• Title/Summary/Keyword: four-point probe

Search Result 243, Processing Time 0.027 seconds

Electrical and optical properties of Ag/ZnO multilayer thin film by the FTS (FTS법으로 제작한 Ag/ZnO 박막의 전기적, 광학적 특성)

  • Rim, Y.S.;Kim, S.M.;Son, I.H.;Lee, W.J.;Choi, M.K.;Kim, K.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.2
    • /
    • pp.102-108
    • /
    • 2008
  • We have studied the properties of Ag/undoped ZnO (ZnO) multilayer thin films deposited on glass substrate by the facing targets sputtering method. In an attempt to find out the optimum conditions of the Ag thin film, which would be coated on the ZnO thin film, we investigated the changes of sheet resistance, transmittance and surface morphology as a function of deposition times and the substrate temperature. The electrical and optical characteristics of Ag/ZnO multilayers were evaluated by a four-point probe, a UV/VIS spectrometer with a spectral range of 390-770 nm, a X-ray Diffractometer (XRD), an atomic force microscope (AFM) and a Field Emission Scanning Electron Microscope (SEM), respectively. We were able to prepare the Ag/ZnO multilayer thin film with sheet resistance of 9.25 $\Omega/sq.$ and transmittance of over 80% at 550nm.

Influence of Dose on the Property of Cobalt Silicides in Source/Drain Area (소오스/드레인 영역의 도펀트 양의 증가에 따른 코발트실리사이드의 물성변화)

  • Cheong, Seong-Hwee;Song, Oh-Sung;Kim, Min-Sung
    • Korean Journal of Materials Research
    • /
    • v.13 no.1
    • /
    • pp.43-47
    • /
    • 2003
  • As and BF$_2$dopants are implanted for the formation of source/drain with dose of 1${\times}$10$^{15}$ ions/$\textrm{cm}^2$∼5${\times}$10$^{15}$ ions/$\textrm{cm}^2$ then formed cobalt disilicide with Co/Ti deposition and doubly rapid thermal annealing. Appropriate ion implantation and cobalt salicide process are employed to meet the sub-0.13 $\mu\textrm{m}$ CMOS devices. We investigated the process results of sheet resistance, dopant redistribution, and surface-interface microstructure with a four-point probe, a secondary ion mass spectroscope(SIMS), a scanning probe microscope (SPM), and a cross sectional transmission electron microscope(TEM), respectively. Sheet resistance increased to 8%∼12% as dose increased in $CoSi_2$$n^{+}$ and $CoSi_2$$p^{V}$ , while sheet resistance uniformity showed very little variation. SIMS depth profiling revealed that the diffusion of As and B was enhanced as dose increased in $CoSi_2$$n^{+}$ and $CoSi_2$$p^{+}$ . The surface roughness of root mean square(RMS) values measured by a SPM decreased as dose increased in $CoSi_2$$n^{+}$ , while little variation was observed in $CoSi_2$$p^{+}$ . Cross sectional TEM images showed that the spikes of 30 nm∼50 nm-depth were formed at the interfaces of $CoSi_2$$n^{+}$ / and $CoSi_2$/$p^{+}$, which indicate the possible leakage current source. Our result implied that Co/Ti cobalt salicide was compatible with high dose sub-0.13$\mu\textrm{m}$ process.

Property of Composite Silicide from Nickel Cobalt Alloy (니켈 코발트 합금조성에 따른 복합실리사이드의 물성 연구)

  • Kim, Sang-Yeob;Song, Oh-Sung
    • Korean Journal of Materials Research
    • /
    • v.17 no.2
    • /
    • pp.73-80
    • /
    • 2007
  • For the sub-65 nm CMOS process, it is necessary to develop a new silicide material and an accompanying process that allows the silicide to maintain a low sheet resistance and to have an enhanced thermal stability, thus providing for a wider process window. In this study, we have evaluated the property and unit process compatibility of newly proposed composite silicides. We fabricated composite silicide layers on single crystal silicon from $10nm-Ni_{1-x}Co_x/single-crystalline-Si(100),\;10nm-Ni_{1-x}Co_x/poly-crystalline-\;Si(100)$ wafers (x=0.2, 0.5, and 0.8) with the purpose of mimicking the silicides on source and drain actives and gates. Both the film structures were prepared by thermal evaporation and silicidized by rapid thermal annealing (RTA) from $700^{\circ}C\;to\;1100^{\circ}C$ for 40 seconds. The sheet resistance, cross-sectional microstructure, surface composition, were investigated using a four-point probe, a field emission scanning probe microscope, a field ion beam, an X-ray diffractometer, and an Auger electron depth profi1ing spectroscopy, respectively. Finally, our newly proposed composite silicides had a stable resistance up to $1100^{\circ}C$ and maintained it below $20{\Omega}/Sg$., while the conventional NiSi was limited to $700^{\circ}C$. All our results imply that the composite silicide made from NiCo alloy films may be a possible candidate for 65 nm-CMOS devices.

