Browse > Article
http://dx.doi.org/10.4313/TEEM.2014.15.5.265

Characteristics of Photoresist-derived Carbon Nanofibers for Li-ion Full Cell Electrode  

Kim, Hwan-Jun (School of Electronic and Electrical Engineering, Chung-Ang University)
Joo, Young-Hee (School of Electronic and Electrical Engineering, Chung-Ang University)
Lee, Sang-Min (School of Electronic and Electrical Engineering, Chung-Ang University)
Kim, Chang-Il (School of Electronic and Electrical Engineering, Chung-Ang University)
Publication Information
Transactions on Electrical and Electronic Materials / v.15, no.5, 2014 , pp. 265-269 More about this Journal
Abstract
Carbon nanofiber electrode has been fabricated for energy storage systems by the electrospinning of SU-8 precursor and subsequent pyrolysis. Various parameters including the applied voltage, the distance between syringe tip and target collector and the flow rate of the polymer affect the diameter of SU-8 electrospun nanofibers. Shrinkage during pyrolysis decreases the fiber diameter. As the pyrolysis temperature increases, the resistivity decreases dramatically. Low resistivity is one of the important characteristics of the electrodes of an energy storage device. Given the advantages of carbon nanofibers having high external surface area, electrical conductivity, and lithium intercalation ability, SU-8 derived carbon nanofibers were applied to the anode of a full lithium ion cell. In this paper, we studied the physical properties of carbon fiber electrode by scanning transmission microscopy, thermal gravimetric analysis, and four-point probe. The electrochemical characteristics of the electrode were investigated by cyclic voltammogram and electrochemical impedance spectroscopy plots.
Keywords
SU-8; CNF; Pyrolysis; Li-ion cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Li, Y. Xia, Adv. Mater., 16, 1151 (2004). [DOI: http://dx.doi.org/10.1002/adma.200400719].   DOI   ScienceOn
2 Y. Dzenis, Science, 304, 1917 (2004). [DOI: http://dx.doi.org/10.1126/science.1099074].   DOI   ScienceOn
3 W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, J. Biomed. Mat. Res., 60, 613 (2003). [DOI: http://dx.doi.org/10.1002/jbm.10167].   DOI   ScienceOn
4 J. R. Kim, S. W. Choi, S. M. Jo, W. S. Lee, and B. C. Kim, J. Electrochem. Soc., 152, A295 (2005). [DOI: http://dx.doi.org/10.1149/1.1839531].   DOI   ScienceOn
5 J. K. Steach, J. E. Jonathan, E. Clark, and S. V. Olesik, J. Appl. Polym. Sci., 118, 405 (2010). [DOI: http://dx.doi.org/10.1002/app.31597].   DOI   ScienceOn
6 C. S. Sharma, A. Sharma, M. Madou, Langmuir, 26, 2219 (2010).
7 C. S. Sharma, R. Vasita, D. K. Upadhyay, A. Sharma, D. S. Katti and R. Venkataraghavan, Ind. Eng. Chem. Res., 49, 2731 (2010). [DOI: http://dx.doi.org/10.1021/ie901312j].   DOI   ScienceOn
8 Y. Ishii, H. Sakai, and H. Murata, Thin Solid Films, 518, 647 (2009). [DOI: http://dx.doi.org/10.1016/j.tsf.2009.07.061].   DOI   ScienceOn
9 D. H. Reneker, A. L. Yarin, H. Fong, and S. Koombhongse, J. Appl. Phys., 87, 4531 (2000). [DOI: http://dx.doi.org/10.1063/1.373532].   DOI   ScienceOn
10 S. V. Fridrikh, J. H. Yu, M. P. Brenner, and G. C. Rutledge, Phys. Rev. Lett., 90, 14450 (2003). [DOI: http://dx.doi.org/10.1103/PhysRevLett.90.144502].   DOI   ScienceOn
11 A. Singh, J. Jayaram, M. Madou, and S. Akbar, J. Electrochem. Soc., 149, E78 (2002). [DOI: http://dx.doi.org/10.1149/1.1436085].   DOI   ScienceOn
12 C. S. Sharma, H. Katepalli, A. Sharma, and Marc Madou, Carbon, 49 1727 (2011). [DOI: http://dx.doi.org/10.1016/j.carbon.2010.12.058].   DOI   ScienceOn