DOI QR코드

DOI QR Code

Characteristics of Photoresist-derived Carbon Nanofibers for Li-ion Full Cell Electrode

  • Kim, Hwan-Jun (School of Electronic and Electrical Engineering, Chung-Ang University) ;
  • Joo, Young-Hee (School of Electronic and Electrical Engineering, Chung-Ang University) ;
  • Lee, Sang-Min (School of Electronic and Electrical Engineering, Chung-Ang University) ;
  • Kim, Chang-Il (School of Electronic and Electrical Engineering, Chung-Ang University)
  • Received : 2014.05.01
  • Accepted : 2014.07.31
  • Published : 2014.10.25

Abstract

Carbon nanofiber electrode has been fabricated for energy storage systems by the electrospinning of SU-8 precursor and subsequent pyrolysis. Various parameters including the applied voltage, the distance between syringe tip and target collector and the flow rate of the polymer affect the diameter of SU-8 electrospun nanofibers. Shrinkage during pyrolysis decreases the fiber diameter. As the pyrolysis temperature increases, the resistivity decreases dramatically. Low resistivity is one of the important characteristics of the electrodes of an energy storage device. Given the advantages of carbon nanofibers having high external surface area, electrical conductivity, and lithium intercalation ability, SU-8 derived carbon nanofibers were applied to the anode of a full lithium ion cell. In this paper, we studied the physical properties of carbon fiber electrode by scanning transmission microscopy, thermal gravimetric analysis, and four-point probe. The electrochemical characteristics of the electrode were investigated by cyclic voltammogram and electrochemical impedance spectroscopy plots.

Keywords

References

  1. Y. Dzenis, Science, 304, 1917 (2004). [DOI: http://dx.doi.org/10.1126/science.1099074].
  2. D. Li, Y. Xia, Adv. Mater., 16, 1151 (2004). [DOI: http://dx.doi.org/10.1002/adma.200400719].
  3. W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, J. Biomed. Mat. Res., 60, 613 (2003). [DOI: http://dx.doi.org/10.1002/jbm.10167].
  4. J. R. Kim, S. W. Choi, S. M. Jo, W. S. Lee, and B. C. Kim, J. Electrochem. Soc., 152, A295 (2005). [DOI: http://dx.doi.org/10.1149/1.1839531].
  5. J. K. Steach, J. E. Jonathan, E. Clark, and S. V. Olesik, J. Appl. Polym. Sci., 118, 405 (2010). [DOI: http://dx.doi.org/10.1002/app.31597].
  6. C. S. Sharma, A. Sharma, M. Madou, Langmuir, 26, 2219 (2010).
  7. C. S. Sharma, R. Vasita, D. K. Upadhyay, A. Sharma, D. S. Katti and R. Venkataraghavan, Ind. Eng. Chem. Res., 49, 2731 (2010). [DOI: http://dx.doi.org/10.1021/ie901312j].
  8. Y. Ishii, H. Sakai, and H. Murata, Thin Solid Films, 518, 647 (2009). [DOI: http://dx.doi.org/10.1016/j.tsf.2009.07.061].
  9. D. H. Reneker, A. L. Yarin, H. Fong, and S. Koombhongse, J. Appl. Phys., 87, 4531 (2000). [DOI: http://dx.doi.org/10.1063/1.373532].
  10. S. V. Fridrikh, J. H. Yu, M. P. Brenner, and G. C. Rutledge, Phys. Rev. Lett., 90, 14450 (2003). [DOI: http://dx.doi.org/10.1103/PhysRevLett.90.144502].
  11. A. Singh, J. Jayaram, M. Madou, and S. Akbar, J. Electrochem. Soc., 149, E78 (2002). [DOI: http://dx.doi.org/10.1149/1.1436085].
  12. C. S. Sharma, H. Katepalli, A. Sharma, and Marc Madou, Carbon, 49 1727 (2011). [DOI: http://dx.doi.org/10.1016/j.carbon.2010.12.058].

Cited by

  1. Approaching theoretical strength in glassy carbon nanolattices vol.15, pp.4, 2016, https://doi.org/10.1038/nmat4561
  2. Beyond 100 nm resolution in 3D laser lithography — Post processing solutions vol.191, 2018, https://doi.org/10.1016/j.mee.2018.01.018