Characteristics of Ni/Co Composite Silicides for Poly-silicon Gates (게이트를 상정한 니켈 코발트 복합실리사이드 박막의 물성연구)

  • Kim, Sang-Yeob;Jung, Young-Soon;Song, Oh-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.149-154
    • /
    • 2005
  • We fabricated Ni/Co(or Co/Ni) composite silicide layers on the non-patterned wafers from Ni(20 nm)/Co(20 nm)/poly-Si(70 nm) structure by rapid thermal annealing of $700{\~}1100^{\circ}C$ for 40 seconds. The sheet resistance, cross-sectional microstructure, and surface roughness were investigated by a four point probe, a field emission scanning electron microscope, and a scanning probe microscope, respectively. The sheet resistance increased abruptly while thickness decreased as silicidation temperature increased. We propose that the poly silicon inversion due to fast metal diffusion lead to decrease silicide thickness. Our results imply that we should consider the serious inversion and fast transformation in designing and process f3r the nano-height fully cobalt nickel composite silicide gates.

  • PDF

Thermal Stability of Ru-inserted Nickel Monosilicides (루테늄 삽입층에 의한 니켈모노실리사이드의 안정화)

  • Yoon, Kijeong;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.159-168
    • /
    • 2008
  • Thermally-evaporated 10 nm-Ni/1 nm-Ru/(30 nm or 70 nm-poly)Si structures were fabricated in order to investigate the thermal stability of Ru-inserted nickel monosilicide. The silicide samples underwent rapid thermal anne aling at $300{\sim}1,100^{\circ}C$ for 40 seconds. Silicides suitable for the salicide process were formed on the top of the single crystal and polycrystalline silicon substrates mimicking actives and gates. The sheet resistance was measured using a four-point probe. High resolution X-ray diffraction and Auger depth profiling were used for phase and chemical composition analysis, respectively. Transmission electron microscope and scanning probe microscope(SPM) were used to determine the cross-sectional structure and surface roughness. The silicide, which formed on single crystal silicon and 30 nm polysilicon substrate, could defer the transformation of $Ni_2Si $i and $NiSi_2 $, and was stable at temperatures up to $1,100^{\circ}C$ and $1,100^{\circ}C$, respectively. Regarding microstructure, the nano-size NiSi preferred phase was observed on single crystalline Si substrate, and agglomerate phase was shown on 30 nm-thick polycrystalline Si substrate, respectively. The silicide, formed on 70 nm polysilicon substrate, showed high resistance at temperatures >$700^{\circ}C$ caused by mixed microstructure. Through SPM analysis, we confirmed that the surface roughness increased abruptly on single crystal Si substrate while not changed on polycrystalline substrate. The Ru-inserted nickel monosilicide could maintain a low resistance in wide temperature range and is considered suitable for the nano-thick silicide process.

Characteristics of Photoresist-derived Carbon Nanofibers for Li-ion Full Cell Electrode

  • Kim, Hwan-Jun;Joo, Young-Hee;Lee, Sang-Min;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.265-269
    • /
    • 2014
  • Carbon nanofiber electrode has been fabricated for energy storage systems by the electrospinning of SU-8 precursor and subsequent pyrolysis. Various parameters including the applied voltage, the distance between syringe tip and target collector and the flow rate of the polymer affect the diameter of SU-8 electrospun nanofibers. Shrinkage during pyrolysis decreases the fiber diameter. As the pyrolysis temperature increases, the resistivity decreases dramatically. Low resistivity is one of the important characteristics of the electrodes of an energy storage device. Given the advantages of carbon nanofibers having high external surface area, electrical conductivity, and lithium intercalation ability, SU-8 derived carbon nanofibers were applied to the anode of a full lithium ion cell. In this paper, we studied the physical properties of carbon fiber electrode by scanning transmission microscopy, thermal gravimetric analysis, and four-point probe. The electrochemical characteristics of the electrode were investigated by cyclic voltammogram and electrochemical impedance spectroscopy plots.

Formation and Microstructural Properties of C49 $\textrm{ZrSi}_{2}$ Thin Films on Si(100)Substrates (Si(100)기판위에서의 C49 $\textrm{ZrSi}_{2}$의 형성과 특성 연구)

