Proof. Let A and B be two copies of G1 + G2. Let S1 and S2 be minimum
fixing sets of A and B, respectively. Define g : A → B by u′ = g(u) for all
u ∈ A. We discuss the following two cases:

(1) If G1 does not contain any saturated vertex, then G1 + G2 also does
not contain any saturated vertex. In this case fix(A) = fix(B) = fix(G1) +
fix(G2) by Theorem 3.14. Now, if u′ ∈ S2, then S∗ = S1 ∪{S2 \ {u′}} because
θ(u′) = {u′} in FG1+G2

. If u′ /∈ S2, then S∗ = S1 ∪ S2.
(2) If G1 contains any saturated vertex, then both A and B have saturated

vertices. In this case fix(A) = fix(B) > fix(G1) + fix(G2) by Theorem
3.14. Now if u′ is a saturated vertex of B, then u′ ∈ S2, and hence S∗ =
S1 ∪ {S2 \ {u′}}. If u′ is not a saturated vertex, then either u′ ∈ S2 or u′ /∈ S2.
If u′ ∈ S2, then S∗ = S1 ∪ {S2 \ {u′}} and if u′ /∈ S2, then S∗ = S1 ∪ S2. �
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