  • Kim, Sang-Beom;Jeon, Hyeong-Tak
    • Korean Journal of Materials Research
    • /
    • v.7 no.11
    • /
    • pp.964-968
    • /
    • 1997
  • Si(001)기판 위에 형성시킨 Zr-silicide의 전기적, 물리적 특성에 관한 연구를 하였다. Zr 박막은 전자빔 증착기를 사용하여 증착하였으며, 50$0^{\circ}C$ 열처리하여 Zr-silicide를 형성시켰다. 각 온도에서 열처리된 Zr-silicide시편의 상형성, 전기적 특성, 화학적 조성, 표면 및 계면 형상을 XRD, four-point probe, AES, TEM과 HRTEM으로 분석하였다. 분석 결과 $600^{\circ}C$부터 Zr과 Si기판의 계면에서 C49 ZrSi$_{2}$의 생성이 관찰되었다. Zr-Silicide박막의 비저항은 C49 ZrSi$_{2}$의 형성에 영향을 받는 것으로 관찰되었으며, 50$0^{\circ}C$ 열처리 후에는 184.3 $\mu$Ω-cm로 낮아졌으며, C49 ZrSi$_{2}$가 박막에 완전히 형성된 80$0^{\circ}C$ 열처리 후에는 32$\mu$Ω-cm의 낮은 저항을 나타내었다. 형성된 C49 ZrSi$_{2}$박막은 균질한 화학적 조성을 하고 있음을 AES 분석으로 확인하였다. Zr-silicide의 표면 및 계면의 형상을 TEM과 HRTEM으로 관찰하였으며, $600^{\circ}C$ 열처리 후에 계면에서 ZrSi$_{2}$의 상형성이 시작되는 것을 관찰하였다. 80$0^{\circ}C$ 열처리 후에도 계면과 표면형상은 비교적 균질한 형상이 유지되었음이 관찰되었으며, 이는 C49 ZrSi$_{2}$가 높은 온도에서도 잘 응집되지 않으며 고온 안정성을 가지는 재료임이 관찰되었다.

  • PDF

Effect of ZnO Buffer Layers on the Crystallization of ITO Thin Film at Low Temperature

  • Seong, Chung-Heon;Shin, Yong-Jun;Jang, Gun-Eik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.208-211
    • /
    • 2012
  • In the present study, a ZnO thin film, as a buffer layer of ITO (indium tin oxide) film was deposited on glass substrates by RF magnetron sputtering at low temperature of $150^{\circ}C$. In order to estimate the optical characteristics and compare with the experimental results in Glass/ZnO(100 nm)/ITO(35 nm) multilayered film, the simulation program, EMP (Essential Macleod Program) was adopted. The sheet resistance and optical transmittance of the films were measured using the four-point probe method and spectrophotometer, respectively. From X-ray diffraction patterns, all the films deposited at $150^{\circ}C$ demonstrated only the amorphous phase. Optical transmittance was the highest at a ZnO thickness of 100 nm. The ITO(35 nm)/ZnO(100 nm) film exhibits an optical transmittance of >92% at 550 nm. The multilayered film showed an electrical sheet resistance of 407 ${\Omega}/sq.$, which is significantly better than that of a single-layer ITO film without a ZnO buffer layer (815 ${\Omega}/sq.$).

플라즈마 도핑 후 급속열처리법을 이용한 n+/p 얕은 접합 형성

  • Do, Seung-U;Seo, Yeong-Ho;Lee, Jae-Seong;Lee, Yong-Hyeon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.50-50
    • /
    • 2009
  • In this paper, the plasma doping is performed on p-type wafers using $PH_3$ gas(10 %) diluted with He gas(90 %). The wafer is placed in the plasma generated with 200 W and a negative DC bias (1 kV) is applied to the substrate for 60 sec under no substrate heating. the flow rate of the diluted $PH_3$ gas and the process pressure are 100 sccm and 10 mTorr, respectively. In order to diffuse and activate the dopant, annealing process such as rapid thermal annealing (RTA) is performed. RTA process is performed either in $N_2$, $O_2$ or $O_2+N_2$ ambient at $900{\sim}950^{\circ}C$ for 10 sec. The sheet resistance is measured using four point probe. The shallow n+/p doping profiles are investigated using secondary ion mass spectromtry (SIMS). The analysis of crystalline defect is also done using transmission electron microscopy (TEM) and double crystal X-ray diffraction (DXRD).

  • PDF

Improvement of Electrical Conductivity of Transparent Conductive Single-Walled Carbon Nanotube Films Fabricated by Surfactant Dispersion

  • Lee, Seung-Ho;Kim, Myoung-Su;Goak, Jeung-Choon;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.17-17
    • /
    • 2009
  • Single-walled carbon nanotubes (SWCNTs) have attracted much attention as promising materials for transparent conducting films (TCFs), thanks to their superior electrical conductivity, high mechanical strength, and complete flexibility. The CNT-based TCFs can be used in a variety of application fields as flexible, transparent electrodes, including touch panel screens, flexible electronics, transparent heaters, etc. First of all, this study investigated the effect of a variety of surfactants on the dispersion of SWCNTs in an aqueous solution. Following the optimization of the dispersion by surfactants, flexible TCFs were fabricated by spraying the CNT suspension onto poly(ethylene terephthalate) (PET) substrates. The sheet resistances of the TCFs having different surfactants were investigated with treatment in nitric acid ($HNO_3$) whose concentration and period of treatment time were varied. It seems that the $HNO_3$ removes the surfactants from and is simultaneously doped into the SWCNT network, reducing the contact resistance between CNTs. TCFs were characterized by UV-VIS spectroscopy, thermogravimetric analyzer (TGA), scanning electron microscopy (SEM), and four-point probe.

  • PDF